On Polyhedral Formulations for (Subset) Feedback Vertex Set

Chandra Chekuri Univ of Illinois, Urbana-Champaign

CMU OR Seminar, Dec 8, 2023

Based on 2 papers

- Polyhedral Aspects of Feedback Vertex Set and Pseudoforest Deletion Set (with Karthik Chandrasekaran, Samuel Fiorini, Shubhang Kulkarni, and Stefan Weltge) submitted to journal, 2023.
- Constant Factor Approximation for Subset <u>Feedback Problems via a new LP relaxation</u> (with Vivek Madan) *SODA 2016*.

Feedback Vertex Set (FVS)

Graph G = (V, E) with vertex weights w(v), $v \in V$

S is a feedback vertex set if G - S has no cycles. In other words, S is a *hitting set* for all cycles in G

Goal: given G find FVS of min cardinality/weight

Feedback Vertex Set (FVS)

Graph G = (V, E) with vertex weights w(v), $v \in V$

S is a feedback vertex set if G - S has no cycles. In other words, **S** is a *hitting set* for all cycles in **G**

Goal: given G find FVS of min cardinality/weight

Subset Feedback Vertex Set (SFVS)

Graph G = (V, E) with vertex weights w(v), $v \in V$

 $T \subseteq V$ is a set of terminals

Goal: find min cardinality/weight set **S** that hits all cycles that contain a terminal

Motivation

- Applications: Wikipedia: FVS has wide applications in <u>operating systems</u>, <u>database systems</u>, and <u>VLSI</u> chip design
 - An early application is from Bayesian inference from AI
- **Graph theory:** connection to Erdos-Posa theorem, graph minor theory, ...
- **Algorithms:** approximation, fixed parameter tractability, canonical deletion problem, ...

Directed graph FVS is very interesting and useful but this talk is about *undirected* graphs

Erdos-Posa Theorem

Suppose min FVS in a graph G is k. Then G contains $\Omega(k/\log k)$ vertex disjoint cycles. Moreover, this bound is tight in an infinite family of graphs.

Approximability of **FVS**

- **FVS** is NP-Hard (directed case in Karp's original list)
- α -approx. for **FVS** implies α -approx. for **Vertex Cover**
 - no (2ϵ) approx. under UGC [Khot-Regev'08]
 - no 1.3606 approx. under $P \neq NP$ [Dinur-Safra'05]
- 2-approx. via "combinatorial" local-ratio method [Bafna-Berman-Fujito'95, Becker-Geiger'96]
- 2-approx. via prima-dual [Chudak-Goemans-Hochbaum-Williamson'98]

Approximability of SFVS

• 8-approx. [Even-Naor-Zosin'96] complicated and based on mix of combinatorial and LP ideas

Motivating Questions

- Is there a 2-approx. for SFVS? Lower bound is only 2 so far.
- Is there an *explicit poly-time solvable* LP relaxation for **FVS** that has an integrality gap of **2**? [CGHW'98] formulation is not known to be solvable in poly-time.
- Is there an *explicit poly-time solvable* LP relaxation for SFVS with O(1) factor integrality gap?

LP Formulation for SFVS

[C-Madan'16]

- An explicit poly-time solvable LP formulation for SFVS (and hence also for FVS)
- Integrality gap of LP for SFVS, and hence also for FVS, is at most 13. Proof based on a primal rounding algorithm

Conjecture/Question: Is the integrality gap of CM-LP at most **2** for **SFVS**? At least for **FVS**?

Recent Results

[Chandrasekaran-C-Fiorini-Kulkarni-Weltge'23]

- A new explicit poly-time solvable formulation for **FVS** with integrality gap at most 2
- CM-LP integrality gap is at most 2 for **FVS**
- Connections to pseudo-forest deletion (PFDS) and Densest-Subgraph (DSG)
- Extreme point conjecture and evidence via **PFDS**

Rest of Talk

- Background on past LP formulations
- Pseudo-forest deletion (PFDS) and connection to FVS
- LP formulation for PFDS via density and densest subgraph
- LP formulations for FVS
- Summary and open problems

Cycle cover LP for **FVS**

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in C} x_u \ge 1$ for all cycles *C*

 $x_u \ge 0$ for all $u \in V$

Integrality gap is $\Theta(\log n)$ [Bar-Yehuda-Geiger-Naor-Roth] Lower bound via expanders/high girth constant deg graphs Dual is fractional cycle packing LP in unweighted case. Gap is related to Erdos-Posa theorem

[CGHW'98] LP Relaxation

SD-LP (strong density LP)

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| + 1 \text{ for all } S \subseteq V \text{ s.t } E[S] \neq \emptyset$

 $x_u \ge 0$ for all $u \in V$

Notation: $d_{S}(u)$ is degree of u in induced graph G[S]

[CGHW'98] LP Relaxation

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| + 1 \text{ for all } S \text{ s. } t E[S] \neq \emptyset$

Why is inequality valid? Let $x \in \{0,1\}^V$

- Consider S = V. Say $F \subset V$ is an FVS.
- G F has no cycle: $E[V F] \le |V| |F| 1$
- But $\sum_{u \in F} \deg(u) \ge |E| E[V F]$
- Rearranging gives the desired claim for $x_u = 1, u \in F$

New Formulation

We do not know efficient separation oracle for SD-LP New formulation inspired by considering

- Related problem pseudo-forest deletion (PFDS)
- Connecting to Densest-Subgraph (DS) and LP for it by [Charikar'00]

Pseudo tree/forest

pseudo-tree is a tree + at most one edge

pseudo-forest: each connected comp. is a pseudo-tree

Pseudo-forest Deletion Set (PFDS)

PFDS: given **G** remove vertices to get a pseudo-forest

[Lin-Feng-Fu-Wang'19]

PFDS admits 2-approximation via *local-ratio*

Reduction from Vertex-Cover shows hardness of 2

No LP connections

Weak Density LP for **PFDS**

WD-LP (weak density LP)

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| \text{ for all } S \subseteq V$

 $x_u \ge 0$ for all $u \in V$

Notation: $d_S(u)$ is degree of u in induced graph G[S] Validity reasoning is similar to that for FVS Inequalities also hold for FVS

Weak Density LP for **PFDS**

WD-LP (weak density LP)

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| \text{ for all } S \subseteq V$

 $x_u \ge 0$ for all $u \in V$

Notation: $d_S(u)$ is degree of u in induced graph G[S] Validity reasoning is similar to that for FVS Inequalities also hold for FVS

WD-LP for **PFDS**

Theorem: Worst-case integrality gap of WD-LP for **PFDS** is **3**

Theorem: Suppose G is not a pseudo-forest. Then for every extreme point **x** of WD-LP for G there is some vertex **u** such that $x_u \ge \frac{1}{3}$.

WD-LP for **PFDS**

Theorem: Worst-case integrality gap of WD-LP for **PFDS** is **3**

Theorem: Suppose **G** is not a pseudo-forest. Then for every extreme point **x** of WD-LP for **G** there is some vertex **u** such that $x_u \ge \frac{1}{3}$.

Remarks:

- Do not know how to solve WD-LP in poly-time
- There is a 2-approximation for PFDS via local-ratio (more later)
- What about **FVS**?

WD-LP for **FVS**

Question: Is WD-LP good for FVS?

Take G to be a simple cycle. Then x = 0 is feasible so formulation is not good enough

WD + Cycle cover for **FVS**

WD+CycleCover-LP (weak density + cycle cover inequalities)

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| \text{ for all } S \subseteq V$

 $\sum_{u \in C} x_u \ge 1 \quad \text{for all cycle } C$

 $x_u \ge 0$ for all $u \in V$

WD + Cycle cover for **FVS**

Theorem: Integrality gap of WD+Cycle cover LP is at most 2 for **FVS**.

Proof:

Follow primal-dual analysis of [CGHW'98]

Notice that weak-density constraints are "weak" only for the case when G is a cycle. Use cycle cover inequality in that case. Need to do it formally ...

Densest Subgraph

Given G=(V,E) and $S \subseteq V$, $den(S) = \frac{|E(S)|}{|S|}$

Densest subgraph (DSG): Given **G=(V,E)** find **S** to maximize den(S)

Theorem: [Charikar'00] LP is optimal for **DSG**

Interpreting Dual

min D

$$y_{uv,u} + y_{uv,v} = 1 \quad uv \in E$$

$$\sum_{uv\in E} y_{uv,v} \leq D \quad v \in V$$

 $y \ge 0$

Optimal density is equal to "fractional arboricity" of G

- Orient each edge **uv** fractionally
- Load on vertex **u** is the total fraction oriented *into* **u**
- Minimize maximum load

Density and PFDS

Given G=(V,E) and $S \subseteq V$, $den(S) = \frac{|E(S)|}{|S|}$

PFDS:

given G remove S such that G - S has density at most 1

Orientation based LP for **PFDS**

Orientation-LP

 $\min \sum_{u} w_u x_u$

 $y_{uv,v} + y_{uv,u} \ge 1 - x_u - x_v \text{ for each edge uv} \in E$ $\sum_{e \in \delta(u)} y_{e,u} \le 1 - x_u \text{ for each } u \in V$

> $x_u \ge 0$ for each $u \in V$ $y_{e,u} \ge 0$ for each $u \in V, e \in \delta(u)$

e = uv deleted if u or v chosen. Hence amount of edge left "fractionally" is $\ge 1 - x_u - x_v$ which needs to be oriented

Want density at most 1, and amount of vertex u left is $1 - x_u$

Orientation and WD LPs

Lemma: Orientation-LP *strictly* stronger than WD-LP Fix *any subgraph* H = (V', E') of G.

$$|E'| \leq \sum_{e=uv \in E'} (x_u + x_v + y_{e,u} + y_{e,v})$$

$$= \sum_{v \in V'} (d_{H(v)} - 1) x_v + \sum_{v \in V'} (x_v + \sum_{e \in \delta_{H(v)}} y_{e,v})$$

 $\leq \sum_{v \in V'} (d_{H(v)} - 1) x_v + |V'|$

Explicit LP for **FVS**

Theorem: Integrality gap of WD+Cycle cover LP is at most 2 for **FVS**.

Lemma: Orientation-LP *strictly* stronger than WD-LP

Hence,

Orient-LP + Cycle cove LP has integrality gap at most 2 for **FVS**.

Can write cycle cover inequalities explicitly/compactly with distance variables

Explicit LP for **FVS**

```
Orientation-LP+Cycle cover inequalities
```

 $\min \sum_{u} w_u x_u$

 $\begin{array}{l} y_{uv,v} + y_{uv,u} \geq 1 - x_u - x_v \quad \text{for each edge } uv \in E \\ \sum_{e \in \delta(u)} y_{e,u} \leq 1 - x_u \quad \text{for each } u \in V \\ \sum_{u \in C} x_u \geq 1 \quad for \ each \ cycle \ C \\ x_u \geq 0 \quad \text{for each } u \in V \\ y_{e,u} \geq 0 \quad \text{for each } u \in V, e \in \delta(u) \end{array}$

Two other LPs

Theorem: CM-LP for FVS (based on labeling approach) is at least as strong as Orientation+Cycle Cover LP.

Theorem: There is an explicit LP based on orientation constraints that is at least as strong as the Strong-Density LP.

Back to **PFDS**

Theorem: Worst-case integrality gap of WD-LP for **PFDS** is **3**

Theorem: Suppose G is not a pseudo-forest. Then for every extreme point **x** of WD-LP for G there is some vertex **u** such that $x_u \ge \frac{1}{3}$.

Saw that Orient-LP is at least as strong as WD-LP

Worst-case integrality gap for Orient-LP is also 3

Integrality Example for **PFDS**

Improving Integrality Gap for **PFDS**

Recall there is primal-dual 2-approx. for **PFDS** due to [Lin-Feng-Fu-Wang'19]

Can we strengthen WD-LP?

Minimal violation of pseudo-tree is 2-pseudo-tree: a connected graph with |V|+2 edges (like the butterfly graph)

Add a constraint that at least one node chosen from each 2-pseudo-tree

Improving Integrality Gap for PFDS

WD+2-pseudo-tree cover LP

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| \text{ for all } S \subseteq V \text{ s.t } E[S] \neq \emptyset$

 $\sum_{u \in C} x_u \ge 1 \quad \text{for each 2pseudotree } C$

 $x_u \ge 0$ for each $u \in V$

Theorem: Integrality gap of above LP is at most 2.

Follow primal-dual analysis of [Lin-Feng-Fu-Wang'19]

Separation Oracle

 $\sum_{u \in C} x_u \ge 1 \quad \text{for each 2pseudotree } C$

Lemma: There is a polynomial-time separation oracle for above constraint.

Guess two edges and use node-weighted Steiner tree algorithm on four terminals (exists an FPT algorithm for any fixed number of terminals)

Rounding LPs

Integrality gap of 2 for FVS/PFDS are based on *primal-dual* analysis.

Exceptions:

- Integrality gap of 3 for PDFS via *iterated rounding* wrt WD-LP or Orientation-LP
- Integrality gap of 13 for via CM-LP via *primal rounding*

Conjecture for **FVS**

Conjecture: Let **x** be an extreme point solution for Strong-Density LP for FVS. If **G** is not a forest then there is some vertex **u** such that $x_u \ge 1/2$.

Conjecture for **FVS**

Conjecture: Let **x** be an extreme point solution for Strong-Density LP for FVS. If **G** is not a forest then there is some vertex **u** such that $x_u \ge 1/2$.

Subtlety:Weak-Density + Cycle Cover LP hasintegrality gap at most 2 but example shows extremepoint property is false1/3

Proof idea for **PFDS**

Theorem: Suppose G is not a pseudo-forest. Then for every extreme point **x** of WD-LP for G there is some vertex **u** such that $x_u \ge \frac{1}{3}$.

Proof?

Like other iterated rounding it is based on uncrossing and token counting but with a small twist

Conditional supermodularity

WD-LP (weak density LP)

 $\min \sum_{u} w_u x_u$

 $\sum_{u \in S} (d_S(u) - 1) x_u \ge |E(S)| - |S| \text{ for all } S \subseteq V \text{ s.t } E[S] \neq \emptyset$

 $x_u \ge 0$ for each $u \in V$

Lemma: Suppose *x* is a fractional solution s.t $x_u < \frac{1}{2}$ for each vertex **u**. Consider $f_x: 2^V \to R$ where

$$f_x(S) = |E(S)| - |S| - \sum_{u \in S} (d_S(u) - 1)x_u$$

Then f_x is supermodular.

Open Problems

- Extreme point conjecture for **FVS**. In general, explicit primalrounding procedures for LP relaxations achieving factor of 2 approx.
- Is there a **2**-approx. for **SFVS**?
 - What is the integrality gap of CM-LP for SFVS? Currently at most 13
 - Alternative LP relaxations for easier analysis?
- Is there a better than 2 approximation for **SFES**? Only hardness is via **Multiway-Cut**
- **Original inspiration for Fiorini:** Deletion to small treewidth (weighted case and LP/SDP formulations). See [Gupta etal, Bansal etal, Bonnet et al]

Thank You!

