
Densest Subgraph: Supermodularity, 
Iterative Peeling and Flow

Chandra Chekuri
Univ. of  Illinois, Urbana-Champaign

Based on joint work with Kent Quanrud and Manuel Torres

Northwestern, May 4, 2022



Densest Subgraph (DSG)

𝐺 = (𝑉, 𝐸) undirected graph

Find “dense” subgraph(s)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝐸 𝑆
𝑆

𝜆∗ = max
"⊆$

𝐸 𝑆
𝑆



Example

𝜆∗ =
6
4



Dense Subgraph Discovery

• Triangle density: f(S) = # of  triangles in G[S] [Tsourakakis’14]

• k-clique density: f(S) = # of  k-cliques in G[S] [Tsourakakis’15]

• Hypergraphs: f(S) = # of  hyperedges in  G[S] [folklore?]

• p-mean density: 𝑓 𝑆 = ∑!∈# deg 𝑣, 𝑆 $ [Benson-Kleinberg-Veldt’21]

• Constrained versions: [many authors]
max𝑓 𝑆 𝑠. 𝑡 𝑆 = 𝑘, 𝑆 ≤ 𝑘 , 𝑆 ≥ 𝑘

• Directed graph version: [Kannan-Vinay’99,Charikar’00]

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝑓(𝑆)
𝑆



Polynomial Solvability

DSG is poly-time solvable

• Reduction to flow [Picard-Queyranne’82, Goldberg’84]

• Reduction to submodular function minimization 
[folklore]

• LP relaxation [Charikar’00]



Sub and Supermodularity

Real-valued set function 𝑓: 2$ → 𝑅 is submodular if

𝑓 𝐴 + 𝑓 𝐵 ≥ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 ∀ 𝐴, 𝐵

Equivalently:  

𝑓 𝐴 + 𝑣 − 𝑓 𝐴 ≥ 𝑓 𝐵 + 𝑣 − 𝑓 𝐵 𝐴 ⊂ 𝐵, 𝑣 ∉ B



Sub and Supermodularity

𝑓: 2$ → 𝑅 is supermodular iff – 𝑓 is submodular

𝑓 𝐴 + 𝑓 𝐵 ≤ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 ∀ 𝐴, 𝐵

Notation: 𝑓 𝑣 𝑆) = 𝑓 𝑆 + 𝑣 − 𝑓(𝑆) marginal value 

Supermodular:

𝑓 𝑣 𝐵) ≥ 𝑓 𝑣 𝐴) 𝐴 ⊂ 𝐵, 𝑣 ∈ 𝐵 − 𝐴



Sub and Supermodularity

Given graph 𝐺 = (𝑉, 𝐸)

• 𝑓 𝑆 = |𝛿 𝑆 | is submodular and non-neg

• 𝑓 𝑆 = 𝐸 𝑆 = 4
5
(∑6 deg 𝑣 − |𝛿 𝑆 |) is 

supermodular, non-negative and monotone



Densest Supermodular Set 
(DSS)

Given supermodular 𝑓: 2$ → 𝑅7 find max
"

8 "
"

Decision version: check if   ∃𝑆 𝑠. 𝑡 8 "
" ≥ 𝜆

Check if  ∃𝑆 𝑠. 𝑡 𝜆 𝑆 − 𝑓 𝑆 ≤ 0

Poly-time via submodular function minimization



Some Recent Directions on 
Densest Subgraph Discovery

• Fast approximate algorithms for (very) large graphs

• Variations in objective and applications

• Streaming (approximate) algorithms

• Parallel (approximate) algorithms

• Dynamic (approximate)  algorithms

• …



Motivation

• Conjecture of  [Boob-Gao-Peng-Sawlani-Tsourkakis-
Wang-Wang’20] on a simple iterative greedy alg.

• Faster approximations for mixed packing and 
covering LPs (DSG is a special case) 

• Connections to supermodularity

• Discrete + continuous 



Results at high-level

• Fast approximate algorithm: 1 − 𝜖 approximation 

for densest subgraph in 𝑂 𝑚 9:;<;:= >
? time

• Affirmative answer to conjecture of  [Boob et al]

• Generalization to supermodular functions

• Other results …

Mainly about connections which are simple in retrospect



Rest of  the talk

• Charikar’s LP Relaxation

• Flow based approximation algorithm

• Peeling and Iterative Peeling

• Relating iterative peeling to LP solving via MWU



Charikar’s LP Relaxation

max 3
%!∈&

𝑥%!

∑! 𝑧! = 1

𝑥%! ≤ min 𝑧%, 𝑧! 𝑢𝑣 ∈ 𝐸

𝑥, 𝑧 ≥ 0

Theorem: [Charikar’00] LP is optimal for DSG

max
𝐸 𝑆
𝑆

𝑧"∈ {0,1} 𝑣 ∈ 𝑆?
𝑥#" ∈ 0,1 𝑢𝑣 ∈ 𝐸 𝑆 ?



Charikar’s LP Relaxation

Primal

max 3
%!∈&

𝑥%!

∑! 𝑧! = 1

𝑥%! ≤ min 𝑧%, 𝑧! 𝑢𝑣 ∈ 𝐸

𝑥, 𝑧 ≥ 0

Dual

min𝐷

𝑦O6,O + 𝑦O6,6 ≥ 1 𝑢𝑣 ∈ 𝐸

∑O6∈P 𝑦O6,6 ≤ 𝐷 𝑣 ∈ 𝑉

𝑦 ≥ 0

Theorem: [Charikar’00] LP is optimal for DSG



Solving LP Approximately

• Dual-LP is a mixed packing and covering LP

• Can obtain 1 − 𝜖 approx. in 𝑂 𝑚 $'()('* +
,$

time, even 

in parallel [Bahmani-Goel-Munagala’14] 

• Open question: can we solve mixed packing and covering 

LPs in 𝑂 𝑁 $'()('* +
,

time? Known for pure packing 

and covering [AllenZhu-Orecchia’14,Wang-Rao-Mahoney’15]

• 𝑂 𝑚Δ $'()('* +
,

time for DSG [Boob-Sawlani-Wang’19]



Flow Reduction via Dual

Claim: Max-flow in 𝐻Q = 𝐸 iff 𝜆 ≥ 𝜆∗

Observed in [Boob et al] E(G) V(G)

𝑢𝑣

𝑢

𝑣

𝜆1
∞

Flow network 𝐻%

𝑠 𝑡

min𝐷
𝑦#",# + 𝑦#"," ≥ 1 𝑢𝑣 ∈ 𝐸
∑#"∈( 𝑦#"," ≤ 𝐷 𝑣 ∈ 𝑉

𝑦 ≥ 0

Fractional perfect matching



Flow based Approx Algorithm

Given value 𝜆.

1. Construct 𝐻Q

2. Run augmenting path algorithm: stop if  shortest 
augmenting path length ≥ 𝑐 log 𝑛 /𝜖

Theorem: If  maxflow not reached then there exists 
subgraph in G with density ≥ 1 − 𝜖 𝜆



Flow based Approx Algorithm

Theorem: 1 − 𝜖 approximation for DSG in 

𝑂 𝑚 9:;<;:= >
? time

• Generalizes to hypergraphs 

• Also yields faster approximation algorithm for 
densest directed subgraph via reduction



Peeling Algorithm

[Asahiro etal 00, Charikar 00]

• For 𝑖 = 1 𝑡𝑜 𝑛 do
• 𝑣) is in min-degree vertex in 𝐺
• 𝐺 ← 𝐺 − 𝑣)

• 𝑣*, 𝑣+, … , 𝑣, is ordering created by algorithm
• 𝑆) ← 𝑣) , 𝑣)-*, … , 𝑣,
• Output 𝑎𝑟𝑔𝑚𝑎𝑥)

( .!
.!

Theorem: [Charikar’00] Greedy peeling a ½ approximation for DSG 
(proof  via LP)



(Tight) Example

𝐾e,f 𝐷 ≫ 𝑑

𝐾e74
𝜆∗ ≃ 𝑑 via 𝐾e,f

𝜆 𝐺 ≃ e
5



(Tight) Example

𝐾e,f 𝐷 ≫ 𝑑

𝐾e74
𝜆∗ ≃ 𝑑 via 𝐾e,f

𝜆 𝐺 ≃ e
5

Peeling order



Peeling and DSS

Given supermodular function 𝑓: 2$ → 𝑅7

• For 𝑖 = 1 𝑡𝑜 𝑛 do
• 𝑣) ← 𝑎𝑟𝑔𝑚𝑖𝑛" 𝑓 𝑣 | 𝑉 − 𝑣
• 𝑉 ← 𝑉 − 𝑣)
• Restrict f to 𝑉 − 𝑣)

• 𝑣*, 𝑣+, … , 𝑣, is ordering created by algorithm
• 𝑆) ← 𝑣) , 𝑣)-*, … , 𝑣,
• Output 𝑎𝑟𝑔𝑚𝑎𝑥)

/ .!
.!



Peeling and DSS

Question: How can we characterize for general 𝑓?

𝑐! = max
"

∑#∈% 𝑓 𝑣| 𝑆 − 𝑣
𝑓(𝑆)

Supermodularity: ∑!∈# 𝑓 𝑣 |𝑆 − 𝑣 ≥ 𝑓 𝑆 ⇒ 𝑐$ ≥ 1



Peeling and DSS

𝑐8 = max
h

∑6∈" 𝑓 𝑣 |𝑆 − 𝑣
𝑓(𝑆)

Theorem: Peeling is a 
4
i!

approximation for DSS

Proof  is a simple adaptation of  the combinatorial 
proof  of  [Khuller-Saha’09]

Can also do it via relaxation ala [Charikar’00]



Peeling and DSS

Theorem: Peeling is a 
4
i!

approximation for DSS

• Graphs:𝑐8 = max
h

∑"∈$ jkl(6,")
|P " |

= 2

• Hypergraphs: 𝑐8 = 𝑟 where r is rank

• p-th mean in graphs: 𝑐8 = 𝑝 + 1



Iterative Peeling

[BGPSTWW’20] 

• Heuristic inspired by Dual-LP and MWU

• Goal: improve ½ approx to 1 − 𝜖 approx.

• Peel several times by adjusting ”load”

• Creates a new ordering in each iteration

• Pick best suffix among all orderings



Iterative Peeling

Greedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣
• For 𝑡 = 1 𝑡𝑜 𝑇 do

• 𝐺0 ← 𝐺
• For 𝑖 = 1 𝑡𝑜 𝑛 do

• 𝑣1,) ← 𝑎𝑟𝑔𝑚𝑖𝑛" deg 𝑣 + 𝑙𝑜𝑎𝑑 𝑣, 𝑡 − 1
• 𝑙𝑜𝑎𝑑 𝑣1,) , 𝑡 = 𝑙𝑜𝑎𝑑 𝑣1,) , 𝑡 − 1 + deg(𝑣1,))
• 𝐺0 ← 𝐺0 − 𝑣),1

• 𝑆1,) ← {𝑣1,) , … , 𝑣1,,}

• Output 𝑎𝑟𝑔𝑚𝑎𝑥),1
( .",!
.",!

[BGPSTWW’20]



Example

𝐾e,f 𝐷 ≫ 𝑑

𝐾e74

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ e
5
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Example

𝐾e,f 𝐷 ≫ 𝑑

𝐾e74

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ e
5
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Conjecture

[BGPSTWW’20]

Conjecture: Greedy++ is a 1 − 𝜖 approximation 

after 𝑂 4
?% iterations for DSG

Seems to work very well in practice. Implementation 
runs very fast even on large graphs and converges 
quickly on many real-world graphs



Iterative Peeling for DSS

SuperGreedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣
• For 𝑡 = 1 𝑡𝑜 𝑇 do

• 𝑆1,2 ← 𝑉
• For 𝑖 = 1 𝑡𝑜 𝑛 do

• 𝑣1,) ← 𝑎𝑟𝑔𝑚𝑖𝑛"∈.",!𝑓 𝑣 𝑆1,) − 𝑣) + 𝑙𝑜𝑎𝑑 𝑣, 𝑡 − 1
• 𝑙𝑜𝑎𝑑 𝑣1,) , 𝑡 = 𝑙𝑜𝑎𝑑 𝑣1,) , 𝑡 − 1 + 𝑓 𝑣1,) 𝑆1,) − 𝑣1,))
• 𝑆1,)-* ← 𝑆1,) − 𝑣1,)

• Output 𝑎𝑟𝑔𝑚𝑎𝑥1,)
/ .",!
.",!

Given supermodular 𝑓: 23 → 𝑅- find max
.

/ .
.



Iterative Peeling for DSS

Theorem: SuperGreedy++ converges to a 1 − 𝜖

approximation in 𝑂( 4?%
vwx
"

8 6

Q∗ log n) iterations

Corollary: Greedy++ converges to a 1 − 𝜖
approximation for DSG in 𝑂( 4?%

y(z)
Q∗ log n) iterations



Proof  Idea

• Express DSS as an LP relaxation 

• Relate SuperGreedy++ iterations to a multiplicative-
weight update (MWU) algorithm via LP



Proof  Idea

• Express DSS as an LP relaxation 
• Generalize Charikar’s LP for DSG via Lovasz-

extension of  supermodular/submodular functions

• Rewrite as LP via an ordering based view of  Lovasz-
extension

• Relate SuperGreedy++ iterations to a multiplicative-
weight update (MWU) algorithm via LP
• SuperGreedy++ iterations are not MWU iterations but 

can show approximate relationship



Charikar’s LP

max 3
%!∈&

𝑥%!

∑! 𝑧! = 1

𝑥%! ≤ min 𝑧%, 𝑧! 𝑢𝑣 ∈ 𝐸

𝑥, 𝑧 ≥ 0

max b
O6∈P

min 𝑧O, 𝑧6

∑6 𝑧6 = 1

𝑧 ≥ 0

LP Concave Program



Lovasz Extension

𝑓: 2$ → ℝ real valued set function 

want to extend to continuous function 𝑓: 0,1 $ → ℝ

Example: 𝑉 = 𝑣4, 𝑣5, 𝑣{, 𝑣| What is f(0.3, 0.7, 0, 0.1)?

Sort according to decreasing x values: 𝑣5, 𝑣4, 𝑣|, 𝑣{
𝑓 0.3, 0.7, 0, 0.1
= 𝑥5 𝑓 𝑣5 ∅) + 𝑥4 𝑓 𝑣4 𝑣5 ) + 𝑥|𝑓 𝑣| 𝑣5, 𝑣4
+ 𝑥{ 𝑓(𝑣{| 𝑣5, 𝑣4, 𝑣| )



Lovasz Extension

𝑓: 2$ → ℝ real valued set function 

A rounding interpretation:

i𝑓 x = 𝐄𝐱 } ~ [�,4] [f x} ]

where x} = 𝑣 𝑥6 ≥ 𝜃 }

Theorem:[Lovasz] i𝑓 is convex iff f is submodular. i𝑓 is 
concave iff f is supermodular. 



Convex  Relaxation for DSS

Supermodular func:  𝑓: 2$ → 𝑅7. Want max
"

8 "
"

max i𝑓(𝑧)

∑6 𝑧6 = 1
𝑧 ≥ 0

Example: 𝐺 = 𝑉, 𝐸 , 𝑓 𝑆 = |𝐸 𝑆 |
�𝑓 x = �

#"∈(

𝒎𝒊𝒏 𝒙𝒖, 𝒙𝒗



Convex  Relaxation for DSS

Supermodular func:  𝑓: 2$ → 𝑅7. Want max
"

8 "
"

max i𝑓(𝑧)

∑6 𝑧6 = 1
𝑧 ≥ 0

Theorem: Relaxation is exact for DSS



Edmonds and Lovasz

Supermodular func:  𝑓: 2$ → 𝑅7

Consider all orderings/permutations of  𝑉

Given an ordering 𝜎 define a vector

𝑞 𝜎 ∈ 𝑅$ 𝑤ℎ𝑒𝑟𝑒 𝑞6 𝜎 = 𝑓(𝑣 ∣ 𝑤 𝑤 ≺� 𝑣})

Example: 𝜎 = 𝑣5, 𝑣|, 𝑣{, 𝑣4
𝑞6' 𝜎 = 𝑓 𝑣5, 𝑣|, 𝑣{ − 𝑓 𝑣5, 𝑣|



Edmonds and Lovasz

Supermodular func:  𝑓: 2$ → 𝑅7

Consider all orderings/permutations of  𝑉

Given an ordering 𝜎 define a vector

𝑞 𝜎 ∈ 𝑅$ 𝑤ℎ𝑒𝑟𝑒 𝑞6 𝜎 = 𝑓(𝑣 ∣ 𝑤 𝑤 ≺� 𝑣})

Fact: i𝑓 x = min
�
𝑥�𝑞(𝜎).

Given x, the optimum ordering 𝜎� is to sort coordinates 
of  𝑥 in decreasing order of  𝑥6.



Rewriting Relaxations

max i𝑓 𝑧

∑6 𝑧6 = 1
𝑧 ≥ 0

minb
6

𝑧6

i𝑓 𝑧 ≥ 1
𝑧 ≥ 0

OPT val = 𝜆∗ OPT val = 1/𝜆∗



Rewriting Relaxations

minb
6

𝑧6

i𝑓 𝑧 ≥ 1
𝑧 ≥ 0

OPT val = 1/𝜆∗

minb
6

𝑧6

𝑧�𝑞 𝜎 ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 σ
𝑧 ≥ 0

OPT val = 1/𝜆∗

Exponential sized LP



Rewriting Relaxations

minb
6

𝑧6

𝑧�𝑞 𝜎 ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎

𝑧 ≥ 0

OPT val = 1/𝜆∗

Exponential sized LP

max3
-

𝑦-

3
-

𝑞! 𝜎 𝑦- ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑦 ≥ 0

Dual LP



Ordering LP Relaxation

• Packing LP

• Exponential # of  variables but only n non-trivial 
constraints

• Amenable to MWU techniques

max3
-

𝑦-

3
-

𝑞! 𝜎 𝑦- ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑦 ≥ 0



Solving Ordering LP via 
Multiplicative Weight Updates

• MWU: iterative algorithm for solving LPs

• Maintain (exponential) weights on constraints (dual 
variables)

• In each iteration solve a Lagrangean relaxation and 
take a small step along solution



1. y2 = 𝟎
2. load2 v = 1 for all v
3. η = *

6
log n

4. For t = 1 to T do 
• 𝜎1 = 𝑎𝑟𝑔𝑚𝑖𝑛7 𝑙𝑜𝑎𝑑18*, 𝑞 𝜎
• 𝑦1 = 𝑦18* + *

%∗ 9
𝟏𝝈𝒕

• For each v set 𝑙𝑜𝑎𝑑 1 𝑣 ← exp(𝜂 ∑7 𝑦71 𝑞"(𝜎))
5. Output 𝑦9 = *

%∗ 9
∑1 𝟏𝝈𝒕

𝑓: 23 → 𝑅 is supermodular

For ordering 𝜎 of V, 𝑞 𝜎 is a 
vector where
𝑞" 𝜎 = 𝑓 𝑣 𝑢 𝑢 ≺7 𝑣 })

𝑚𝑎𝑥3
-

𝑦-

3
-

𝑞! 𝜎 𝑦- ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑦 ≥ 0



1. y2 = 𝟎
2. load2 v = 1 for all v
3. η = *

6
log n

4. For t = 1 to T do 
• 𝜎1 = 𝑎𝑟𝑔𝑚𝑎𝑥7 𝑙𝑜𝑎𝑑18*, 𝑞 𝜎
• 𝑦1 = 𝑦18* + *

%∗ 9
𝟏𝝈𝒕

• For each v set 𝑙𝑜𝑎𝑑 1 𝑣 ← exp(𝜂 ∑7 𝑦71 𝑞"(𝜎))
5. Output 𝑦9 = *

%∗ 9
∑1 𝟏𝝈𝒕

𝑓: 23 → 𝑅 is supermodular

For ordering 𝜎 of V, 𝑞 𝜎 is a 
vector where
𝑞" 𝜎 = 𝑓 𝑣 𝑢 𝑢 ≺7 𝑣 })

𝑚𝑎𝑥3
!

𝑦-

3
-

𝑞! 𝜎 𝑦- ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

𝑦 ≥ 0

MWU Analysis: Algorithm outputs 1 − 𝜖 approx if  𝑇 = Ω( ;
<&%∗

log 𝑛 )



Iterative Peeling and MWU

• MWU algorithm with LP naturally works with 
orderings of  V which we see in SuperGreedy++

• SuperGreedy++ is not implementing standard 
MWU algorithm

• Why?
• For graphs, given load(v) for each v
• Output ordering according to decreasing order of  loads
• Static and does not add deg(v) correction term
• Hence in first iteration any ordering is ok for MWU 



Iterative Peeling and MWU

• SuperGreedy++ is not implementing standard 
MWU algorithm

• Technical Lemma: For appropriate parameter 
setting, each iteration of  SuperGreedy++ yields a 
1 + 𝜖 approximate ordering in MWU algorithm 

• Intuition: deg is static while loads are increasing so 
initial Greedy step washes out eventually. Advantage 
of  initial Greedy is its performance even after one 
iteration



Iterative Peeling and MWU

• SuperGreedy++ is not implementing standard 
MWU algorithm

• Technical Lemma: For appropriate parameter 
setting each iteration of  SuperGreedy++ yields a 
1 + 𝜖 approximate ordering in MWU algorithm 

• MWU analysis is robust to approximate oracle

• Putting together yields convergence analysis



Summary

• Fast approximate algorithm: 1 − 𝜖 approximation 

for densest subgraph in 𝑂 𝑚 9:;<;:= >
? time. Short 

augmenting paths suffice for density calculation

• SuperGreedy++: simple iterative algorithm that 
converges for any supermodular function

• Other results in paper showcasing utility of  
supermodular perspective



Open Problems

• Tight analysis of  iterative peeling

• Worst example known to us: Ω .
,

iterations for 1 − 𝜖
approximation

• Is dependence on Δ, 𝑛, 𝜆∗ necessary? What about for 
DSS?

• Improved sequential, dynamic and parallel 
algorithms for DSG, DSS, and variants



Thanks!


