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Densest Subgraph (DSG)

𝐺 = (𝑉, 𝐸)	undirected graph

Find “dense” subgraph(s)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝐸 𝑆
𝑆

𝜆∗ = max
"⊆$

𝐸 𝑆
𝑆



Example

𝜆∗ =
5
4



Dense Subgraph Discovery

• Triangle density: f(S) = # of  triangles in G[S] [Tsourakakis’14]

• k-clique density: f(S) = # of  k-cliques in G[S] [Tsourakakis’15]

• Hypergraphs: f(S) = # of  hyperedges in  G[S] [folklore?]

• p-mean density: 𝑓 𝑆 = ∑!∈# deg 𝑣, 𝑆 $ [Benson-Kleinberg-Veldt’21]

• Constrained versions: [many authors]
max𝑓 𝑆 𝑠. 𝑡 𝑆 = 	𝑘, 𝑆 ≤ 	𝑘	, 𝑆 ≥ 	𝑘	

• Directed graph version: [Kannan-Vinay’99,Charikar’00]

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝑓(𝑆)
𝑆



Polynomial Solvability

DSG is poly-time solvable

• Reduction to flow [Picard-Queyranne’82, Goldberg’84]

• Reduction to submodular function minimization 
[folklore]

• LP relaxation [Charikar’00]



Sub and Supermodularity

Real-valued set function 𝑓: 2$ → 𝑅 is submodular if

 𝑓 𝐴 + 𝑓 𝐵 ≥ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 	 ∀	𝐴, 𝐵

Equivalently:  

    𝑓 𝐴 + 𝑣 − 𝑓 𝐴 ≥ 𝑓 𝐵 + 𝑣 − 𝑓 𝐵 	 𝐴 ⊂ 𝐵, 𝑣 ∉ B

A B
v



Sub and Supermodularity

𝑓: 2$ → 𝑅 is supermodular iff  – 𝑓 is submodular

𝑓 𝐴 + 𝑓 𝐵 ≤ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 	 ∀	𝐴, 𝐵

Marginal value: 𝑓 𝑣	 𝑆) = 𝑓 𝑆 + 𝑣 	− 𝑓(𝑆)

Supermodular:

             𝑓 𝑣	 𝐵) ≥ 𝑓 𝑣	 𝐴)	 𝐴 ⊂ 𝐵, 𝑣 ∈ 𝐵 − 𝐴	



Sub and Supermodularity

Given graph 𝐺 = (𝑉, 𝐸)    

• 𝑓 𝑆 = |𝛿 𝑆 | is submodular and non-neg

• 𝑓 𝑆 = 𝐸 𝑆 = !
"
(∑# deg 𝑣 	− |𝛿 𝑆 |) is supermodular, non-

negative and monotone

S S



Densest Supermodular Set 
(DSS)

Given supermodular 𝑓: 2$ → 𝑅4 find max
"

5 "
"  

Decision version: check if   ∃𝑆	𝑠. 𝑡	 5 "
" ≥ 𝜆

Check if  ∃𝑆	𝑠. 𝑡	 𝜆 𝑆 	− 𝑓 𝑆 ≤ 0	

Poly-time via submodular function minimization



Some Recent Directions on 
Densest Subgraph Discovery

• Fast approximate algorithms for (very) large graphs

• Variations in objective and applications

• Streaming (approximate) algorithms

• Parallel (approximate) algorithms

• Dynamic (approximate)  algorithms

• …



My Motivation

• Conjecture of  [Boob-Gao-Peng-Sawlani-Tsourkakis-
Wang-Wang’20] on a simple iterative greedy alg.

• Faster approximations for mixed packing and 
covering LPs (DSG is a special case) 

• Connections to supermodularity 

• Discrete + continuous 



Results at high-level

• Fast approximate algorithm: 1 − 𝜖  approximation 

for densest subgraph in 𝑂 𝑚 678987: ;
<  time

• Affirmative answer to conjecture of  [Boob et al] 

• Generalization to supermodular functions

• Other results …

Connections which are simple in retrospect but helpful for 
both theory and practice



Papers

• Densest Subgraph: Supermodularity, Iterative Peeling, and Flow [CQT 
SODA’22]

• Faster and Scalable Algorithms for Densest Subgraph and Decomposition 
[HQC NeuRIPS’22]

• (1-	𝜖)-approximate fully dynamic densest subgraph: linear space and faster 
update time [CQ’22/23] 

• Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and 
Applications to Densest Subgraph and Tree Packing [HQC ‘23]

• On the Generalized Mean Densest Subgraph Problem: Complexity and 
Algorithms [CT’23]



Rest of  the talk

• Charikar’s LP Relaxation

• Peeling and Iterative Peeling

• Connections and ideas about proof  of  convergence



Charikar’s LP Relaxation

max 
∑!"∈$ @!"
∑" A"

				𝑥BC ≤ min 𝑧B, 𝑧C 	 𝑢𝑣 ∈ 𝐸

       𝑥, 𝑧	𝑏𝑖𝑛𝑎𝑟𝑦	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒s

max
"

𝐸 𝑆
𝑆

	 𝑧#∈ {0,1} 𝑣 ∈ 𝑆?
𝑥$# ∈ 0,1 	 𝑢𝑣 ∈ 𝐸 𝑆 ?

Integer Programming Formulation



Charikar’s LP Relaxation

max 4
%!∈&

𝑥%!

    ∑! 𝑧! = 1

								𝑥%! ≤ min 𝑧%, 𝑧! 	 𝑢𝑣 ∈ 𝐸

       𝑥, 𝑧 ≥ 0

Theorem: [Charikar’00] LP is optimal for DSG

max
𝐸 𝑆
𝑆

	 𝑧#∈ {0,1} 𝑣 ∈ 𝑆?
𝑥$# ∈ 0,1 	 𝑢𝑣 ∈ 𝐸 𝑆 ?



Charikar’s LP Relaxation

Primal

max 4
%!∈&

𝑥%!

    ∑! 𝑧! = 1

								𝑥%! ≤ min 𝑧%, 𝑧! 	 𝑢𝑣 ∈ 𝐸

       𝑥, 𝑧 ≥ 0

Dual

min𝐷

 𝑦BC,B + 𝑦BC,C ≥ 1	 𝑢𝑣 ∈ 𝐸

 ∑BC∈S	𝑦BC,C	 ≤ 𝐷	 𝑣 ∈ 𝑉 

																							𝑦 ≥ 0	

Theorem: [Charikar’00] LP is optimal for DSG



Flow Reduction via Dual

Claim: Max-flow in 𝐻T = 𝐸 	iff   𝜆 ≥ 𝜆∗

Observed in [Boob et al] E(G) V(G)

𝑢𝑣

𝑢

𝑣

𝜆1
∞	

Flow network 𝐻% 

𝑠 𝑡

min𝐷
 𝑦$#,$ + 𝑦$#,# ≥ 1	 𝑢𝑣 ∈ 𝐸
∑$#∈(	𝑦$#,# ≤ 𝐷	 𝑣 ∈ 𝑉 
																							𝑦 ≥ 0	

Fractional perfect matching



Utility of  LP

• Dual LP can be viewed as a flow problem --- simpler 
formulation than [Goldberg,Picard-Queyranne]. 
Dual LP computes fractional arboricity. 𝜆∗ =
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑟𝑏𝑜𝑟𝑖𝑐𝑖𝑡𝑦

• Dual LP is mixed-packing and covering LP. Hence 
can solve via approximate methods [Bahmani-Goel-
Munagala’14] [Boob-Sawlani-Wang’19] 

• More connections soon



Flow based Approx Algorithm

[CQT’22]

Theorem: 1 − 𝜖  approximation for DSG in 

𝑂 𝑚 678987: ;
<  time via approximate flow

Improvement:  
^
<
	𝑖𝑛𝑠𝑡𝑒𝑎𝑑	𝑜𝑓 ^

<%
 

Key structural idea: short (𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑐 log 𝑛	/𝜖) 
augmenting paths suffice to get 1 − 𝜖 	approximation

Empirical utility of  idea not yet unexplored



Peeling Algorithm

[Asahiro etal 00, Charikar 00]

• For 𝑖 = 1	𝑡𝑜	𝑛	do
• 𝑣$	is in min-degree vertex in 𝐺
• 𝐺 ← 𝐺	 − 𝑣$

• 𝑣!, 𝑣", … , 𝑣% is ordering created by algorithm
• 𝑆$ ← 𝑣$, 𝑣$&!, … , 𝑣%
• Output 𝑎𝑟𝑔𝑚𝑎𝑥$

' (!
(!

Theorem: [Charikar’00] Greedy peeling is a ½ approximation for 
DSG (proof  via LP)



(Tight) Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^
𝜆∗ ≃ 𝑑 via 𝐾_,`	

𝜆 𝐺 ≃ _
a
 



(Tight) Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^
𝜆∗ ≃ 𝑑 via 𝐾_,`	

𝜆 𝐺 ≃ _
a
 

Peeling order



Peeling and DSS

Given supermodular function 𝑓:	 2$ → 𝑅4

• For 𝑖 = 1	𝑡𝑜	𝑛	do
• 𝑣$ ← 𝑎𝑟𝑔𝑚𝑖𝑛#	𝑓 𝑣	|	𝑉 − 𝑣
• 𝑉 ← 𝑉 − 𝑣$
• Restrict f  to 𝑉 − 𝑣$

• 𝑣!, 𝑣", … , 𝑣% is ordering created by 
algorithm

• 𝑆$ ← 𝑣$, 𝑣$&!, … , 𝑣%
• Output 𝑎𝑟𝑔𝑚𝑎𝑥$

) (!
(!



Peeling and DSS

Question: How can we characterize for general 𝑓?

𝑐f 	= max
g

∑h∈i 𝑓 𝑣|	𝑆 − 𝑣
𝑓(𝑆)

Supermodularity: 

j
C∈"

𝑓 𝑣	|𝑆 − 𝑣 ≥ 𝑓 𝑆 ⇒ 𝑐5 ≥ 1



Peeling and DSS

𝑐5 	= max
b

∑C∈" 𝑓 𝑣	|𝑆 − 𝑣
𝑓(𝑆)

Theorem: Peeling is a 
^
c&

 approximation for DSS

Proof  is a simple adaptation of  the combinatorial 
proof  for DSG [Khuller-Saha’09]

Can also do it via relaxation ala [Charikar’00]



Peeling and DSS

Theorem: Peeling is a 
^
c&

 approximation for DSS

• Graphs: 𝑐5 	= max
b

∑"∈' def(C,")
|S " |

 = 2

• Hypergraphs: 𝑐5 = 	 𝑟 where r is rank

• p-th mean in graphs: 𝑐5 = 	 𝑝 + 1 

Unifies all the known bounds on greedy peeling



Iterative Peeling

[BGPSTWW’20] 

• Heuristic inspired by Dual-LP and MWU

• Goal: improve ½ approx to 1 − 𝜖  approx.

• Peel several times by adjusting ”load”

• Creates a new ordering in each iteration

• Pick best suffix among all orderings

 



Iterative Peeling

Greedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣
• For 𝑡 = 1	𝑡𝑜	𝑇	do

• 𝐺* ← 𝐺
• For 𝑖 = 1	𝑡𝑜	𝑛	do

• 𝑣+,$ ← 𝑎𝑟𝑔𝑚𝑖𝑛# deg 𝑣 + 𝑙𝑜𝑎𝑑(
)

𝑣, 𝑡 −
1 	

• 𝑙𝑜𝑎𝑑 𝑣+,$, 𝑡 = 𝑙𝑜𝑎𝑑 𝑣+,$	, 𝑡 − 1 +
deg(𝑣+,$)

• 𝐺* ← 𝐺* − 𝑣$,+	

• 𝑆+,$ ← {𝑣+,$, … , 𝑣+,%}

• Output 𝑎𝑟𝑔𝑚𝑎𝑥$,+
' (",!
(",!

[BGPSTWW’20]



Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a
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Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a

3

2 1

0

3

3

3

3

2

1

0



Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a

3

3 3

3

6

6

6

5

5

4

3



Conjecture

[BGPSTWW’20]

Conjecture: Greedy++ is a 1 − 𝜖  approximation 

after 𝑂 ^
<%  iterations for DSG

Seems to work very well in practice. Implementation 
runs very fast even on large graphs and converges 
quickly on many real-world graphs



Iterative Peeling for DSS

SuperGreedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣
• For 𝑡 = 1	𝑡𝑜	𝑇	do

• 𝑆*,+ ← 𝑉 
• For 𝑖 = 1	𝑡𝑜	𝑛	do

• 𝑣*,, ← 𝑎𝑟𝑔𝑚𝑖𝑛#∈"!,#𝑓 𝑣 𝑆*,, − 𝑣) + 𝑙𝑜𝑎𝑑 𝑣, 𝑡 − 1 	
• 𝑙𝑜𝑎𝑑 𝑣*,, , 𝑡 = 𝑙𝑜𝑎𝑑 𝑣*,, , 𝑡 − 1 +	𝑓 𝑣*,, 𝑆*,, − 𝑣*,,)
• 𝑆*,,-. ← 𝑆*,, − 𝑣*,,

• Output 𝑎𝑟𝑔𝑚𝑎𝑥*,,
/ "!,#
"!,#	

Given supermodular 𝑓: 20 → 𝑅- find max
"

/ "
"

 



Iterative Peeling for DSS

[CQT’22]

Theorem: SuperGreedy++ converges to a 1 − 𝜖  

approximation in 𝑂( ^<%
uvw
"

5 C

T∗ 	log	n) iterations

Corollary: Greedy++ converges to a 1 − 𝜖  

approximation for DSG in 𝑂( ^<%
x(y)
T∗ 	log	n) iterations



Proof  Idea

• Express DSS as an LP relaxation 
• Generalize Charikar’s LP for DSG via Lovasz-

extension of  supermodular/submodular functions
• Rewrite as LP via an ordering based view of  Lovasz-

extension

• Relate SuperGreedy++ iterations to a multiplicative-
weight update (MWU) algorithm via LP
• SuperGreedy++ iterations are not MWU iterations but 

can show approximate relationship which is the main 
technical part



Different Perspective/Proof

[HQC’22, 23]

• Focus on DSS

• Make connection to principal partition of  
sub/supermodular function

• Fujishige’s result on lexicographically optimal base 
in a polymatroid

• Frank-Wolfe method and convergence analysis



Dense Subgraph 
Decomposition

Lemma: There is a unique maximal ”densest” 
subgraph in any graph G

Suppose A and B are maximal sets with density 𝜆∗

1. 𝑓 𝐴 + 	𝑓 𝐵 ≤ 	𝑓 𝐴 ∪ 𝐵 + 	𝑓 𝐴 ∩ 𝐵

2. 𝐴 + 𝐵 = 𝐴 ∪ 𝐵 + |𝐴 ∩ 𝐵|     

Implies  𝐴 ∪ 𝐵 has density 𝜆∗



Dense Decomposition

Fix supermodular function 𝑓: 2$ → 𝑅4 (monotone, 
non-negative)

𝑆^ is unique maximal densest set for 𝑓 with density 𝜆^

Function 𝑓") : 2
$z") → 𝑅4 obtained by contracting 𝑆^ 

(also supermodular)

𝑆a is unique maximal densest set for 𝑓")with density 𝜆a

Observation: 𝜆^ > 𝜆a



Dense Subgraph 
Decomposition

Fix supermodular function 𝑓: 2$ → 𝑅4 (monotone, 
non-negative)

Can partition 𝑉 into 𝑆^, 𝑆a, … , 𝑆{ with decreasing 
densities  𝜆^ > 𝜆a > ⋯ > 𝜆{

Called the dense (subgraph) decomposition

For each 𝑣 ∈ 𝑆|	associate 𝜆 𝑣 = 𝜆|

𝜆̅ ∈ 𝑅$	 the dense decomposition vector



Dense Subgraph 
Decomposition

S1

S1

S2

S1

S2
S3

(a) (b)

(c) (d)



Dense Decomposition

Fix supermodular function 𝑓: 2' → 𝑅( (monotone, non-
negative)

Alternatively: consider   

 max 𝑓 𝑆 	− 𝜆 𝑆 	 as 𝜆 varies from −∞	to	∞	

Optimum changes only a finite number of  times 
corresponding to nested family of  sets: 𝑆), 𝑆) ∪ 𝑆*, 𝑆) ∪ 𝑆* ∪
𝑆+, … , 𝑉 = 𝑆) ∪ 𝑆* 	…∪ 𝑆, 

Well-studied in graph/matroid/submodular literature: 
survey by Fujishige "Theory of  Principal Partitions Revisited”



Computing Dense 
Decomposition Vector

[Fujishige’80]

Theorem: Dense decomposition vector 𝜆̅ is the unique 
lexicographically minimal base in the contra polymatroid 
associated with f

Fujishige considered submodular functions but can be 
easily adapted to supermodular functions



Polymatroid

Suppose 𝑔: 2$ → 𝑅4 is a monotone submodular function 
such that 𝑔 ∅ = 0 (normalized)

[Edmonds] polymatroid associated with g is the polytope 
in 𝑅} (here 𝑛 = 𝑉 )

 
𝑥 𝑆 ≤ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉

         𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉



Contra Polymatroid

Suppose 𝑓: 2$ → 𝑅4 is a monotone supermodular 
function such that 𝑓 ∅ = 0 (normalized)

Contra polymatroid associated with f  is the polytope in 
𝑅} (here 𝑛 = 𝑉 )

 
𝑥 𝑆 ≥ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉

         𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉



Base Contra Polymatroid

Suppose 𝑓: 2$ → 𝑅4 is a monotone supermodular 
function such that 𝑓 ∅ = 0 (normalized)

Base Contra polymatroid associated with f  is the polytope

  

Each vector 𝑦 ∈ 𝐵5 is a base of  f

𝑥 𝑆 ≥ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉
         𝑥 𝑉 = 𝑓 𝑉
         𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉



Lexicographically optimal 
base & Dense Decomposition

[Fujishige’80] (interpreted/paraphrased)

Theorem: 𝑓: 2' → 𝑅( is a monotone supermodular function 
and let 𝐵- be its base contra polymatroid. Then there is a 
unique lexicographically minimum base 𝑦∗ and 

1.   𝑦∗ = 𝜆̅

2. max density 𝜆) = 	minmax
/
𝑥! 	𝑠. 𝑡	𝑥 ∈ 𝐵-      (an LP)

3. 𝑦∗ is the unique opt solution to quadratic program

                     min	 ∑! 𝑥!*	 𝑠. 𝑡	𝑥 ∈ 𝐵-



Back to DSG

Recall for densest subgraph: 𝑓(𝑆) 	= 	 |𝐸(𝑆)|	

What is Fujishige’s “relaxation”? 

Variable 𝑥C for each vertex 𝑣 ∈ 𝑉

      
min 𝐷

               𝑥# ≤ 𝐷	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉
         ∑# 	𝑥# = 𝑚
       ∑#∈( 𝑥# ≥ 𝐸 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉	
 𝑥# ≥ 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉



Back to DSG

[HQC’22]

Question: How is this exponential sized LP related to 
Charikar’s LP?     

• Dual of  Charikar’s LP is “equivalent” to Fujishige’s 
relaxation! 

• Charikar’s LP can be viewed as a compact extended 
formulation that is specific to DSG

• Charikar’s primal LP can be recast via the Lovasz 
extension of  supermodular function



Frank-Wolfe for solving QP

Optimum solution to quadratic program:

 

is the dense decomposition vector

How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because 
linear optimization over 𝐵- is easy: greedy algorithm is 
optimal for polymatroid/contra polymatroids [Edmonds]

min	N
#

𝑥#"	 such	that	𝑥 ∈ 𝐵)



Frank-Wolfe for solving QP

Optimum solution to quadratic program:

 

is the dense decomposition vector

How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because 
linear optimization over 𝐵- is easy: greedy algorithm is 
optimal for polymatroid/contra polymatroids [Edmonds]

min	N
#

𝑥#"	 such	that	𝑥 ∈ 𝐵)



Back to Greedy++ and 
SuperGreedy++

• SuperGreedy++ is not Frank-Wolfe on Fujisghige’s QP 

• So, what is it?

• Main claim: SuperGreedy++ is a noisy or approximate 
version of  a variant of  Frank-Wolfe

• Can generalize Frank-Wolfe convergence analysis to 
show that SuperGreedy++ also converges

• New proof  has weaker convergence bound but gives 
additive guarantees. Also shows that SuperGreedy++ 
converges to the full dense decomposition vector rather 
than just max density



Iterative Algorithms for DSG 
and Empirical Evaluation

[HQC NeuRIPS’22]

• Focus on DSG and dense graph decomposition

• Algorithms
1. Greedy++ 
2. Frank-Wolfe on quadratic program starting with greedy solution as 

starting point [Danisch-Chan-Sozio’17]
3. Accelerated proximal gradient method on quadratic program (FISTA). 

Main observation is that projection oracle is O(m) time so iterations 
are quite fast and parallelizable.

4. MWU based algorithm

• Unlike Greedy++ other algorithms produce “fractional” 
solutions and need to be rounded. Introduce “fractional peeling” 
a heuristic with some theoretical support
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Iterative Algorithms for DSG 
and Empirical Evaluation

[HQC NeuRIPS’22]

• FISTA based algorithm seems to be the consistent 
winner but Greedy++, Frank-Wolfe also 
competitive. MWU quite slow

• Fractional peeling is very important for performance

See paper for detailed plots



Take aways

• SuperGreedy and SuperGreedy++: simple iterative 
algorithms for any supermodular density function

• For DSG, a new FISTA based algorithm that seems 
superior to other methods. Fractional peeling for 
rounding that applies for other methods as well

• Frank-Wolfe vs SuperGreedy++: former competitive 
but fractional while latter is “combinatorial” 

• p-mean DSG is NP-Hard for p < 1. See [CT’23] for 
results and open problems



Open Problem

Tight analysis of  Greedy++

• Recall conjecture is O )
01

 iterations

• Worst example known to us: Ω )
0

 iterations for 1 − 𝜖  

approximation

• Our bound: 𝑂( )
01

1(3)
5∗

	log	n)



Thanks!


