Densest Subgraph: Supermodularity,
and Iterative Peeling

Chandra Chekur1
Unaiv. of Illinois, Urbana-Champaign

Based on joint works with
Harb ElFarouk, Kent Quanrud and Manuel Torres

UBC, June 13, 2024

Densest Subgraph (DSG)

G = (V, E) undirected graph

Find “dense” subgraph(s)

density(S) = %

1 maxlE(S)l
- scv S|

Dense Subgraph Discovery

density(S) = %

Triangle density: f(S) = # of triangles in G
k-clique density: f(S) = # of k-cliques in G
Hypergraphs: {(S) = # of hyperedges in G

S|
S|
S|

[Tsourakakis’14]
[Tsourakakis’15]

[folklore?]

p-mean density: f(S) =). es deg(v, S)P [Benson-Kleinberg-Veldt21]

Constrained versions: [many authors]

max f(S)s.t|S| = k,|S| < k,|S| = k

Directed graph version: [Kannan-Vinay’99,Charikar’00]

Polynomaial Solvability

DSG 1s poly-time solvable
» Reduction to flow [Picard-Queyranne’82, Goldberg’84]

» Reduction to submodular function minimization
[folklore]

e LP relaxation [Charikar’00]

Sub and Supermodularity

Real-valued set function f: 2V — R is submodular if
flA+fB)=f(AnB)+ f(AUB) VA,B
Equivalently:

fA+v)—f(A)=>=f(B+v)—f(B) AcB,vé¢B

=t

Sub and Supermodularity

f:2V - R is supermodular iff - f is submodular

fLAAO+fB)<f(AnB)+f(AUB) VA,B
Marginal value: f(v |S) = f(S+v) — f(S)
Supermodular:

fw|B)=f]|A) AcB,veEB—-A

Sub and Supermodularity

Given graph ¢ = (V,E)
* f(S) =16(S)]| is submodular and non-neg

« f(S)=|ES)| = %(Zv deg(v) — |6(S)|) 1s supermodular, non-
negative and monotone

Densest Supermodular Set
(DSS)

£(S)

Given supermodular f: 2" — R, find max ===

Decision version: check if 3S s.t %‘? > A

Check if 3Ss.t A|S| — f(S) <0

Poly-time via submodular function minimization

Some Recent Directions on
Densest Subgraph Discovery

Fast approximate algorithms for (very) large graphs
Variations in objective and applications
Streaming (approximate) algorithms

Parallel (approximate) algorithms

Dynamic (approximate) algorithms

My Motivation

Conjecture of [Boob-Gao-Peng-Sawlani-Tsourkakis-
Wang-Wang’20] on a simple iterative greedy alg.

Faster approximations for mixed packing and
covering LPs (DSG 1is a special case)

Connections to supermodularity

Discrete + continuous

Results at high-level

Fast approximate algorithm: (1 — €) approximation

olylog(n .
mP yeg()) time

for densest subgraph in O (

Affirmative answer to conjecture of [Boob et al]
Generalization to supermodular functions
Other results ...

Connections which are simple in retrospect but helpful for
both theory and practice

Papers

Densest Subgraph: Supermodularity, Iterative Peeling, and Flow [CQT
SODA’22]

Faster and Scalable Algorithms for Densest Subgraph and Decomposition
[HQC NeuRIPS’22]

(1- €)-approximate fully dynamic densest subgraph. linear space and faster
update time [CQ’22/23]

Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and
Applications to Densest Subgraph and Tree Packing [HQC ‘23]

On the Generalized Mean Densest Subgraph Problem: Complexity and
Algorithms [CT’23]

Rest of the talk

e Charikar’s LP Relaxation
* Peeling and Iterative Peeling

* Connections and 1deas about proof of convergence

Charikar’s LLP Relaxation

Integer Programming Formulation

ZuveE Xuv |E(S)|

Z max
b %o G

max

Xyp S Min(zy,z,) uv € E z,€ {0,1} v € S?

. . Xyup € 10,1} uv € E(S5)?
X,z binary variables

Charikar’s LLP Relaxation

max 3 5

UVEE
2w Zy =1
Xypy < min(z,,z,) uv €E

x,z=>0

|E(S)I

max
N

z,€ {0,1} v € S?
Xyup € 10,1} uv € E(S5)?

Theorem: [Charikar’00] LP 1s optimal for DSG

Charikar’s LLP Relaxation

Primal

min D
max Xy

uveE Yuvu T Yuwp=1 UV EE
dvZy =1

Xypy < min(z,,z,) uv €E

D UvEE Yy <D veV

y=0
x,z=0

Theorem: [Charikar’00] LP 1s optimal for DSG

Flow Reduction via Dual

Observed 1n [Boob et al] E(G) V(G)

min D
yuv,u + Yuv,v 2 1 uv E E

ZquE Yuv,v S D vV E V
y=0

Fractional perfect matching

Flow network H;

Claim: Max-flow in Hy = |E|iff 1 = 1"

Utility of LP

* Dual LP can be viewed as a flow problem --- sitmpler
formulation than [Goldberg,Picard-Queyranne].
Dual LP computes fractional arboricity. A =
fractional arboricity

Dual LP 1s mixed-packing and covering LP. Hence
can solve via approximate methods [Bahmani-Goel-

Munagala’14] [Boob-Sawlani-Wang’19]

e More connections soon

Flow based Approx Algorithm

[CQT’22]

Theorem: (1 — €) approximation for DSG in
0 (m polylog(n)
€

) time via approximate flow

1, 1
Improvement: . instead of =

Key structural idea: short (length < clogn /e)
augmenting paths suffice to get (1 — €) approximation

Empirical utility of 1dea not yet unexplored

Peeling Algorithm

[Asahiro etal 00, Charikar 00]

Fori =1tondo
* v; 1S In min-degree vertex in G
* G<G —v

V4, Vs, ..., Uy 18 ordering created by algorithm
Si < {vi' Vit o) vn}
|E(Si)

Output argmax; S
l

Theorem: [Charikar’00] Greedy peeling is a !> approximation for
DSG (proof via LP)

(T1ght) Example

(T1ght) Example

E A" =~ dvia Kd,D

Peeling and DSS

Given supermodular function f: 2V - R,

e Fori=1tondo
e v; <« argmin, f(v|V —v)
° V<—V—Ui
* Restrict ftoV — v;

V4, Vg, ..., Uy 1s Ordering created by
algorithm

Si < {Vi; Vit o) vn}

|f (S

Output argmax; S
l

Peeling and DSS

Question: How can we characterize for general f?

ZvESf(Ul S — U)
aX

m

S 1 (5)

Supermodularity:

Zf(v|5—v)2f(5)=>cf21

VES

Peeling and DSS

- dves (WS —v)
T TTTG)

Theorem: Peeling is a Ci approximation for DSS
f

Proof 1s a simple adaptation of the combinatorial
proof for DSG [Khuller-Saha’09]

Can also do 1t via relaxation ala [Charikar’00]

Peeling and DSS

Theorem: Peeling is a Ci approximation for DSS
f

° . — ZveS deg(v,S) —
Graphs: cf max == s 2

* Hypergraphs: ¢, = r where r is rank
* p-th mean in graphs: ¢y = p + 1

Unifies all the known bounds on greedy peeling

Iterative Peeling

[BGPSTWW?’20]

Heuristic inspired by Dual-LP and MWU
Goal: improve %2 approx to (1 — €) approx.
Peel several times by adjusting ”load”

Creates a new ordering in each iteration

Pick best suffix among all orderings

Iterative Peeling

[BGPSTWW20] |Greedy++
 load(v,0) =0 forallv

e Fort=1toTdo
e G'«G
e Fori=1tondo
* v; < argming, deg(v) + load(v,t —

1)
load(vt,i, t) = load(vt,i ,t— 1) +
deg(ve,)
G« G — VUit

* Sei < Vi Ven}
E(St,)|

* Output argmax; ; S|
ti

Conjecture

[BGPSTWW?’20]

Conjecture: Greedy++ is a (1 — €) approximation
after O (6—12) iterations for DSG

Seems to work very well in practice. Implementation
runs very fast even on large graphs and converges
quickly on many real-world graphs

Iterative Peeling for DSS

Given supermodular f: 2V — R, find mﬁlx%

SuperGreedy++
 load(v,0) =0 forallv
e Fort=1toTdo
* Sto€eV
e Fori=1tondo
* vy < argminges, f(W|S;; —v) + load(v,t — 1)
* load(vet) = load(ves,t — 1) + f(veilSei — vei)
Sti+1 < Sti = Vg

£ (Se.)]
1St |

* Output argmax,;

Iterative Peeling for DSS

[CQT’22]

Theorem: SuperGreedy++ converges to a (1 — €)
max f(v)

approximation in 0(. R log n) 1terations

Corollary: Greedy++ convergestoa (1 — €)

approximation for DSG in 0(- A() log n) 1terations

Proof Idea

* Express DSS as an LP relaxation

* Generalize Charikar’s LP for DSG via Lovasz-
extension of supermodular/submodular functions

* Rewrite as LP via an ordering based view of Lovasz-
extension

* Relate SuperGreedy++ iterations to a multiplicative-
weight update IMWU) algorithm via LP

* SuperGreedy++ iterations are not MW U iterations but
can show approximate relationship which is the main
technical part

Different Perspective/Proof

|[HQC 22, 23]
Focus on DSS

Make connection to principal partition of
sub/supermodular function

Fujishige’s result on lexicographically optimal base
in a polymatroid

Frank-Wolfe method and convergence analysis

Dense Subgraph
Decomposition

Lemma: There 1s a unique maximal ”densest”
subgraph in any graph G

Suppose A and B are maximal sets with density A*
1. f(A)+ f(B)S f(AUB)+ f(ANnB)
2. |Al+|B|=|AUB|+|ANB|

Implies A U B has density A

Dense Decomposition

Fix supermodular function f: 2V — R, (monotone,
non-negative)

S1 1s unique maximal densest set for f with density 14

Function fs,: 2Y7%1 — R, obtained by contracting S
(also supermodular)

S, 1s unique maximal densest set for fs with density 4,

Observation: 1; > 1,

Dense Subgraph
Decomposition

Fix supermodular function f: 2V — R, (monotone,
non-negative)

Can partition V into S4, S5, ..., S with decreasing
densities A4 > A, > - > A,

Called the dense (subgraph) decomposition
For each v € S; associate A(v) = A;

A € RV the dense decomposition vector

Dense Subgraph
Decomposition

Dense Decomposition

Fix supermodular function f:2Y - R, (monotone, non-
negative)

Alternatively: consider
max f(S) — A|S| as A varies from —oo to oo

Optimum changes only a finite number of times
corresponding to nested family of sets: S;,5; U S,,5; US, U
53, ,V — S]_ USZ USk

Well-studied in graph/matroid/submodular literature:
survey by Fujishige "Theory of Principal Partitions Revisited”

Computing Dense
Decomposition Vector

[Fujishige’80]

Theorem: Dense decomposition vector A is the unigue
lexicographically minimal base in the contra polymatroid

associated with f

Fujishige considered submodular functions but can be
easily adapted to supermodular functions

Polymatroid

Suppose g: 2V — R, is a monotone submodular function
such that g(@) = 0 (normalized)

|[Edmonds] polymatroid associated with g is the polytope
in R" (here n = |V])

x(S)<f(S) forallSCV
Xy, =0 forallveV

Contra Polymatroid

Suppose f:2Y — R, is a monotone supermodular
function such that (@) = 0 (normalized)

Contra polymatroid associated with f 1s the polytope in
R" (here n = |V|)

x(S)=f(S) forallSCSV
Xy, =0 forallveV

Base Contra Polymatroid

Suppose f: 2V - R, is a monotone supermodular
function such that /(@) = 0 (normalized)

Base Contra polymatroid associated with f is the polytope

x(S)=f(S) forallSCV
x(V) =f(V)

Xy, =0 forallveV

Each vector y € By 1s a base of f

Lexicographically optimal
base & Dense Decomposition

|[Fujishige’80] (interpreted/paraphrased)

Theorem: f: 2" — R, is a monotone supermodular function
and let By be its base contra polymatroid. Then there is a

unique lexicographically minimum base y* and

1. y*=2

2. max density A; = min maxx, . tx € Bf (anLP)
3.y is the unique opt solution to quadratic program

min), x; S.tx € By

Back to DSG

Recall for densest subgraph: f(S) = |E(S)]
What 1s Fujishige’s “relaxation”?

Variable x,, for each vertex v € V

min D
Xy, <D forallveV
dv Xy =M
YoesXy = |E(S)| forallScV
X, =0 forallveV

Back to DSG

[HQC’22]

Question: How 1s this exponential sized LP related to
Charikar’s LP?

* Dual of Charikar’s LP 1s “equivalent” to Fujishige’s
relaxation!

Charikar’s LP can be viewed as a compact extended
formulation that 1s specific to DSG

Charikar’s primal LP can be recast via the Lovasz
extension of supermodular function

Frank-Wolfe for solving QP

Optimum solution to quadratic program:

min Z x5 such that x € By

v

is the dense decomposition vector
How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because
linear optimization over By is easy: greedy algorithm is

optimal for polymatroid/contra polymatroids [Edmonds]

Frank-Wolfe for solving QP

Optimum solution to quadratic program:

min Z x5 such that x € By

v

is the dense decomposition vector
How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because
linear optimization over By is easy: greedy algorithm is

optimal for polymatroid/contra polymatroids [Edmonds]

Back to Greedy++ and
SuperGreedy++

SuperGreedy++ 1s not Frank-Wolfe on Fujisghige’s QP
So, what 1s 1t?

Main claim: SuperGreedy++ is a noisy or approximate
version of a variant of Frank-Wolfe

Can generalize Frank-Wolfe convergence analysis to
show that SuperGreedy++ also converges

New proof has weaker convergence bound but gives
additive guarantees. Also shows that SuperGreedy++
converges to the full dense decomposition vector rather
than just max density

Iterative Algorithms for DSG
and Empirical Evaluation

[HQC NeuRIPS’22]

* Focus on DSG and dense graph decomposition

« Algorithms

Greedy++

Frank-Wolfe on quadratic program starting with greedy solution as
starting point [Danisch-Chan-Sozi0’17]

Accelerated proximal gradient method on quadratic program (FISTA).
Main observation is that projection oracle is O(m) time so iterations

are quite fast and parallelizable.
MWU based algorithm

* Unlike Greedy++ other algorithms produce “fractional”
solutions and need to be rounded. Introduce “fractional peeling”
a heuristic with some theoretical support

Density for Roadnet CA

fista_seq
fista_parallel
frankwolfe

greedypp
mwu

Density for Roadnet PA

fista_seq
fista_parallel
frankwolfe

greedypp
mwu

Wall clock time (seconds)

Wall clock time (seconds)

Density for Amazon

%

fista_seq
fista_parallel
frankwolfe

greedypp
mwu

Density for Wikipedia Top Categories

0.5 1.0 1.5
Wall clock time (seconds)

/

fista_seq
fista_parallel
frankwolfe

greedypp
mwu

10 20 30 60 70
Wall clock time (seconds)

Iterative Algorithms for DSG
and Empirical Evaluation

[HQC NeuRIPS’22]

* FISTA based algorithm seems to be the consistent
winner but Greedy++, Frank-Wolfe also
competitive. MWU quite slow

Fractional peeling 1s very important for performance

See paper for detailed plots

Take aways

SuperGreedy and SuperGreedy++: simple iterative
algorithms for any supermodular density function

For DSG, a new FISTA based algorithm that seems
superior to other methods. Fractional peeling for
rounding that applies for other methods as well

Frank-Wolfe vs SuperGreedy++: former competitive
but fractional while latter 1s “combinatorial”

p-mean DSG 1s NP-Hard for p < 1. See [CT’23] for
results and open problems

Open Problem

Tight analysis of Greedy++

. . 1Y). .
* Recall conjecture 1s O (—2) iterations

1\ . .
* Worst example known to us: () (E) iterations for (1 — €)
approximation

* Our bound: O(EL2 A/,(lf) log n)

Thanks!

