Covering Multiple Submodular Constraints Special Cases and Applications

Chandra Chekuri Univ. of Illinois, Urbana-Champaign

Joint work with

Tanmay Inamdar, Kent Quanrud, Kasturi Varadarajan, Zhao Zhang

CANADAM 2021, Approximation Algorithms Session

Set Cover and Variants

New Flavors

Set Cover

- $U = \{1, 2, ..., n\}$
- Sets S₁, S₂, ..., S_m each a subset of U
- c_i : non-negative cost of S_i

Goal: Find min-cost subcollection of $S_1, S_2, ..., S_m$ whose union is U

d : max set size, f : max frequency over elements min $\sum_{i=1}^{m} c_i x_i$

 $\sum_{S_i \ni j} x_i \ge 1 \ j \in [n]$ $x_i \in \{0,1\} \ i \in [m]$

Submodular Set Cover

[Wolsey '82]

- Finite ground set V = [m], c_i non-negative cost of i
- Monotone *submodular* set func: $g: 2^{[m]} \rightarrow R_+$

Goal: $min_{S \subseteq V} c(S)$ such that $g(S) \ge b$

Set Cover, CIP, Submod Cover

min $\sum_{i=1}^m c_i x_i$

 $\sum_{S_i \ni j} x_i \ge 1 \quad j \in [n]$ $x_i \in \{0,1\} \quad i \in [m]$

min $\sum_{i=1}^m c_i x_i$

 $\sum_{i} A_{i,j} x_i \ge b_j \ j \in [n]$ $x_i \in \{0,1\}i \in [m]$

A, b non-negative

 $\min_{S} c(S)$ $g(S) \ge b$

Approximation Algorithms

Techniques: Greedy and LP Rounding

- Submodular Set Cover: $(1 + \ln(\max_{i} g(i)))$
- Set Cover: $(1 + \ln d)$ or f (max freq of elements)
- **CIP:** $(\ln d + \ln \ln d + O(1))$ where d is column sparsity. Need Knapsack Cover inequalities

Results are essentially tight in various regimes

Covering Multiple Submodular Functions

[HarPeled-Jones'19] motivated by geom. application

- Finite ground set V = [m], c_i non-negative cost of i
- **r** monotone *submodular* set funcs: $f_i: 2^{[m]} \to R_+$

Goal: $min_{S \subseteq V} c(S)$ such that $g_j(S) \ge k_j$ for j = 1 to r

Covering Multiple Submodular Functions

Goal: min c(S) such that $g_j(S) \ge k_j$ for j = 1 to r

Can reduce to standard submodular cover problem

$$g(S) = \sum_{j} \min(g_j(S), k_j)$$

Greedy gives $O(\ln r + \ln (\sum_j k_j))$ approx.

Covering Multiple Submodular Functions

Goal: min c(S) such that $g_j(S) \ge k_j$ for j = 1 to r

Can reduce to standard submodular cover problem

$$g(S) = \sum_{j} \min(g_j(S), k_j)$$

Greedy gives $O(\ln r + \ln (\sum_j k_j))$ approx.

Main question: Can we avoid $\ln(\sum_j k_j)$ term?

Why? Applications including CIP

CIP and Submodular Cover

- Reduction to Submodular Cover/Greedy only yields
 Ω(m) approximation in worst case [Dobson'80, Wolsey'82]
- Can obtain O(log d) using LP and KC inequalities [Kolliopoulos-Young'01, Chen-Harris-Srinivasan'16, C-Quanrud'18]

New Player

Cover points by disks

O(1) approx via **LP relaxation**: *union complexity bounds and quasi-uniform sampling* [Varadarajan'09][Chan et al'12]

Partial Cover points by disks

[Inamdar-Varadarajan'18] O(1) approx via LP relaxation. Reduce to covering all points

Partial Set Cover with Multiple Types

 $g_j(S)$: # of points covered by disks in S

Result 1

For Geometric Multiple Partial Cover

 β approx. for Geometric Set Cover via natural LP implies $O(\beta + \ln r)$ approx.

Hence $\beta = O(1)$ implies $O(\ln r)$ approximation

Subsumes known result for CIPs as special case

Result 2

For Covering Multiple Submodular Covering Constraints **Bicriteria** approximation

- Cost of solution S is $O(\frac{1}{\epsilon} \ln r) OPT$
- Each constraint satisfied approximately • $f_i(S) \ge \left(1 - \frac{1}{\epsilon} - \epsilon\right) k_i$ for each j
- Approx ratio depends only on r. Bicriteria sufficient for several applications including motivating one from [HarPeled-Jones'19]

Other results

- Improve and *simplify* [Inamdar-Varadarajan'18] reduction for Partial Set Cover: β approx. for Set Cover via natural LP implies $\frac{e}{e-1}(\beta + 1)$ approx. for Partial Cover
- Related results for clustering problems with outliers
 - O(ln r) approx for facility location with r client types and outliers
 - O(ln r) approx for minimizing sum of radii with r client types and outliers
 - Not black box reduction but very similar ideas

Ideas from

- [Inamdar-Varadarajan'18] A generic reduction via LP. β approx. for Set Cover via *natural LP* implies
 2(β + 1) approx. for Partial Cover version
- Multiple Vertex Cover constraints [Bera-Gupta-Kumar-Roy'14]
- Round and Fix algorithm for CIP [C-Quanrud'18]
- Continuous extension and concentration inequalities for submod functions [CCPV'07, Vondrak'10]

 $g_j(S)$: # of points covered by disks in S

LP for Set Cover

x_i : fraction of set S_i taken in solution

$$\min \sum_{i=1}^{m} c_i x_i$$
$$\sum_{S_i \ni j} x_i \ge 1 \ j \in [n]$$
$$x_i \ge 0 \ i \in [m]$$

Will assume β approx. for covering points by disks

LP for Partial Set Cover

 x_i : fraction of set S_i taken in solution z_i : fraction of elemt *j* covered

 $\min \sum_{i=1}^{m} c_i x_i$ $z_j = \min\{1, \sum_{S_i \ni j} x_i\} \ j \in [n]$ $\sum_j z_j \ge k$ $x_i \ge 0 \quad i \in [m]$

LP for Partial Set Cover

 x_i : fraction of set S_i taken in solution z_j : fraction of elemt *j* covered

 $\min \sum_{i=1}^{m} c_i x_i$ $\sum_{j \in S_i} x_i \ge z_j \quad j \in [n]$ $\sum_j z_j \ge k$ $z_j \in [0,1] \quad j \in [n]$ $x_i \ge 0 \quad i \in [m]$

Rounding for Partial Set Cover

- $H = \{j : z_j \ge \frac{1}{2}\}$ highly covered elements, *L* rest
- Setting $x'_i = 2 x_i$ for each set S_i gives feasible fractional soln to cover all of *H*. Use β approx.
- Residual covering requirement is k' = k |H|. Use simple Greedy algorithm on *L* until *k'* covered

Variant/simplification of [Inamdar-Varadarajan'18]

r Partial Covering Constraints

 x_i : fraction of set S_i taken in solution z_j : fraction of elemt *j* covered

min $\sum_{i=1}^{m} c_i x_i$

$$\begin{split} \sum_{j \in S_i} x_i &\geq z_j \ j \in [n] \\ \sum_{j \in C_t} z_j &\geq k_t \quad t = 1 \ to \ r \\ z_j \in [0,1] \ j \in [n] \\ x_i &\geq 0 \quad i \in [m] \end{split}$$

Rounding

- $H = \{j : z_j \ge \frac{1}{2}\}$ highly covered elements, *L* rest
- Setting $x'_i = 2 x_i$ for each set S_i gives feasible fractional soln to cover all of *H*. Use β approx.
- Residual covering requirement for *t*'th constraint is $k'_t = k_t |H|$.
- How to simultaneously satisfy **r** residual constraints?

Rounding

- $H = \{j : z_j \ge \frac{1}{2}\}$ highly covered elements, *L* rest
- Setting $x'_i = 2 x_i$ for each set S_i gives feasible fractional soln to cover all of *H*. Use β approx.
- Residual covering requirement for *t*'th constraint is $k'_t = k_t |H|$.
- **Randomly round:** pick each S_i independently with probability $\Theta(\ln r) x_i$

Randomized Rounding Analysis

- Residual covering requirement for *t*'th constraint is $k'_t = k_t |H|$.
- **Randomly round:** pick each S_i independently with probability $\Theta(\ln r) x_i$

Question: will constraints be satisfied?

Intuition: from standard Set Cover but constraints in terms of z_i variables while rounding wrt to x_i variables

Difficulty: Each x_i can influence many z_i s

Overcoming difficulty

- Need *Knapsack Cover* inequalities (used already by [Bera et al] for Multiple Partial Vertex Cover)
- Cannot separate KC inequalities in the submodular setting. Use round and cut framework as in [Bera et al]

Analysis

With KC inequality

Can use concentration of submodular functions under independent rounding [Vondrak'10]

Proof via connection between two continuous extensions of submodular functions (concave closure and multilinear extension)

Rounding again

- $H = \{j : z_j \ge \frac{1}{2}\}$ highly covered elements, *L* rest
- Cover *H* using β approx.
- Residual requirement for *t*'th const is $k_t |H|$.
- **Randomly round:** pick each S_i independently with probability $\Theta(\ln r) x_i$
- With KC ineq: constraint covered with prob $\left(1-\frac{1}{r}\right)$
- Fix unsatisfied constraints separately with Greedy alg.

Conclusions

- Covering Multiple Submodular Constraints is a *useful* model to keep in mind
- Several non-obvious applications/connections
- Simple in retrospect but nice interplay of techniques
 - Round and fix framework
 - KC inequalities
 - Concentration inequalities

Thank You!

