Covering Multiple Submodular Constraints
Special Cases and Applications

Chandra Chekuri
Univ. of Illinois, Urbana-Champaign

Joint work with
Tanmay Inamdar, Kent Quanrud, Kasturi Varadarajan, Zhao Zhang

CANADAM 2021, Approximation Algorithms Session
Set Cover and Variants

- Vertex Cover
- Geometric Instances
- Partial Set Cover
- Covering Integer Programs
- Submodular Set Cover

Cover points by intervals, disks, rectangles, …
Hit shapes by points
New Flavors

- Vertex Cover
- Geometric Instances
 - Cover points by intervals, disks, rectangles, …
 - Hit shapes by points
- Set Cover
- Partial Set Cover
- Covering Integer Programs
- Submodular Set Cover
- Covering Multiple Submodular Funcs
Set Cover

- \(U = \{1, 2, \ldots, n\} \)
- Sets \(S_1, S_2, \ldots, S_m \) each a subset of \(U \)
- \(c_i \): non-negative cost of \(S_i \)

Goal: Find min-cost sub-collection of \(S_1, S_2, \ldots, S_m \) whose union is \(U \)

\[\min \sum_{i=1}^{m} c_i x_i \]

\[\sum_{S_i \ni j} x_i \geq 1 \quad j \in [n] \]

\[x_i \in \{0,1\} \quad i \in [m] \]

d : max set size,
f : max frequency over elements
Covering Integer Programs

<table>
<thead>
<tr>
<th>Set Cover</th>
<th>CIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min \sum_{i=1}^{m} c_i x_i)</td>
<td>(\min \sum_{i=1}^{m} c_i x_i)</td>
</tr>
<tr>
<td>(\sum_{S_i \ni j} x_i \geq 1) (j \in [n])</td>
<td>(\sum_i A_{i,j} x_i \geq b_j) (j \in [n])</td>
</tr>
<tr>
<td>(x_i \in {0,1}) (i \in [m])</td>
<td>(x_i \in {0,1}) (i \in [m])</td>
</tr>
<tr>
<td>A, b non-negative</td>
<td></td>
</tr>
</tbody>
</table>
Submodular Set Cover

[Wolsey ‘82]

• Finite ground set $V = [m]$, c_i non-negative cost of i

• Monotone submodular set func: $g: 2^{|m|} \rightarrow \mathbb{R}_+$

Goal: $\min_{S \subseteq V} c(S)$ such that $g(S) \geq b$
Set Cover, CIP, Submod Cover

\[
\min \sum_{i=1}^{m} c_i x_i \\
\sum_{S_i \ni j} x_i \geq 1 \quad j \in [n] \\
x_i \in \{0,1\} \quad i \in [m]
\]

\[
\min \sum_{i=1}^{m} c_i x_i \\
\sum_{i} A_{i,j} x_i \geq b_j \quad j \in [n] \\
x_i \in \{0,1\} \quad i \in [m]
\]

A, b non-negative

\[
\min_{S} c(S) \\
g(S) \geq b
\]
Approximation Algorithms

Techniques: Greedy and LP Rounding

- **Submodular Set Cover:** \((1 + \ln (\max_i g(i)))\)
- **Set Cover:** \((1 + \ln d)\) or \(f\) (max freq of elements)
- **CIP:** \((\ln d + \ln \ln d + O(1))\) where \(d\) is column sparsity. Need Knapsack Cover inequalities

Results are essentially tight in various regimes
Covering Multiple Submodular Functions

[HarPeled-Jones’19] motivated by geom. application

- Finite ground set $V = [m]$, c_i non-negative cost of i
- r monotone *submodular* set funcs: $f_j : 2^m \rightarrow \mathbb{R}_+$

Goal: $\min_{S \subseteq V} c(S)$ such that $g_j(S) \geq k_j$ for $j = 1$ to r
min $\sum_{i=1}^{m} c_i x_i$

$\sum_{S_i \ni j} x_i \geq 1 \ j \in [n]$
$x_i \in \{0,1\} \ i \in [m]$

min $\sum_{i=1}^{m} c_i x_i$

$\sum_{i} A_{i,j} x_i \geq b_j \ j \in [n]$
$x_i \in \{0,1\} i \in [m]$

A, b non-negative

Submod Cover

$\min_{S} c(S)$
$g(S) \geq b$

Multi Submod Cover

$\min_{S} c(S)$
$g_j(S) \geq k_j \ j \in [r]$
Covering Multiple Submodular Functions

Goal: \(\min c(S) \) such that \(g_j(S) \geq k_j \) for \(j = 1 \) to \(r \)

Can reduce to standard submodular cover problem

\[
g(S) = \sum_{j} \min(g_j(S), k_j)
\]

Greedy gives \(O(\ln r + \ln (\sum_j k_j)) \) approx.
Covering Multiple Submodular Functions

Goal: \(\min c(S) \) such that \(g_j(S) \geq k_j \) for \(j = 1 \) to \(r \)

Can reduce to standard submodular cover problem

\[
g(S) = \sum_j \min(g_j(S), k_j)
\]

Greedy gives \(O(\ln r + \ln (\sum_j k_j)) \) approx.

Main question: Can we avoid \(\ln (\sum_j k_j) \) term?

Why? Applications including CIP
CIP and Submodular Cover

- Reduction to Submodular Cover/Greedy only yields $\Omega(m)$ approximation in worst case [Dobson’80, Wolsey’82]
- Can obtain $O(\log d)$ using LP and KC inequalities [Kolliopoulos-Young’01, Chen-Harris-Srinivasan’16, C-Quanrud’18]
New Player

Vertex Cover

Geometric Instances

Set Cover

Partial Set Cover

Covering Integer Programs

Submodular Set Cover

Covering Multiple Submodular Funcs

Cover points by intervals, disks, rectangles, ...

Hit shapes by points
Cover points by disks

$O(1)$ approx via LP relaxation: union complexity bounds and quasi-uniform sampling [Varadarajan’09][Chan et al’12]
Partial Cover points by disks

Cover k points out of n

[Inamdar-Varadarajan’18]

$O(1)$ approx via LP relaxation. Reduce to covering all points
Partial Set Cover with Multiple Types
\[
\min_{S} c(S) \\
g_j(S) \geq k_j \quad j \in [r]
\]

\(g_j(S)\): \# of points covered by disks in \(S\)
Result 1

For Geometric Multiple Partial Cover

β approx. for Geometric Set Cover via natural LP implies $O(\beta + \ln r)$ approx.

Hence $\beta = O(1)$ implies $O(\ln r)$ approximation

Subsumes known result for CIPs as special case
Result 2

For Covering Multiple Submodular Covering Constraints

Bicriteria approximation

- Cost of solution S is $O\left(\frac{1}{\epsilon} \ln r\right) \cdot OPT$
- Each constraint satisfied approximately
 - $f_j(S) \geq \left(1 - \frac{1}{e} - \epsilon\right) k_j$ for each j
- Approx ratio depends only on r. Bicriteria sufficient for several applications including motivating one from [HarPeled-Jones’19]
Other results

- Improve and simplify [Inamdar-Varadarajan’18] reduction for Partial Set Cover: β approx. for Set Cover via natural LP implies $\frac{e}{e-1} (\beta + 1)$ approx. for Partial Cover

- Related results for clustering problems with outliers
 - $O(\ln r)$ approx for facility location with r client types and outliers
 - $O(\ln r)$ approx for minimizing sum of radii with r client types and outliers

- Not black box reduction but very similar ideas
Ideas from

- [Inamdar-Varadarajan’18] A generic reduction via LP. β approx. for Set Cover via natural LP implies $2(\beta + 1)$ approx. for Partial Cover version

- Multiple Vertex Cover constraints [Bera-Gupta-Kumar-Roy’14]

- Round and Fix algorithm for CIP [C-Quanrud’18]

- Continuous extension and concentration inequalities for submod functions [CCPV’07, Vondrak’10]
\[\min_S c(S) \]
\[g_j(S) \geq k_j \quad j \in [r] \]

\(g_j(S) \): # of points covered by disks in \(S \)
LP for Set Cover

\[x_i: \text{fraction of set } S_i \text{ taken in solution} \]

\[
\min \sum_{i=1}^{m} c_i x_i \\
\sum_{S_i \ni j} x_i \geq 1 \quad j \in [n] \\
x_i \geq 0 \quad i \in [m]
\]

Will assume \(\beta \) approx. for covering points by disks
LP for Partial Set Cover

\(x_i \): fraction of set \(S_i \) taken in solution
\(z_j \): fraction of element \(j \) covered

\[
\begin{align*}
\min & \quad \sum_{i=1}^{m} c_i x_i \\
\text{s.t.} & \quad z_j = \min\{1, \sum_{S_i \ni j} x_i\} \quad j \in [n] \\
& \quad \sum_j z_j \geq k \\
& \quad x_i \geq 0 \quad i \in [m]
\end{align*}
\]
LP for Partial Set Cover

\(x_i \): fraction of set \(S_i \) taken in solution
\(z_j \): fraction of element \(j \) covered

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} c_i x_i \\
\sum_{j \in S_i} x_i & \geq z_j \quad j \in [n] \\
\sum_j z_j & \geq k \\
z_j & \in [0,1] \quad j \in [n] \\
x_i & \geq 0 \quad i \in [m]
\end{align*}
\]
Rounding for Partial Set Cover

- $H = \{ j : z_j \geq \frac{1}{2} \}$ highly covered elements, L rest

- Setting $x_i' = 2 x_i$ for each set S_i gives feasible fractional soln to cover all of H. Use β approx.

- Residual covering requirement is $k' = k - |H|$. Use simple Greedy algorithm on L until k' covered

Variant/simplification of [Inamdar-Varadarajan’18]
Partial Covering Constraints

\(x_i \): fraction of set \(S_i \) taken in solution
\(z_j \): fraction of element \(j \) covered

\[
\min \sum_{i=1}^{m} c_i x_i \\
\sum_{j \in S_i} x_i \geq z_j \quad j \in [n] \\
\sum_{j \in C_t} z_j \geq k_t \quad t = 1 \text{ to } r \\
z_j \in [0,1] \quad j \in [n] \\
x_i \geq 0 \quad i \in [m]
\]
Rounding

- \(H = \{ j : z_j \geq \frac{1}{2} \} \) highly covered elements, \(L \) rest
- Setting \(x'_i = 2 x_i \) for each set \(S_i \) gives feasible fractional soln to cover all of \(H \). Use \(\beta \) approx.
- Residual covering requirement for \(t \)'th constraint is \(k'_t = k_t - |H| \).
- How to simultaneously satisfy \(r \) residual constraints?
Rounding

- \(H = \{ j : z_j \geq \frac{1}{2} \} \) highly covered elements, \(L \) rest

- Setting \(x'_i = 2x_i \) for each set \(S_i \) gives feasible fractional soln to cover all of \(H \). Use \(\beta \) approx.

- Residual covering requirement for \(t \)'th constraint is \(k'_t = k_t - |H| \).

- **Randomly round:** pick each \(S_i \) independently with probability \(\Theta(\ln r) x_i \)
Randomized Rounding Analysis

- Residual covering requirement for t'th constraint is $k_t' = k_t - |H|$.

- Randomly round: pick each S_i independently with probability $\Theta(\ln r) x_i$

Question: will constraints be satisfied?

Intuition: from standard Set Cover but constraints in terms of z_j variables while rounding wrt to x_i variables

Difficulty: Each x_i can influence many z_j's
Overcoming difficulty

- Need *Knapsack Cover* inequalities (used already by [Bera et al] for Multiple Partial Vertex Cover)
- Cannot separate KC inequalities in the submodular setting. Use round and cut framework as in [Bera et al]
Analysis

With KC inequality

Can use concentration of submodular functions under independent rounding [Vondrak’10]

Proof via connection between two continuous extensions of submodular functions (concave closure and multilinear extension)
Rounding again

- \(H = \{ j : z_j \geq \frac{1}{2} \} \) highly covered elements, \(L \) rest
- Cover \(H \) using \(\beta \) approx.
- Residual requirement for \(t \)'th const is \(k_t - |H| \).
- **Randomly round:** pick each \(S_i \) independently with probability \(\Theta(\ln r) \times x_i \)
- With KC ineq: constraint covered with prob \(1 - \frac{1}{r} \)
- **Fix** unsatisfied constraints separately with Greedy alg.
Conclusions

- Covering Multiple Submodular Constraints is a *useful* model to keep in mind
- Several non-obvious applications/connections
- Simple in retrospect but nice interplay of techniques
 - Round and fix framework
 - KC inequalities
 - Concentration inequalities
Thank You!