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Max Weight Independent Set

𝐺 = (𝑉, 𝐸)	undirected graph

𝑆 ⊆ 𝑉	is an independent/stable set if  G[S] has no edges

Problem: given G and weights 𝑤 𝑣 , 𝑣 ∈ 𝑉	

 find max (weight) independent set in  G

NP-Hard, and also very hard to approximate!

No Ω !
"!"# !   approx. unless P = NP [Hastad99, Zuckerman06]



Special Cases and Applications

• Sparse graphs: bounded degree or degeneracy

• Interval graphs, chordal graphs, …

• Geometric intersection graphs

• Inductively k-independent graphs

• Perfectly k-orientable graphs 

• …

Theory but also because of  applications



Elimination Graphs

• Inductively k-independent graphs 

• Perfectly k-orientable graphs 

Capture several classes in parameterized and unified way, 
both sparse and dense 

MWIS has  
!
" and 

!
#"	 approximation in above classes 

[AADK02]  [KT14]

⊂



Elimination Graphs

• Inductively k-independent graphs 

• Perfectly k-orientable graphs 

 MWIS has  
!
" and 

!
#"	 approximation in above classes

This talk: obtain results when objective is submodular



Submodular Set Functions

Real-valued set function 𝑓: 2$ → 𝑅 is submodular if

 𝑓 𝐴 + 𝑓 𝐵 ≥ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 	 ∀	𝐴, 𝐵

Equivalently:  

    𝑓 𝐴 + 𝑣 − 𝑓 𝐴 ≥ 𝑓 𝐵 + 𝑣 − 𝑓 𝐵 	 𝐴 ⊂ 𝐵, 𝑣 ∉ B
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Submodular Set Functions

Real-valued set function 𝑓: 2$ → 𝑅 is submodular if

𝑓 𝐴 + 𝑣 − 𝑓 𝐴 ≥ 𝑓 𝐵 + 𝑣 − 𝑓 𝐵 	 𝐴 ⊂ 𝐵, 𝑣 ∉ B

f  is monotone if  𝑓 𝐴 ≤ 𝑓 𝐵 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝐴 ⊆ 𝐵

f  is non-negative if  0 ≤ 𝑓 𝐴 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝐴

Assume 𝑓 ∅ = 0 



Motivation

Many positive results and applications on constrained 
submodular set function maximization 

 max f(S) where S is independent 

• matroid and matroid like constraints

• knapsack constraints and packing integer programs

• …

Extend positive results to graph independent sets



Max Submod Independent Set

𝐺 = (𝑉, 𝐸)	undirected graph

𝑆 ⊆ 𝑉	is an independent/stable set if  G[S] has no edges

Problem: given G and submodular 𝑓: 2$ → 𝑅% 

  max f(S) where S is independent set in  G



Result 1

• k-perfectly orientable graphs: randomized algorithm 
that yields 

!
& "%!  approx. for non-neg submod funcs. 

Slightly better for monotone functions (see paper) 

• Based on multilinear relaxation and rounding approach

• Randomized and inefficient

• But can be parallelized 



Result 2

• Inductively k-independent graphs: deterministic 
algorithm that yields 

!
"%!%#√" approx. for monotone 

functions and randomized Ω !
"  approx. for non-

monotone functions

• Based on primal-dual technique 
• Very simple and efficient
• First deterministic approx. for several special cases such 

as interval graphs, pseudo-disk graphs etc



Inspiration and Take Aways

Results are based on combining existing ideas but …

• Graph classes are unifying and interesting

• Primal-dual for submod max was first done by 
[Levin-Wajc21] for streaming application. This 
paper shows applications for offline
• For interval graphs first deterministic approx. and ratio 

of  ¼ matches previous best randomized [Feldman13]

• Connections to streaming algorithms

• Several open problems (see paper)



Interval Graphs

• Given n intervals 𝐼!, 𝐼#, … , 𝐼( where 𝐼) = 𝑎), 𝑏) 	

• Defines intersection graph: vertices correspond to 
intervals and two intervals connected iff  they overlap 

src: Wikipedia



Interval Graphs

Max weight independent set in interval graphs is easy. 
Several ways to see this but take graph theoretic view

They are chordal and have perfect elimination ordering

Vertices can be ordered as 𝑣!, 𝑣#, … , 𝑣( such that for 
each i, 𝑁 𝑣) ∩ 𝑣), 𝑣)%!, … , 𝑣( 	 is a clique

𝑁 𝑣)  is set of  neighbors of  𝑣)



Sort intervals by right end point 

B A E D C F G



Inductively k-independent graphs

[AADK02, YB12]

G is inductively k-independent if  there is a vertex ordering 
𝑣!, 𝑣#, … , 𝑣" such that for each i, max independent set 
of	 G 𝑁 𝑣$ ∩ 𝑣$ , 𝑣$%!, … , 𝑣" ≤ 𝑘	

Easier condition: G 𝑁 𝑣$ ∩ 𝑣$ , 𝑣$%!, … , 𝑣"  can be covered 
by k cliques

Chordal/interval graphs: k =1 due to single clique

Matchings in graphs: line-graph has k=2 since for any edge 
its neighbors are covered by two cliques (any ordering will 
work!)



t-interval graphs

n objects:  object is a collection of  t disjoint intervals, form 
intersection graph

Max-Indep-Set hard and non-obvious to approximate even 
when t = 2 [BNSS06]
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k-perfectly-orientable graphs

[KT14] 

G=(V,E) has an orientation H=(V,A) such that for each 
vertex v,  𝑁*%(𝑣)	can be covered by k cliques

𝑁*%(𝑣) is out-neighborhood of  v

Orientation is powerful. Exist 2-perfectly orientable 
graphs that are not inductively 𝑛 −independent 

t-interval graphs are 2t-perfectly-orientable



LP Relaxation

Assume ordering 𝑣!, 𝑣#, … , 𝑣( is given

Variable 𝑥) whether 𝑣) in independent set

Constraints are simple: 

  𝑥) + ∑+∈-! 𝑥+ ≤ 𝑘	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖
𝑥) ∈ 0,1 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	

    𝐴): 𝑁 𝑣) ∩ 𝑣), 𝑣)%!, … , 𝑣( 	 𝑜𝑟	𝑁*%(𝑣))	



Multilinear Relaxation Based Algorithms

max F(x) such that 

  𝑥) + ∑+∈-! 𝑥+ ≤ 𝑘	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖
𝑥) ∈ 0,1 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	

    𝐴): 	𝑁*%(𝑣))	

Can obtain (1-1/e) approx. for relaxation via 
continuous greedy

Round x via contention resolution scheme



Randomized Rounding

Round x via contention resolution scheme

Very simple and natural here (implicit in [Feldman13] for 
interval graphs)

• Pick each 𝑣$ with probability 
&'$
(
	 for some constant c. Let 

R be random set

• Discard 𝑣$ from R if  R has any vertex from 
neighborhood	𝑁)%(𝑣$)

• Output altered solution R’

(balance parameters appropriately to get best ratio)



Primal-Dual

Inspired by [Levin-Wajc’21]

Only for inductively k-independent

Want LP relaxation so use “concave extension” 𝑓%(𝑥) 

max 𝑓%(𝑥) such that 

  𝑥) + ∑+∈-! 𝑥+ ≤ 𝑘	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖
𝑥) ∈ 0,1 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	



Primal-Dual

𝑓%(𝑥) hard to evaluate but won’t need to solve since we 
we are using primal-dual

max 𝑓%(𝑥) such that 

  𝑥) + ∑+∈-! 𝑥+ ≤ 𝑘	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖
𝑥) ∈ 0,1 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖	

Rewrite above as big LP from definition of  𝑓%(𝑥) 



Primal and Dual

max
∑

S⊆V

αLf(L)

∑

L⊆V

αL = 1

∑

L"vi

αL = xi i ∈ [n]

xi +
∑

vj∈Ai

xj ≤ k i ∈ [n]

xi ≥ 0 i ∈ [n]

min µ + k
n

∑

i=1

yi

µ +
∑

vi∈L

zi ≥ f(L) L ⊆ V

yi +
∑

vj∈Bi

yj ≥ zi i ∈ [n]

yi ≥ 0 i ∈ [n]

Figure 1: Primal and Dual LPs via the concave closure relaxation for an inductively k-independent graph
G = (V , E) with a given ordering {v1, v2, . . . , vn}.

greedy algorithm. The primal-dual algorithm takes a two phase approach similar to algorithm for
the modular case. In the first phase it processes the vertices in the given order and creates a set
S ⊆ V. In the second phase it process the vertices in the reverse order of insertion and creates
a maximal independent set. Unlike the modular case, the decision to add a vertex vi to S in the
first phase is based on an inflation factor (1 + β). The formal algorithm is described in Fig 2. The
algorithm creates a feasible dual as it goes along — the variables y, z, µ are from the dual LP. It
also maintains and uses auxiliary weight variables wi, 1 ≤ i ≤ n that will be useful in the analysis.

primal-dual-monotone-submod( f : 2V → R≥0,k ∈ N,β ∈ R>0)

1. Initialize an empty stack S. Let V = {v1, . . . , vn} be a k-independence ordering of V . Set
w, z, y ← 0n.

2. For i = 1, . . . , n:

A. Let Ci = N(vi) ∩ S = {u ∈ S : uvi ∈ E}
B. If (fS(vi) > (1 + β)

∑

vj ∈Ci
wj) then

1. Call S.push(vi) and set xi ← 1.
2. Set wi ← fS(vi)−

∑

vj∈Ci
wj and yi ← (1 + β)wi.

C. Otherwise set zi ← fS(vi)

3. Let µ← f(S) and Ŝ ← ∅
4. While S is not empty:

A. v ← S.pop()

B. If Ŝ + vi is independent in G then set Ŝ ← Ŝ + vi.

5. Return Ŝ

Figure 2: Primal-dual algorithm for monotone submodular maximization. The algorithm creates a feasible
dual solution in the first phase along with a set Send. In the second phase it processes Send in reverse order
of insertion and creates a maximal independent set.

Let Send be the set of vertices in the stack S at the end of the first phase. S is a monotonically
increasing set during the algorithm. Note that µ = f(Send) at the end of the algorithm. We observe
that for each i, the algorithm sets the variables wi, yi, zi exactly once when vi is processed, and
does not alter the values after they are set.
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Primal-Dual Algorithm

Related to local-ratio and stack-based algorithms for 
MWIS (see paper for refs). Restrict attention to 
monotone functions. Non-neg requires more work.

Two phases

• Phase 1: process vertices in order 𝑣!, 𝑣#, … , 𝑣( and 
choose a subset S stored in a stack 

• Phase 2: Process S in reverse order by popping. 
Obtain a subset S’ that is an independent set



Phase 1

• Initialize stack S to empty

• For i = 1 to n do 
• Process 𝑣$
• 𝐶$ 	= 𝑆 ∩ 𝑁 𝑣$ 	 //the vertices in S that conflict with 𝑣$
• If    𝑓* 𝑣$ ≥ 1 + 𝛽 	∑+%∈-$𝑤.  then 

• // 𝑣! is significantly better than conflict set so add

• 𝑆. 𝑝𝑢𝑠ℎ 𝑣! 	
• 𝑤! = 𝑓" 𝑣!     // 𝑤! is value when added



Phase 2

• Initialize 𝑆. to empty

• While S is not empty
• 𝑣 = 𝑆. 𝑝𝑜𝑝
• If  𝑆# + v is an independent set then
• 𝑆& ← 𝑆& + v

• Output 𝑆.



Open Problem

¼ approx. for interval graphs when f  is monotone

• Via primal-dual

• And via multilinear relaxation

Can we do better?



Thank You!
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Interval Graphs

• Given n intervals 𝐼!, 𝐼#, … , 𝐼( where 𝐼) = 𝑎), 𝑏) 	

• Defines intersection graph: vertices correspond to 
intervals and two intervals connected iff  they overlap 

I1
I2

I3

I4 I5

I6

v1 v2 v3 v4 v5 v6


