
Densest Subgraph: Supermodularity,
and Iterative Peeling

Chandra Chekuri
Univ. of Illinois, Urbana-Champaign

Based on joint works with
Harb ElFarouk, Kent Quanrud and Manuel Torres

UBC, June 13, 2024

Densest Subgraph (DSG)

𝐺 = (𝑉, 𝐸)	undirected graph

Find “dense” subgraph(s)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝐸 𝑆
𝑆

𝜆∗ = max
"⊆$

𝐸 𝑆
𝑆

Example

𝜆∗ =
5
4

Dense Subgraph Discovery

• Triangle density: f(S) = # of triangles in G[S] [Tsourakakis’14]

• k-clique density: f(S) = # of k-cliques in G[S] [Tsourakakis’15]

• Hypergraphs: f(S) = # of hyperedges in G[S] [folklore?]

• p-mean density: 𝑓 𝑆 = ∑!∈# deg 𝑣, 𝑆 $ [Benson-Kleinberg-Veldt’21]

• Constrained versions: [many authors]
max𝑓 𝑆 𝑠. 𝑡 𝑆 = 	𝑘, 𝑆 ≤ 	𝑘	, 𝑆 ≥ 	𝑘	

• Directed graph version: [Kannan-Vinay’99,Charikar’00]

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑆 =
𝑓(𝑆)
𝑆

Polynomial Solvability

DSG is poly-time solvable

• Reduction to flow [Picard-Queyranne’82, Goldberg’84]

• Reduction to submodular function minimization
[folklore]

• LP relaxation [Charikar’00]

Sub and Supermodularity

Real-valued set function 𝑓: 2$ → 𝑅 is submodular if

 𝑓 𝐴 + 𝑓 𝐵 ≥ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 	 ∀	𝐴, 𝐵

Equivalently:

 𝑓 𝐴 + 𝑣 − 𝑓 𝐴 ≥ 𝑓 𝐵 + 𝑣 − 𝑓 𝐵 	 𝐴 ⊂ 𝐵, 𝑣 ∉ B

A B
v

Sub and Supermodularity

𝑓: 2$ → 𝑅 is supermodular iff – 𝑓 is submodular

𝑓 𝐴 + 𝑓 𝐵 ≤ 𝑓 𝐴 ∩ 𝐵 + 𝑓 𝐴 ∪ 𝐵 	 ∀	𝐴, 𝐵

Marginal value: 𝑓 𝑣	 𝑆) = 𝑓 𝑆 + 𝑣 	− 𝑓(𝑆)

Supermodular:

 𝑓 𝑣	 𝐵) ≥ 𝑓 𝑣	 𝐴)	 𝐴 ⊂ 𝐵, 𝑣 ∈ 𝐵 − 𝐴	

Sub and Supermodularity

Given graph 𝐺 = (𝑉, 𝐸)

• 𝑓 𝑆 = |𝛿 𝑆 | is submodular and non-neg

• 𝑓 𝑆 = 𝐸 𝑆 = !
"
(∑# deg 𝑣 	− |𝛿 𝑆 |) is supermodular, non-

negative and monotone

S S

Densest Supermodular Set
(DSS)

Given supermodular 𝑓: 2$ → 𝑅4 find max
"

5 "
"

Decision version: check if ∃𝑆	𝑠. 𝑡	 5 "
" ≥ 𝜆

Check if ∃𝑆	𝑠. 𝑡	 𝜆 𝑆 	− 𝑓 𝑆 ≤ 0	

Poly-time via submodular function minimization

Some Recent Directions on
Densest Subgraph Discovery

• Fast approximate algorithms for (very) large graphs

• Variations in objective and applications

• Streaming (approximate) algorithms

• Parallel (approximate) algorithms

• Dynamic (approximate) algorithms

• …

My Motivation

• Conjecture of [Boob-Gao-Peng-Sawlani-Tsourkakis-
Wang-Wang’20] on a simple iterative greedy alg.

• Faster approximations for mixed packing and
covering LPs (DSG is a special case)

• Connections to supermodularity

• Discrete + continuous

Results at high-level

• Fast approximate algorithm: 1 − 𝜖 approximation

for densest subgraph in 𝑂 𝑚 678987: ;
< time

• Affirmative answer to conjecture of [Boob et al]

• Generalization to supermodular functions

• Other results …

Connections which are simple in retrospect but helpful for
both theory and practice

Papers

• Densest Subgraph: Supermodularity, Iterative Peeling, and Flow [CQT
SODA’22]

• Faster and Scalable Algorithms for Densest Subgraph and Decomposition
[HQC NeuRIPS’22]

• (1-	𝜖)-approximate fully dynamic densest subgraph: linear space and faster
update time [CQ’22/23]

• Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and
Applications to Densest Subgraph and Tree Packing [HQC ‘23]

• On the Generalized Mean Densest Subgraph Problem: Complexity and
Algorithms [CT’23]

Rest of the talk

• Charikar’s LP Relaxation

• Peeling and Iterative Peeling

• Connections and ideas about proof of convergence

Charikar’s LP Relaxation

max
∑!"∈$ @!"
∑" A"

				𝑥BC ≤ min 𝑧B, 𝑧C 	 𝑢𝑣 ∈ 𝐸

 𝑥, 𝑧	𝑏𝑖𝑛𝑎𝑟𝑦	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒s

max
"

𝐸 𝑆
𝑆

	 𝑧#∈ {0,1} 𝑣 ∈ 𝑆?
𝑥$# ∈ 0,1 	 𝑢𝑣 ∈ 𝐸 𝑆 ?

Integer Programming Formulation

Charikar’s LP Relaxation

max 4
%!∈&

𝑥%!

 ∑! 𝑧! = 1

								𝑥%! ≤ min 𝑧%, 𝑧! 	 𝑢𝑣 ∈ 𝐸

 𝑥, 𝑧 ≥ 0

Theorem: [Charikar’00] LP is optimal for DSG

max
𝐸 𝑆
𝑆

	 𝑧#∈ {0,1} 𝑣 ∈ 𝑆?
𝑥$# ∈ 0,1 	 𝑢𝑣 ∈ 𝐸 𝑆 ?

Charikar’s LP Relaxation

Primal

max 4
%!∈&

𝑥%!

 ∑! 𝑧! = 1

								𝑥%! ≤ min 𝑧%, 𝑧! 	 𝑢𝑣 ∈ 𝐸

 𝑥, 𝑧 ≥ 0

Dual

min𝐷

 𝑦BC,B + 𝑦BC,C ≥ 1	 𝑢𝑣 ∈ 𝐸

 ∑BC∈S	𝑦BC,C	 ≤ 𝐷	 𝑣 ∈ 𝑉

																							𝑦 ≥ 0	

Theorem: [Charikar’00] LP is optimal for DSG

Flow Reduction via Dual

Claim: Max-flow in 𝐻T = 𝐸 	iff 𝜆 ≥ 𝜆∗

Observed in [Boob et al] E(G) V(G)

𝑢𝑣

𝑢

𝑣

𝜆1
∞	

Flow network 𝐻%

𝑠 𝑡

min𝐷
 𝑦$#,$ + 𝑦$#,# ≥ 1	 𝑢𝑣 ∈ 𝐸
∑$#∈(𝑦$#,# ≤ 𝐷	 𝑣 ∈ 𝑉
																							𝑦 ≥ 0	

Fractional perfect matching

Utility of LP

• Dual LP can be viewed as a flow problem --- simpler
formulation than [Goldberg,Picard-Queyranne].
Dual LP computes fractional arboricity. 𝜆∗ =
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑟𝑏𝑜𝑟𝑖𝑐𝑖𝑡𝑦

• Dual LP is mixed-packing and covering LP. Hence
can solve via approximate methods [Bahmani-Goel-
Munagala’14] [Boob-Sawlani-Wang’19]

• More connections soon

Flow based Approx Algorithm

[CQT’22]

Theorem: 1 − 𝜖 approximation for DSG in

𝑂 𝑚 678987: ;
< time via approximate flow

Improvement:
^
<
	𝑖𝑛𝑠𝑡𝑒𝑎𝑑	𝑜𝑓 ^

<%

Key structural idea: short (𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑐 log 𝑛	/𝜖)
augmenting paths suffice to get 1 − 𝜖 	approximation

Empirical utility of idea not yet unexplored

Peeling Algorithm

[Asahiro etal 00, Charikar 00]

• For 𝑖 = 1	𝑡𝑜	𝑛	do
• 𝑣$	is in min-degree vertex in 𝐺
• 𝐺 ← 𝐺	 − 𝑣$

• 𝑣!, 𝑣", … , 𝑣% is ordering created by algorithm
• 𝑆$ ← 𝑣$, 𝑣$&!, … , 𝑣%
• Output 𝑎𝑟𝑔𝑚𝑎𝑥$

' (!
(!

Theorem: [Charikar’00] Greedy peeling is a ½ approximation for
DSG (proof via LP)

(Tight) Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^
𝜆∗ ≃ 𝑑 via 𝐾_,`	

𝜆 𝐺 ≃ _
a

(Tight) Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^
𝜆∗ ≃ 𝑑 via 𝐾_,`	

𝜆 𝐺 ≃ _
a

Peeling order

Peeling and DSS

Given supermodular function 𝑓:	 2$ → 𝑅4

• For 𝑖 = 1	𝑡𝑜	𝑛	do
• 𝑣$ ← 𝑎𝑟𝑔𝑚𝑖𝑛#	𝑓 𝑣	|	𝑉 − 𝑣
• 𝑉 ← 𝑉 − 𝑣$
• Restrict f to 𝑉 − 𝑣$

• 𝑣!, 𝑣", … , 𝑣% is ordering created by
algorithm

• 𝑆$ ← 𝑣$, 𝑣$&!, … , 𝑣%
• Output 𝑎𝑟𝑔𝑚𝑎𝑥$

) (!
(!

Peeling and DSS

Question: How can we characterize for general 𝑓?

𝑐f 	= max
g

∑h∈i 𝑓 𝑣|	𝑆 − 𝑣
𝑓(𝑆)

Supermodularity:

j
C∈"

𝑓 𝑣	|𝑆 − 𝑣 ≥ 𝑓 𝑆 ⇒ 𝑐5 ≥ 1

Peeling and DSS

𝑐5 	= max
b

∑C∈" 𝑓 𝑣	|𝑆 − 𝑣
𝑓(𝑆)

Theorem: Peeling is a
^
c&

 approximation for DSS

Proof is a simple adaptation of the combinatorial
proof for DSG [Khuller-Saha’09]

Can also do it via relaxation ala [Charikar’00]

Peeling and DSS

Theorem: Peeling is a
^
c&

 approximation for DSS

• Graphs: 𝑐5 	= max
b

∑"∈' def(C,")
|S " |

 = 2

• Hypergraphs: 𝑐5 = 	 𝑟 where r is rank

• p-th mean in graphs: 𝑐5 = 	 𝑝 + 1

Unifies all the known bounds on greedy peeling

Iterative Peeling

[BGPSTWW’20]

• Heuristic inspired by Dual-LP and MWU

• Goal: improve ½ approx to 1 − 𝜖 approx.

• Peel several times by adjusting ”load”

• Creates a new ordering in each iteration

• Pick best suffix among all orderings

Iterative Peeling

Greedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣
• For 𝑡 = 1	𝑡𝑜	𝑇	do

• 𝐺* ← 𝐺
• For 𝑖 = 1	𝑡𝑜	𝑛	do

• 𝑣+,$ ← 𝑎𝑟𝑔𝑚𝑖𝑛# deg 𝑣 + 𝑙𝑜𝑎𝑑(
)

𝑣, 𝑡 −
1 	

• 𝑙𝑜𝑎𝑑 𝑣+,$, 𝑡 = 𝑙𝑜𝑎𝑑 𝑣+,$, 𝑡 − 1 +
deg(𝑣+,$)

• 𝐺* ← 𝐺* − 𝑣$,+	

• 𝑆+,$ ← {𝑣+,$, … , 𝑣+,%}

• Output 𝑎𝑟𝑔𝑚𝑎𝑥$,+
' (",!
(",!

[BGPSTWW’20]

Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a

3

2 1

0

3

3

3

3

2

1

0

Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a

3

2 1

0

3

3

3

3

2

1

0

Example

𝐾_,`	 𝐷 ≫ 𝑑

𝐾_4^

𝜆∗ ≃ 𝑑

Peeling: 𝜆 ≃ _
a

3

3 3

3

6

6

6

5

5

4

3

Conjecture

[BGPSTWW’20]

Conjecture: Greedy++ is a 1 − 𝜖 approximation

after 𝑂 ^
<% iterations for DSG

Seems to work very well in practice. Implementation
runs very fast even on large graphs and converges
quickly on many real-world graphs

Iterative Peeling for DSS

SuperGreedy++
• 𝑙𝑜𝑎𝑑 𝑣, 0 = 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣
• For 𝑡 = 1	𝑡𝑜	𝑇	do

• 𝑆*,+ ← 𝑉
• For 𝑖 = 1	𝑡𝑜	𝑛	do

• 𝑣*,, ← 𝑎𝑟𝑔𝑚𝑖𝑛#∈"!,#𝑓 𝑣 𝑆*,, − 𝑣) + 𝑙𝑜𝑎𝑑 𝑣, 𝑡 − 1 	
• 𝑙𝑜𝑎𝑑 𝑣*,, , 𝑡 = 𝑙𝑜𝑎𝑑 𝑣*,, , 𝑡 − 1 +	𝑓 𝑣*,, 𝑆*,, − 𝑣*,,)
• 𝑆*,,-. ← 𝑆*,, − 𝑣*,,

• Output 𝑎𝑟𝑔𝑚𝑎𝑥*,,
/ "!,#
"!,#	

Given supermodular 𝑓: 20 → 𝑅- find max
"

/ "
"

Iterative Peeling for DSS

[CQT’22]

Theorem: SuperGreedy++ converges to a 1 − 𝜖

approximation in 𝑂(^<%
uvw
"

5 C

T∗ 	log	n) iterations

Corollary: Greedy++ converges to a 1 − 𝜖

approximation for DSG in 𝑂(^<%
x(y)
T∗ 	log	n) iterations

Proof Idea

• Express DSS as an LP relaxation
• Generalize Charikar’s LP for DSG via Lovasz-

extension of supermodular/submodular functions
• Rewrite as LP via an ordering based view of Lovasz-

extension

• Relate SuperGreedy++ iterations to a multiplicative-
weight update (MWU) algorithm via LP
• SuperGreedy++ iterations are not MWU iterations but

can show approximate relationship which is the main
technical part

Different Perspective/Proof

[HQC’22, 23]

• Focus on DSS

• Make connection to principal partition of
sub/supermodular function

• Fujishige’s result on lexicographically optimal base
in a polymatroid

• Frank-Wolfe method and convergence analysis

Dense Subgraph
Decomposition

Lemma: There is a unique maximal ”densest”
subgraph in any graph G

Suppose A and B are maximal sets with density 𝜆∗

1. 𝑓 𝐴 + 	𝑓 𝐵 ≤ 	𝑓 𝐴 ∪ 𝐵 + 	𝑓 𝐴 ∩ 𝐵

2. 𝐴 + 𝐵 = 𝐴 ∪ 𝐵 + |𝐴 ∩ 𝐵|

Implies 𝐴 ∪ 𝐵 has density 𝜆∗

Dense Decomposition

Fix supermodular function 𝑓: 2$ → 𝑅4 (monotone,
non-negative)

𝑆^ is unique maximal densest set for 𝑓 with density 𝜆^

Function 𝑓") : 2
$z") → 𝑅4 obtained by contracting 𝑆^

(also supermodular)

𝑆a is unique maximal densest set for 𝑓")with density 𝜆a

Observation: 𝜆^ > 𝜆a

Dense Subgraph
Decomposition

Fix supermodular function 𝑓: 2$ → 𝑅4 (monotone,
non-negative)

Can partition 𝑉 into 𝑆^, 𝑆a, … , 𝑆{ with decreasing
densities 𝜆^ > 𝜆a > ⋯ > 𝜆{

Called the dense (subgraph) decomposition

For each 𝑣 ∈ 𝑆|	associate 𝜆 𝑣 = 𝜆|

�̅� ∈ 𝑅$	 the dense decomposition vector

Dense Subgraph
Decomposition

S1

S1

S2

S1

S2
S3

(a) (b)

(c) (d)

Dense Decomposition

Fix supermodular function 𝑓: 2' → 𝑅((monotone, non-
negative)

Alternatively: consider

 max 𝑓 𝑆 	− 𝜆 𝑆 	 as 𝜆 varies from −∞	to	∞	

Optimum changes only a finite number of times
corresponding to nested family of sets: 𝑆), 𝑆) ∪ 𝑆*, 𝑆) ∪ 𝑆* ∪
𝑆+, … , 𝑉 = 𝑆) ∪ 𝑆* 	…∪ 𝑆,

Well-studied in graph/matroid/submodular literature:
survey by Fujishige "Theory of Principal Partitions Revisited”

Computing Dense
Decomposition Vector

[Fujishige’80]

Theorem: Dense decomposition vector �̅� is the unique
lexicographically minimal base in the contra polymatroid
associated with f

Fujishige considered submodular functions but can be
easily adapted to supermodular functions

Polymatroid

Suppose 𝑔: 2$ → 𝑅4 is a monotone submodular function
such that 𝑔 ∅ = 0 (normalized)

[Edmonds] polymatroid associated with g is the polytope
in 𝑅} (here 𝑛 = 𝑉)

𝑥 𝑆 ≤ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉

 𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉

Contra Polymatroid

Suppose 𝑓: 2$ → 𝑅4 is a monotone supermodular
function such that 𝑓 ∅ = 0 (normalized)

Contra polymatroid associated with f is the polytope in
𝑅} (here 𝑛 = 𝑉)

𝑥 𝑆 ≥ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉

 𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉

Base Contra Polymatroid

Suppose 𝑓: 2$ → 𝑅4 is a monotone supermodular
function such that 𝑓 ∅ = 0 (normalized)

Base Contra polymatroid associated with f is the polytope

Each vector 𝑦 ∈ 𝐵5 is a base of f

𝑥 𝑆 ≥ 𝑓 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉
 𝑥 𝑉 = 𝑓 𝑉
 𝑥C 	≥ 0	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉

Lexicographically optimal
base & Dense Decomposition

[Fujishige’80] (interpreted/paraphrased)

Theorem: 𝑓: 2' → 𝑅(is a monotone supermodular function
and let 𝐵- be its base contra polymatroid. Then there is a
unique lexicographically minimum base 𝑦∗ and

1. 𝑦∗ = �̅�

2. max density 𝜆) = 	minmax
/
𝑥! 	𝑠. 𝑡	𝑥 ∈ 𝐵- (an LP)

3. 𝑦∗ is the unique opt solution to quadratic program

 min	 ∑! 𝑥!*	 𝑠. 𝑡	𝑥 ∈ 𝐵-

Back to DSG

Recall for densest subgraph: 𝑓(𝑆) 	= 	 |𝐸(𝑆)|	

What is Fujishige’s “relaxation”?

Variable 𝑥C for each vertex 𝑣 ∈ 𝑉

min 𝐷

 𝑥# ≤ 𝐷	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉
 ∑# 	𝑥# = 𝑚
 ∑#∈(𝑥# ≥ 𝐸 𝑆 	 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑆 ⊆ 𝑉	
 𝑥# ≥ 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑣 ∈ 𝑉

Back to DSG

[HQC’22]

Question: How is this exponential sized LP related to
Charikar’s LP?

• Dual of Charikar’s LP is “equivalent” to Fujishige’s
relaxation!

• Charikar’s LP can be viewed as a compact extended
formulation that is specific to DSG

• Charikar’s primal LP can be recast via the Lovasz
extension of supermodular function

Frank-Wolfe for solving QP

Optimum solution to quadratic program:

is the dense decomposition vector

How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because
linear optimization over 𝐵- is easy: greedy algorithm is
optimal for polymatroid/contra polymatroids [Edmonds]

min	N
#

𝑥#"	 such	that	𝑥 ∈ 𝐵)

Frank-Wolfe for solving QP

Optimum solution to quadratic program:

is the dense decomposition vector

How do we solve this quadratic program?

Frank-Wolfe from convex optimization is ideal because
linear optimization over 𝐵- is easy: greedy algorithm is
optimal for polymatroid/contra polymatroids [Edmonds]

min	N
#

𝑥#"	 such	that	𝑥 ∈ 𝐵)

Back to Greedy++ and
SuperGreedy++

• SuperGreedy++ is not Frank-Wolfe on Fujisghige’s QP

• So, what is it?

• Main claim: SuperGreedy++ is a noisy or approximate
version of a variant of Frank-Wolfe

• Can generalize Frank-Wolfe convergence analysis to
show that SuperGreedy++ also converges

• New proof has weaker convergence bound but gives
additive guarantees. Also shows that SuperGreedy++
converges to the full dense decomposition vector rather
than just max density

Iterative Algorithms for DSG
and Empirical Evaluation

[HQC NeuRIPS’22]

• Focus on DSG and dense graph decomposition

• Algorithms
1. Greedy++
2. Frank-Wolfe on quadratic program starting with greedy solution as

starting point [Danisch-Chan-Sozio’17]
3. Accelerated proximal gradient method on quadratic program (FISTA).

Main observation is that projection oracle is O(m) time so iterations
are quite fast and parallelizable.

4. MWU based algorithm

• Unlike Greedy++ other algorithms produce “fractional”
solutions and need to be rounded. Introduce “fractional peeling”
a heuristic with some theoretical support

0 2 4 6 8 10

Wall clock time (seconds)

1.4

1.5

1.6

1.7

1.8

1.9

D
en
si
ty

Density for Roadnet CA

fista seq

fista parallel

frankwolfe

greedypp

mwu

0 1 2 3 4 5

Wall clock time (seconds)

1.4

1.5

1.6

1.7

1.8

D
en
si
ty

Density for Roadnet PA

fista seq

fista parallel

frankwolfe

greedypp

mwu

0.0 0.5 1.0 1.5 2.0

Wall clock time (seconds)

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

D
en
si
ty

Density for Amazon

fista seq

fista parallel

frankwolfe

greedypp

mwu

0 10 20 30 40 50 60 70

Wall clock time (seconds)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

D
en
si
ty

Density for Wikipedia Top Categories

fista seq

fista parallel

frankwolfe

greedypp

mwu

0 2 4 6 8 10

Wall clock time (seconds)

1.4

1.5

1.6

1.7

1.8

1.9

D
en
si
ty

Density for Roadnet CA

fista seq

fista parallel

frankwolfe

greedypp

mwu

0 1 2 3 4 5

Wall clock time (seconds)

1.4

1.5

1.6

1.7

1.8

D
en
si
ty

Density for Roadnet PA

fista seq

fista parallel

frankwolfe

greedypp

mwu

0.0 0.5 1.0 1.5 2.0

Wall clock time (seconds)

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

D
en
si
ty

Density for Amazon

fista seq

fista parallel

frankwolfe

greedypp

mwu

0 10 20 30 40 50 60 70

Wall clock time (seconds)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

D
en
si
ty

Density for Wikipedia Top Categories

fista seq

fista parallel

frankwolfe

greedypp

mwu

Iterative Algorithms for DSG
and Empirical Evaluation

[HQC NeuRIPS’22]

• FISTA based algorithm seems to be the consistent
winner but Greedy++, Frank-Wolfe also
competitive. MWU quite slow

• Fractional peeling is very important for performance

See paper for detailed plots

Take aways

• SuperGreedy and SuperGreedy++: simple iterative
algorithms for any supermodular density function

• For DSG, a new FISTA based algorithm that seems
superior to other methods. Fractional peeling for
rounding that applies for other methods as well

• Frank-Wolfe vs SuperGreedy++: former competitive
but fractional while latter is “combinatorial”

• p-mean DSG is NP-Hard for p < 1. See [CT’23] for
results and open problems

Open Problem

Tight analysis of Greedy++

• Recall conjecture is O)
01

 iterations

• Worst example known to us: Ω)
0

 iterations for 1 − 𝜖

approximation

• Our bound: 𝑂()
01

1(3)
5∗

	log	n)

Thanks!

