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Set Cover

• U = {1, 2, …, n}

• Sets S1, S2, …, Sm each a 
subset of  U

• ci : non-negative cost of  Si

Goal: Find min-cost sub-
collection of  S1, S2, …, Smwhose 
union is U

d : max set size,  f : max 
frequency over elements

min  ∑!"#$ 𝑐!𝑥!

	 ∑%!	∋( 𝑥! ≥ 1	 𝑗 ∈ [𝑛] 
          𝑥! ∈ {0,1}	𝑖 ∈ [𝑚]



Covering Integer Programs

Set Cover CIP

min  ∑!"#$ 𝑐!𝑥!

	 ∑! 𝐴!,( 	𝑥! ≥ 𝑏( 	 𝑗 ∈ [𝑛] 
          𝑥! ∈ 0,1 	 𝑖 ∈ 𝑚

A, b non-negative 

min  ∑!"#$ 𝑐!𝑥!

	 ∑%!	∋( 𝑥! ≥ 1	 𝑗 ∈ [𝑛] 
          𝑥! ∈ {0,1}	𝑖 ∈ [𝑚]



Submodular Set Cover

[Wolsey ‘82]

• Finite ground set 𝑉 = [𝑚],  ci non-negative cost of  i

• Monotone submodular set func:  𝑔: 2 ! → 𝑅"

Goal: 𝑚𝑖𝑛#⊆% 𝑐(𝑆) such that 𝑔 𝑆 ≥ 𝑏



Set Cover, CIP, Submod Cover

min  ∑!"#$ 𝑐!𝑥!

	 ∑! 𝐴!,( 	𝑥! ≥ 𝑏( 	 𝑗 ∈ [𝑛] 
          𝑥! ∈ 0,1 𝑖 ∈ 𝑚

A, b non-negative 

min  ∑!"#$ 𝑐!𝑥!

	 ∑%!	∋( 𝑥! ≥ 1	 𝑗 ∈ [𝑛] 
          𝑥! ∈ {0,1}	𝑖 ∈ [𝑚]

  min
%
	𝑐(𝑆)
	 𝑔 𝑆 ≥ 𝑏	



Approximation Algorithms

Techniques: Greedy and LP Rounding

• Submodular Set Cover: (1+ ln (max
&

𝑔(𝑖))

• Set Cover: (1+ ln 𝑑) or 𝑓 (max freq of  elements)

• CIP: (ln 𝑑 + ln ln 𝑑 + 𝑂(1)) where d is column 
sparsity. Need Knapsack Cover inequalities

Results are essentially tight in various regimes



Covering Multiple 
Submodular Functions

[HarPeled-Jones’19] motivated by geom. application

• Finite ground set 𝑉 = [𝑚],  ci non-negative cost of  i

• r monotone submodular set funcs:  𝑓': 2 ! → 𝑅"

Goal: 𝑚𝑖𝑛#⊆% 𝑐(𝑆) such that 𝑔' 𝑆 ≥ 𝑘' for 𝑗 = 1 𝑡𝑜 𝑟



min  ∑!"#$ 𝑐!𝑥!

	 ∑! 𝐴!,( 	𝑥! ≥ 𝑏( 	 𝑗 ∈ [𝑛] 
          𝑥! ∈ 0,1 𝑖 ∈ 𝑚

A, b non-negative 

min  ∑!"#$ 𝑐!𝑥!

	 ∑%!	∋( 𝑥! ≥ 1	 𝑗 ∈ [𝑛] 
          𝑥! ∈ {0,1}	𝑖 ∈ [𝑚]

  min
%
	𝑐(𝑆)
	 𝑔 𝑆 ≥ 𝑏	

  min
%
	𝑐(𝑆)

	 𝑔((𝑆) ≥ 𝑘( 	 𝑗 ∈ [𝑟]	

Set Cover CIP

Submod Cover

Multi Submod Cover



Covering Multiple 
Submodular Functions

Goal: min 𝑐 𝑆 such that 𝑔' 𝑆 ≥ 𝑘' for 𝑗 = 1 𝑡𝑜 𝑟

Can reduce to standard submodular cover problem

𝑔 𝑆 =C
'

min 𝑔'(𝑆), 𝑘'

Greedy gives 𝑂(ln 𝑟 + ln ∑' 𝑘' ) approx.



Covering Multiple 
Submodular Functions

Goal: min 𝑐 𝑆 such that 𝑔' 𝑆 ≥ 𝑘' for 𝑗 = 1 𝑡𝑜 𝑟

Can reduce to standard submodular cover problem

𝑔 𝑆 =C
'

min 𝑔'(𝑆), 𝑘'

Greedy gives 𝑂(ln 𝑟 + ln ∑' 𝑘' ) approx.

Main question: Can we avoid ln ∑' 𝑘' term?

Why? Applications including CIP



CIP and Submodular Cover

• Reduction to Submodular Cover/Greedy only yields 
Ω(𝑚) approximation in worst case [Dobson’80, 
Wolsey’82]

• Can obtain 𝑂(log 𝑑) using LP and KC inequalities 
[Kolliopoulos-Young’01, Chen-Harris-Srinivasan’16, 
C-Quanrud’18]
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Cover points by disks

O(1) approx via LP relaxation: union complexity bounds and 
quasi-uniform sampling [Varadarajan’09][Chan et al’12]



Partial Cover points by disks

[Inamdar-Varadarajan’18] 
O(1) approx via LP relaxation. Reduce to covering all points

Cover k points 
out of  n



Partial Set Cover with 
Multiple Types

k2

k1

k3



k2

k1

k3

  min
%
	𝑐(𝑆)

	 𝑔((𝑆) ≥ 𝑘( 	 𝑗 ∈ [𝑟]	

𝑔!(𝑆): # of  points covered by disks in S



Result 1

For Geometric Multiple Partial Cover

𝛽 approx. for Geometric Set Cover via natural LP 
implies 𝑂(𝛽 + ln 𝑟) approx. 

Hence 𝛽 = 𝑂(1) implies 𝑂(ln 𝑟) approximation

Subsumes known result for CIPs as special case



Result 2

For Covering Multiple Submodular Covering Constraints 

Bicriteria approximation

• Cost of  solution S is 𝑂(!
"
ln 𝑟) 𝑂𝑃𝑇

• Each constraint satisfied approximately

• 𝑓!(𝑆) ≥ 1 − "
#
− 𝜖 𝑘! for each j 

• Approx ratio depends only on r. Bicriteria sufficient for 
several applications including motivating one from 
[HarPeled-Jones’19]



Other results

• Improve and simplify [Inamdar-Varadarajan’18] reduction 
for Partial Set Cover: 𝛽 approx. for Set Cover via natural 
LP implies 

#
#$!

𝛽 + 1 approx. for Partial Cover

• Related results for clustering problems with outliers
• O(ln 𝑟) approx for facility location with r client types and 

outliers
• O(ln 𝑟) approx for minimizing sum of  radii with r client 

types and outliers
• Not black box reduction but very similar ideas



Ideas from 

• [Inamdar-Varadarajan’18] A generic reduction via 
LP. 𝛽 approx. for Set Cover via natural LP implies 
2 𝛽 + 1 approx. for Partial Cover version

• Multiple Vertex Cover constraints [Bera-Gupta-
Kumar-Roy’14]

• Round and Fix algorithm for CIP [C-Quanrud’18]

• Continuous extension and concentration inequalities 
for submod functions  [CCPV’07, Vondrak’10]



k2

k1

k3

  min
%
	𝑐(𝑆)

	 𝑔((𝑆) ≥ 𝑘( 	 𝑗 ∈ [𝑟]	

𝑔!(𝑆): # of  points covered by disks in S



LP for Set Cover

min  ∑!"#$ 𝑐!𝑥!

	 ∑%!	∋( 𝑥! ≥ 1	 𝑗 ∈ [𝑛] 
          𝑥! ≥ 0	𝑖 ∈ [𝑚]

𝑥&: fraction of  set 𝑆&	taken in solution

Will assume 𝛽 approx. for covering points by disks



LP for Partial Set Cover

𝑥&: fraction of  set 𝑆&	taken in solution
𝑧': fraction of  elemt 𝑗	covered

min  ∑!"#$ 𝑐!𝑥!

           𝑧(= min{1, ∑%!∋( 𝑥!}	 𝑗 ∈ [𝑛]  
  ∑( 𝑧( ≥ 𝑘	

           𝑥! ≥ 0	 𝑖 ∈ [𝑚]



LP for Partial Set Cover

𝑥&: fraction of  set 𝑆&	taken in solution
𝑧': fraction of  elemt 𝑗	covered

min  ∑!"#$ 𝑐!𝑥!

	 ∑(∈%! 𝑥! ≥ 𝑧( 	 𝑗 ∈ [𝑛]      
∑( 𝑧( ≥ 𝑘	

            𝑧( ∈ [0,1]	 𝑗 ∈ [𝑛]
           𝑥! ≥ 0	 𝑖 ∈ [𝑚]



Rounding for Partial Set Cover

• 𝐻 = { 𝑗 ∶ 𝑧' ≥
,
- } highly covered elements, L rest

• Setting 𝑥&. = 2 𝑥& for each set 𝑆& gives feasible 
fractional soln to cover all of  H. Use 𝛽 approx. 

• Residual covering requirement is 𝑘. = 𝑘 − |𝐻|. Use 
simple Greedy algorithm on L until 𝑘. covered

Variant/simplification of  [Inamdar-Varadarajan’18]



r Partial Covering Constraints

𝑥$: fraction of  set 𝑆$	taken in solution
𝑧!: fraction of  elemt 𝑗	covered

min  ∑!"#$ 𝑐!𝑥!

	 ∑(∈%! 𝑥! ≥ 𝑧( 	 𝑗 ∈ [𝑛]            
∑(∈<" 𝑧( ≥ 𝑘= 	 𝑡 = 1	𝑡𝑜	𝑟	

      𝑧( ∈ [0,1]	 𝑗 ∈ [𝑛]
          𝑥!≥ 0	 𝑖 ∈ [𝑚]



Rounding

• 𝐻 = { 𝑗 ∶ 𝑧' ≥
,
- } highly covered elements, L rest

• Setting 𝑥&. = 2 𝑥& for each set 𝑆& gives feasible 
fractional soln to cover all of  H. Use 𝛽 approx. 

• Residual covering requirement for t’th constraint is 
𝑘/. = 𝑘/ − |𝐻|. 

• How to simultaneously satisfy r residual constraints?



Rounding

• 𝐻 = { 𝑗 ∶ 𝑧' ≥
,
- } highly covered elements, L rest

• Setting 𝑥&. = 2 𝑥& for each set 𝑆& gives feasible 
fractional soln to cover all of  H. Use 𝛽 approx. 

• Residual covering requirement for t’th constraint is 
𝑘/. = 𝑘/ − |𝐻|. 

• Randomly round: pick each 𝑆& independently with 
probability Θ(ln 𝑟) 𝑥&



Randomized Rounding Analysis

• Residual covering requirement for t’th constraint is 
𝑘/. = 𝑘/ − |𝐻|. 

• Randomly round: pick each 𝑆& independently with 
probability Θ(ln 𝑟) 𝑥&

Question: will constraints be satisfied?

Intuition: from standard Set Cover but constraints in 
terms of  𝑧' variables while rounding wrt to 𝑥& variables

Difficulty: Each 𝑥& can influence many 𝑧's



Overcoming difficulty

• Need Knapsack Cover inequalities (used already by 
[Bera et al] for Multiple Partial Vertex Cover)

• Cannot separate KC inequalities in the submodular 
setting. Use round and cut framework as in [Bera et 
al]



Analysis

With KC inequality

Can use concentration of  submodular functions under 
independent rounding [Vondrak’10]

Proof  via connection between two continuous 
extensions of  submodular functions (concave closure 
and multilinear extension)



Rounding again

• 𝐻 = { 𝑗 ∶ 𝑧% ≥
!
&
} highly covered elements, L rest

• Cover H using 𝛽 approx. 

• Residual requirement for t’th const is 𝑘' − |𝐻|. 

• Randomly round: pick each 𝑆( independently with 
probability Θ(ln 𝑟) 𝑥(

• With KC ineq: constraint covered with prob 1 − !
)

• Fix unsatisfied constraints separately with Greedy alg.



Conclusions

• Covering Multiple Submodular Constraints is a 
useful model to keep in mind

• Several non-obvious applications/connections

• Simple in retrospect but nice interplay of  techniques
• Round and fix framework

• KC inequalities

• Concentration inequalities



Thank You!


