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Abstract

We examine the throughput benefits that network coding ®ffiéth respect to the average through-
put achievable by routing, where the average throughpetseb the average of the rates that the indi-
vidual receivers experience. We relate these benefits tmtegrality gap of a standard LP formulation
for the directed Steiner tree problem. We describe famdfesonfigurations over which network coding
at most doubles the average throughput, and analyze a diaisected graph configurations witly
receivers where network coding offers benefits proportitma/N. We also discuss other throughput
measures in networks, and show how in certain classes obrietywaverage throughput bounds can be
translated into minimum throughput bounds, by employingtaerouting and channel coding. Finally,
we show configurations where use of randomized coding mayine@n alphabet size exponentially

larger than the minimum alphabet size required.
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. INTRODUCTION

Consider a communication network represented as a directgghg’ = (V, E) with unit
capacity edges, and unit rate information sourcesi,..., S, that simultaneously transmit
information to NV receiversR,,..., Ry located at distinct nodes. Assume that the min-cut
between the sources and each receiver nodg. i$he Ford-Fulkerson’s min-cut, max-flow
theorem states that, if a single receiver could utilize teevork resources by itself, it would be
able to receive information at rate Recently, it has been realized that allowing network nodes t
re-encode the information they receive (in addition tooeting) enables each receiver to retrieve
information at rateh, even whenN receivers simultaneously share the network resources [1],
[2]. This type of coding is how known as network coding. Mare it was shown that by linear
network coding, the min-cut rate can be achieved in multieggo multiple sinks [1], [2]. This
is not always the case when network nodes are only allowedrt@afd the infromation they
receive, and network coding in general offers throughputekiss as compared to routing.

A natural question to ask is how large these throughput bsnafe. Let7. = h denote
the rate that the receivers experience when network codingsed. We consider two types
of routing: integral routing which requires that through each unit capacity edge weeraiit
most one unit rate source, amectional routing which allows multiple fractional rates from
different sources that add up to at most one. letand .4, denote the space of all integral
and fractional routing schemes respectively. Under a gimgggral routing schemel € A;, let
T?(A) denote the rate that receivgexperiences. Similarly Iéfj (A) be the rate that receiver
experiences under a given fractional routing scheime A;. Let T, = maxc 4, minjzl_uN{Z?'}
andTy = maxac;, minjzlmN{TJ{ (A)}, be the maximum integral and fractional rate we can route
to each of theV receivers. The benefits that network coding can offer as eoeapto routing
are quantified by the ratids; /7. and7/T., and we will derive bounds on these quantities. We
observe thafl’; > T;.

In [3] it was shown that, for undirected graphs, if we allowdtional routing, the throughput
benefit that network coding offers over routing is boundedalfactor of two,i.e., Ty /7. < 2.
Experimental results in [4] over the network graphs of siteinet service providers also showed
small throughput benefits in this case. This result doesranster to directed graphs. The authors

in [5] provide an example of a directed graph (knowncasnbination networkn the network
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coding literature) where the integral throughput beneftses proportionally to the number of
sources, namely; /T. = 1/h. We show in this paper that a similar result is true even if @na
fractional routing. In other words, if we compare the commmate guaranteed to all receivers
under routing with the rate that network coding can offeg, blenefits network coding offers are
proportional to the number of sourcés

In [6] it was shown that, for both directed and undirectedobsa?’ /7. equals the integrality
gap of a standard linear programming formulation for thead Steiner tree problem. Known
lower bounds on the integrality gap for directed graphstirgN) [7] and Q((log ./ log log n)?)

[8] wheren is the number of nodes in the underlying graph. For undicegi@phs, a known
gap is8/7 (see [6]).

In this paper we focus on the throughput benefits networkngpdifers when multicasting to
a set of receivers that have the same min-cut. Work in theatitee has also started examining
throughput benefits that network coding can offer for othgres of traffic, see for example
[3], [9], and [10]. Even for the case of multicasting, theeesiill limited understanding of
structural properties of multicast configurations thatures| network coding (instead of plain
routing) to achieve optimal or near optimal rates. In orderiricrease our understanding in
this aspect, we relax the requirement that routing has teeyothe same rate to each receiver
of the multicast session, and examine the higleesragethroughput achievable with integral
and fractional routing where the averaging is performedr dbe rate that each individual
receiver experiences. We denote these quantities iy = maxaca, 3 > ,—1. T/(A) and
Tf" = maxXaca; § 2ojm1..n T;'(A), respectively, where the maximization is over all possible
routing strategies.

By decoupling the problem of achieving a high average ratm ftioe problem of balancing
the rate towards different receivers, we hope to increasantuition of when network coding
offers throughput benefits from a theoretical point of vidoreover, from a practical point of
view, for applications that are robust to loss of packethsag real time audio and video, the
average throughput is a more appropriate measure of peafar@n This is also true when (as in
the combination network example [5], [11]) the number ofeeers is large, and the throughput
they experience tends to concentrate around the average. Jalfact, multicast sessions where
different receivers experience different rates is the noather than the exception in practical

scenarios, and erasure coding scheneeg.,(Fountain codes [12], [13]) have been developed
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to address this situation. We here present a method whiclivio@s) vector routing and erasure
coding to translate the average to common throughput forrlitrary multicast configuration.

The contributions of this paper also include the followikige describe a linear programming
(LP) formulation for calculating’;” over directed graphs that performs packing of partial $tein
trees. Using this formulation we show that the average tjinput benefits of network coding
can be related to the integrality gap of a standard LP fortimnaor the directed Steiner tree
problem.

For N much larger tham, the behavior ofl” and 7, can be quite different. The set of
configurations where the average rate achieves a constdot & the min-cut is larger than the
set of configurations where the common rate guaranteed teadlvers can be made a constant
factor of the min-cut. For example, as we will discuss in BectV, for the combination network
of [5], 7. = h, T; = 1 while T/ > h/2. We will describe a number of other configurations
where whileT; /T, can be arbitrarily small, network coding can only offer a stamt factor
benefit with respect to the average rdtg'. Virtually all configurations studied as examples so
far in network coding literature belong to this category.

We will then describe and analyze a class of directed grapifigiorations where network
coding offers significant benefits as compared to the avettageighput [14]. These configura-
tions were originally constructed by Zosin and Khuller irj {@ obtain a lower bound on the
integrality gap for the directed Steiner tree problem. Wewslthat employing network coding
over this class of directed graphs can offer throughput fitsnproportional tov/N, where
N is the number of receivers, with regard to the average (and essult to the common)
7§ 1
T = O(/N)’
may require an alphabet size significantly larger than th&irmim alphabet size required. The

throughput,i.e., % < These graphs also illustrate that use of randomized coding
idea in randomized network coding [5], [15], [16] is to ramlg combine over a finite field the
incoming information flows and show that the probability ofoe can become arbitrarily small
as the size of the finite field increases. We show that for tlassoof configurations, to guarantee
a small probability of error, we need to use an exponentialge alphabet size. In contrast,
we prove that a binary alphabet size is in fact sufficient fetwork coding. We construct

a deterministic algorithm that has linear complexity, canused to perform network coding
over this class of configurations, and requires binary dpharhis coding scheme effectively

transforms the configuration in [7] tokapartite configurationj.e.,a configuration where network
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coding is performed only on information streams carrying source symbols.

The paper is organized as follows. The problem is formulate&ection II. A connection
between coding throughput benefits and certain combirgtoptimization problems on graphs
is presented in Section Ill. Configurations for which netwadding offers limited average
throughput benefits are discussed in Section IV. A hybridoreouting/channel-coding scheme
which translates the average to common throughput for aitramp multicast configuration
is also presented in Section IV. A family of networks wherawwek coding offers large
average throughput benefits is described an analyzed imo8e¢t Code alphabet size effects

on throughput are discussed throughout the paper. Secli@ontludes the paper.

II. NETWORK MODELS AND PROBLEM FORMULATION

We consider a communications network represented by atdderxyclic graptG = (V, E)

with unit capacity edges. There akeunit rate information sourceS;, ...,.S, and N receivers
Ry, ..., Ry. For each receiver, there ateedge disjoint paths to it, one from each of the
sources. For receivef, we denote these paths &S;, R;), i« = 1,...,h. The h information

sources multicast information simultaneously to /llreceivers at raté.
We are interested in the throughput benefits that networkngodan offer as compared to
routing (uncoded transmission). LEt denote the rate that the receivers experience when network

coding is used. We will use the following notation for the ting throughput.

. TZ? and TJZ denote the rate that receivgrexperiences with fractional and integral routing
respectively under some routing strategy.

e T; = maxmin;_;_y{7/} andT; = maxmin;_; n{77} denote the maximum integral and
fractional rate we can route to all receivers, where the mepdtion is over all possible
routing strategies.

e T?" = Ltmax) ¥ 77 and 79" = Lmax) Y 7/ denote the maximum integral and

fractionalaveragethroughput. We will us¢™" to discuss results that apply both to integral

and fractional average routing.
The benefits of network coding in the case of the common thrpugmeasure are described

by
T; Ty
— and —-.
T. T.
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The problem of calculating’; (7;) is equivalent to the problem of packing fractional (intyr
trees that are rooted at the source nodes and span the seekrs.

In this paper we are mainly interested in comparing the @esthroughput when network
coding is used to the average throughput when only routargstnission is allowed. Equivalently,
we will be comparing the sum rate achieved with and withoutvoek coding. The benefits of

network coding in the case of the average throughput measerdescribed by

Tav T;“’
' and )
T. T.

The problem of calculatin@” (7) is equivalent to the problem of packing fractional (in&yr
partial Steiner treesij.e., trees that are rooted at the source nodes that span a subtet of
receivers.

For a multicast configuration with sources andV receivers, it holds that

from the main network multicast theorem [1], [2]. Also, basa there exists a tree spanning the

source and the receiver nodes, the uncoded throughput easitN. We, therefore, have

1§7’%{1U§T‘?U§h’

and thus
1T T
< o<, 1
h— T, — T, — (1)

The upper bound in (1) is achievable by the configurations Imckv network coding is not
necessary for multicast. Much less is known about the loveemt on the ratidl* /1. We
here find lower bounds to this quantity for several classesebivorks, where classification of
networks is performed based on their information flow decaositppn described in [17].

The information flow decomposition partitions the netwankoi subgraphs through which the
same information flows, and the coding (information flow camrig) happens at the borders of
these subgraphs. Each such part is a tree, that is rooteat aitthe source, or at nodes where
we might need to perform coding operations. For the netwodealesign problem, the structure
of the network inside these trees does not play any role; viy meed to know how the trees
are connected and which receiver nodes observe the infomikiat flows in each tree. Thus,

we can contract each tree to a single vertex, and get a grapbeanfodes correspond to entire
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areas of the original network. We call this process and tkaltieg graph the information flow
decomposition of the network.

In the information flow decomposition graph, there are naslits no incoming edges, called
sources (or source nodes), and nodes with two or more irggailges called coding nodes. We
say a nodecontains R; to indicate that receiveR; observesthat node (flow), and label the
node accordingly. Note that each receiver obsefve®des in the information flow graph. An
example of a network and its information flow decompositiengiven in Fig. 1a) — (b). There
exist two source nodes and five coding nodes; each oflthesceivers observes two coding
nodes.

We are in particular interested in information flow graphattareminimal with the min-cut
property, namely those for which removing any edge wouldat@the min-cut property for at
least one receiver. A minimal information flow graph for thetwork in Fig. 1(a) is depicted

in Fig. 1(c). The procedure for information flow decompasitifor a network is described in

Fig. 1. (a) A network with two sources and 10 receivers; (b) an inédion flow decomposition of the network, and (c) a

minimal information flow graph.

detail in [17]. Note that in Fig. 1(b) and Fig. 1(c), each eagdpoint has only source nodes as
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its parentsj.e., network coding is performed only on information streamsygag the source

symbols. We refer to this type of information flow graph abipartite configuration

1. LP FORMULATIONS

In this section we consider a directed gragh= (V, E), a root (source) verteX < V,
and a setR = {Ry, R,,..., Ry} of N terminals (receivers) which we describe together as an
instance{G, S, R}. With every edge: of the graph, we can in general associate two parameters:
a capacityc, > 0, and a cost (weighty, > 0. Let ¢ = [c.] andw = [w,], e € E denote vectors
that collect the set of edge capacities and edge weightecteply. Either the edge weights or
the edge capacities or both may be relevant in a particutzsligm.

In the Steiner treeproblem, we are given an instangé/, S,R} and a set of non-negative
edge weightsv. We are asked to find the minimum weight tree that connectsdliece to all
the terminals. Here edge capacities are not relevant: #ieedttree either uses or does not use
an edge.

We call a set of vertice® C V separating,if D contains the source verteéx and V' \ D
contains at least one of the terminalsi Let 6(D) denote the set of edges frofto V' \ D,
that is, (D) = {(u,v) € E : u € D,v ¢ D}. We consider the following formulation for the
Steiner tree problem

min E WeTe

eckE

> z.>1, VD:Dis separating

e€d(D)

z. €40,1}, Ve€ekFE

where there is a binary variabie for each edge € £ to indicate whether the edge is contained
in the tree. Note that any vecter= {z.,e € E} satisfying the constraints of the above LP can
be interpreted as a set of capacities for the edges, @nd that the constraints then ensure that
the min-cut from the sourc# to each receiver in the capacitated grdph S, x) is at least one.
Let oPT(G,w, S, R) be the value of the optimum solution for the given instance.

In the above formulation, the objective function and thestraints are linear in the underlying
variables. Further, the variables are constrained to géns. Such a formulation is referred

to as an integer program (IP). If all the variables can takev@nes from the domain of real
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numbers, we obtain a linear program (LP). Please see [18 Baand 4] for more details on
integer and linear programs. It is easy to see that the @ntrin the above integer program are
necessary for the Steiner tree problem. It is less obvioatthey are sufficient but this can be
shown by some elementary graph theoretic arguments. Weadiveef sketch below. Consider a
feasible solution to the integer program and #tC £ be the set of edgessuch thatr, = 1.
Let G’ = (V, £') the graph induced by’. Consider the seb of all vertices that can be reached
from S in G'. If D does not include all the receivers, then it can be seen/ihata separating set
with no edge crossing it and hence contradicts the feasilofithe solutionz. This ensures that
in G’ there is a path fron% to every receiver. A minimal subset & that ensures connectivity
from S to every receiver can be shown to be a tree. Thus we concladatly feasible solution
of the above integer program induces a Steiner tree. Theulation above has an exponential
number of constraints; however, there is an equivalent eamnfwrmulation with a polynomial
number of constraints and variables. This equivalencegan the well-known maxflow-mincut
theorem for single-commodity flows. We refer the reader @& [Th. 9] for more details.

A linear relaxation of the above IP is obtained by replacimg ¢onstraints, € {0,1},e € E
by 0 < z. <1, e € E. We can further simplify this taz, > 0, e € E, by noticing that if
a solution is feasible withc, > 1, then it remains feasible by setting = 1. For a given
instance(G, S, R), let LP(G, w, S, R) denote the optimum value of the resulting linear program
on the instance. The value (G, w, S, R) lower bounds the cost of the integer program solution

OPT(G,w, S, R). Theintegrality gapof the relaxation or is defined as

- OPT(G,w, S, R)
(G5 R) = ma S G S R)

where the maximization is over all possible edge weightseNbata(G, S, R) is invariant to

scaling of the optimum achieving weights.

Let w* be the set of edge weights that achieves the maximum valGe S, R), andz* =
{z},e € E} be an optimum solution for the associated LP. In [6] it waswshahat, if we
consider the instancgG, S, R}, associate capacity, = x* with each edge, and compare the
throughput we can get with and without network codifiy &nd 7’y respectively) on this capac-
itated graph, then(G, 5, R) = Ppigasi) = %‘{éiiiﬁ% Note that this does not imply that
oPT(G,w*,S,R) =T.(G,c = z*,S,R) andLP(G,w*,S,R) = T¢(G,c = z*, S, R). In general,

opT(Gw,5R) Te(G,S,R,c)
MaXw TP(Gw,5,R) — M8Xe T (G SR That

it was shown in [6] that given an instan¢é&r, S, R},
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is, for a given multicast configuratiofiG, S, R}, the maximum throughput benefits we may
hope to get with network coding will equal the largest intdigy gap of the Steiner tree problem
possible on the same graph. This result refers to fractiomating; if we restrict our problem
to integral routing on the graph, we may get larger througtygmefits.

We now consider the coding advantage for average throughmuta multicast configuration
{G, S, R} and a set of non-negative capacitiesn the edges of/. We will assume for technical
reasons that the min-cut frodto each of the terminals is the same. This can be easily adang
by adding dummy terminals. That is, if the min-cut to a reeeik; is larger than required, we
connect the receiver node to a new dummy terminal throughdge ef capacity equal to the

min-cut. Then the network coding throughput is given by
T.(G,c,S,R) = mincut S, R;).

The maximum achievable average throughput with routingvergby the maximum fractional
packing ofpartial Steiner trees. A partial Steiner trestems from the sourcg€ and spans all or
only a subset of the terminals. With each tre@e associate a variablg denoting a fractional
flow through the tree. Let be the set of all partial Steiner trees {6, S, R}, andn; the
number of terminals it. Then the maximum fractional packing of partial Steinee$rés given
by the following linear program.

max Z %yt

ter

Z Y <c., Veek

teT:ect

y >0, Viter.

Let T¢*(G, S, R, c) denote the value of the above linear program on a given iostafhe

coding advantage for average throughput@@ms given by the ratio

B T.(G,c,S,R)
PGS R) = max GG S R)

Note that3(G) is invariant to scaling of the optimum achieving capacitiéss easy to see
that 3(G,S,R) > 1, since we assumed that the min-cut to each receiver is the,sand

thus network coding achieves the maximum possible sum Itaite also straightforward to see
that 5(G, S, R) < «(G, S, R), since for any given configuratiofiGG, ¢, S, R}, the average
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throughput is at least as large as the common throughput wegaarantee to all receivers,
namely, 7% > Ty.
Let (G, S, R*) denote the maximum average throughput benefits we can getaph ¢

when multicasting from sourcg to any possible subseif the receiversk’ C R:
B(G, S, R") = max B(G, 5, R).

Theorem 1:For a configuration G, S, R} where|R| = N and the min-cut to each receiver
is the same, we have
1
B(G,S,R") > max{l, —a(G,S,R)},
Hy

where H is the Nth harmonic number, namely/y = Z;V:l 1/7.

Proof: Consider an instance of a Steiner tree problgih S, R} with |R| = N. Let w*
be a weight vector such that
_ OPT(G,w*,S,R) oPT(G,w, S, R)
(GSR) = e SR S G wsR)
Let z* be an optimum solution for the LP on the instari€e w*, S, R). HenceLP(G, w*, S, R) =

> . wizk. As discussed above, we can think of the optimum solutioas associating a capacity
c. = x with each edge so that the min-cut to each receiver is greater or equal to am the
cost)  wiz! is minimized.

We are going to examine the average coding throughput bgmweditcan get on the instance
{G,c = x*,5,R}. Since the min-cut to each receiver is at least one, we cae\acthroughput
T.(G,c=2x*S,R) > 1. Now, lety* = {y/,t € 7} be the optimal fractional packing of partial
Steiner trees 0AG, ¢ = x*, S, R}. From the definition of3(G, S, R), it follows, for the capacity

vectorc = z*, that

T.(G,c,S,R) T.(G,c=z2*9R) 1 1
/6G,S,R = max > > = N,k
(G5 R) =M o G e S R) 2 T (Gre= 0 S.R) = TP (Gre=an, S R) 3 oy

(2)

To further bound3(G, S, R), we will find a bound on) ;.
Letw, = .., w; denote the weight of partial treeand consided , . w.y; (the total weight
of the packingy*). We have

Zwtyfzzw%-yf%

ter ter

. N Ty
> — > Y
fer {wtnt} Iy

ter
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Thus there exists a partial treée of weight w;, such that

1 ntl %
wy, < -~ D WYy - 3)
' Zte‘r Nyt N ter '

Moreover, we claim thap |, w,y; <>, pwiz;. Indeed, by changing the order of summation,

we get

Swyr =y wi <Y wi Yy

teT ter e€t eclR t:e€t
By the feasibility ofy* for the capacity vector*, the quantity) |, _, y; is at mostz}. Hence

we have that

> wyp <> wial (4)

ter ecl
From Eq. (2), (3) and (4), it follows that there exists a @drtieet,; of weightw;, such that

4 < B(G,S,R) - tlwa ()

eck

Now, if n;,, = IV, thent, is a Steiner tree spanning all receivers. From Eq. (5) anaitefis
of 3(G,S,R*) anda(G, S, R), we get that

U)tl

* ek
ZeeE weme

B(G, 5, R") 2 B(G,S,R) = > oG, 5, R), (6)

which proves the the theorem.

Otherwise, letR;, be then, # N terminals int;, and consider a new instance of the Steiner
tree problem obtained by removing terminalsiRp, from R. Note that the solution* remains
feasible for this new problem. Le¥V, = |[R \ R;,| = N — n;. We can now repeat the above
argument for the instanca, w*, ¢*, S, R \ Ry, }, and, in the same manner, find a new trege
for which a counterpart of (5) holds:

wy, < B(G, S, R\ Ryy) 22 Zw*x* < B(G, S, R*)N > wixl
2

eGE eck

We continue the above process until we cover all terminalsd®ss, sayi, o, ..., t,. Let N; be
the number of terminals iR that remain to be covered before tith tree is computed. From
the above argument, we have that

wy, < B(G, S, R)%’f S wial,

e
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and thus ,

L
2w S PGSR D jwiwt- ) N

i=1

It is easy to see that

! n al 1
t.
- < ———— = Hy.
; N; ~ ; N—i+1 %
By construction, the union of the treést,,...,t, contains all the terminals, and thus there is

a Steiner tree of weight at mo3t, w;,. Consequently,

OPT(G, w", S\ R) _ Do wh  _ B(G, S, R")Hy.

G. S R) =
oG, 5 R) Eeeszwz N ZeeEw:$Z N

u
Theorem 1 enables us to prove bounds#tr, S, R*) using bounds om (G, S, R). We can
think of this theorem as follows. Giveft7, S, R}, without loss of generality, we can normalize
all possible capacity-vectors so tHBt(G, ¢, S, R) = 1. Then
T.(G,c,S,R") 1 T.(G,c,S,R)

max > — max ————,

c T}w - HN c Tf

giving
mng}w(R*) < Hy méifo.

Note that the maximum value d&f; andT%" is not necessarily achieved for the same capacity
vectorc, or for the same number of receivels What this theorem tells us is that, for a given
{G, S, R}, with |R| = N, the maximum common rate we can guarantee to all receivéirbavi
at mostHy times smaller than the maximum average rate we can send $reémany subset
of the receiversk. The theorem quantitatively bounds the advantage in gaioip the stricter
measuren(G, S, R) to the weaker measuré(G, S, R*). Furthermore, it is often the case that
for particular instances ofG, S, R), eithera(G, S, R) or 5(G,S,R*) is easier to analyze and
the theorem can be useful to get an estimate of the otheriguant

We comment on the tightness of the bounds in the theorem.eTéer instances in which
B(G, S, R*) = 1; take for example the case whe®r is a tree rooted atS. On the other
hand there are instances in whicG,S,R*) = O(1/In N)a(G,S,R). Examples include
bipartite graphs discussed in the next section and alsohgrdpfined in [8]. In general, the
ratio o(G, S, R)/B(G, S, R*) can take on a value in the ranfie Hy]|.
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IV. CONFIGURATIONS WITHSMALL NETWORK CODING BENEFITS

We here describe classes of networks for which coding canost aouble the average rate
achievable by routing. Note that we can achieve a constactiéin of the coding throughput
by using very simple routing schemes. In all the exampledis $ection we use simple, not
necessarily optimal, routing schemes. We note that comgun optimum routing is in general
NP-hard.

A. Configurations with Two Receivers

Consider the case of an arbitrary network withsources andV = 2 receiversR; and R..
The throughput achievable by network codindg/js= h. In the scenario when only receivé,

uses the network, no coding is required, and the througlp# tis 4. Therefore, we have

h 1 T™
— =< <1
2h 27 T, —

B. Configurations with Two Sources

For networks with two sources, the bounds in (1) give

1 1™
- <2<
5= =

Cc

by settingh = 2. We can tighten the lower bound as follows:
Theorem 2:For all networks withh = 2 sources andV receivers, if the min-cut condition is

satisfied for every receiver, it holds that
7‘;:(11} > 1 + 1
T. — 2 2N’

There are networks for which the bound holds with equality.

Proof: Consider a minimal information flow graph, and choose one ef ghurces to
transmit to all the coding points in the information flow gna@ince the configuration is minimal,
the other source node contains at least one receiver [1Qré&ims3]. Therefore, at least one of
the receivers will receive both sources. Thus a lower boumdhe achievablg*’ throughput
is (N +1)/N.

The bound is achievable since, for evéYy there exist minimal configurations where without
network coding we can not achieve a sum throughput better zha 1. Such configurations are

the minimal information flow graphs wittv — 1 coding points, described in [17, Theoreth
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For these configurations, each of the two source nodes osntaie receiver node, thus we
immediately start with sum rat2. Moreover each of théV — 1 coding points contains exactly
two receiver nodes. Using routing, only one of the two reseinodes in each coding point
will collect incremental information. This fact can be peovby using induction on the number
of coding nodes and the fact that such a minimal configuratith N coding nodes can be
created by a minimal configuration witN — 1 coding points by adding one receiver. Thus we
can achieve sumrate+ N —1=N+1and7 =1+ 1/N. [ |
There are networks with two sources with even smaller cotirmughput advantage. Consider,

for example, the network in Fig. 2. Two sources are conneittexighq + 1 intermediate nodes

a is a primitive element of,,.

A receiver observes; + a‘cy, andoy + o/ os.

— (*1') receivers.

Fig. 2. A network with two sources and?') receivers.

and branches wq;l) receivers. The network code which achievés= 2 is described in the
figure. Note that the alphabet size required to achieve thaighput equals. A simple routing
scheme can achieve the average throughput of at #dagtt as follows: We routeS; through
one half of theq + 1 intermediate nodes, angl, through the other half. Therefore, the average

routing throughput, for even + 1, is given by

1 qg+1/q+1 q+1\2 3
Tov — ( —1)-1 (—) ol > 2T
Z (qgl)[ 2\ 2 5 1
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Note that the routing throughput does not depend;omhus routing may be of interest when

the number of receivers is large and consequently codinginexja large alphabet size.

C. Bipartite Configurations witl2—Input Coding Points

Proposition 1: Consider a bipartite information flow graph withsources andV receivers.
Assume that each coding point has two parents which are sowdes. Then

7 1
> 7
T. — 2 O

Proof: Since each coding point has two parents, sources(c) and Sy(c¢), it contains

N1 > 1 receivers observing sourc& (c) and N, > 1 receiver observing sourc8s(c). If

N; > N,, we assign ta: sourceS(c), and sourced,(c) otherwise. This way we ensure that by
merely routing at each coding point, at least half of its nemrs observe one of its inputs. Note
that a receiver is observing a particular source at exacty anding point. Therefore the total

routing throughput is at least half of the total throughpctiiavable by coding. [ |

D. Configurations withh-input Coding Points

We first consider networks with sources andV receivers whose minimal information flow
graphs are bipartite and each coding pointhagputs. An example of such networks is illustrated
in Fig. 3. In network coding literature, these networks ar®wn as combination networks
B(h, k). There are three layers of nodes. The first layer containstlece node, at which
information sources are available. The second layer aositdi nodes connected to the source
node. The third layer contair(ﬁhh) receiver nodes. Note that eakmodes of the second layer are
observed by a receiver. This example was introduced in [H]ustrate the benefits of network
coding in terms of the integral throughgfit We look into the average throughput benefits first.

Theorem 3:The average throughput benefits of network coding for coatimn networks
B(h, k) is bounded as

T 1

‘ 1— = 8
Tc> o (8)

for all h and k.

Proof: Note that the min-cut condition is satisfied for every reegiand thusl, = h.
Route each of the sources through exaétlgdges going out of the source node. [}t denote

the number of receivers that do not receive soufgaunder this routing scheme. The total loss
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Fig. 3. CombinationB(h, k) network.

of throughput will be equal t@?zl M;. Since sourceb; is transmitted tok nodes, there exist

M; = (’“h"“) receivers that do not receive souige Using symmetry, the total loss in throughput

=) () )

is 1 (*" ") and thus
The ratio between the routing and coding throughput camgtbee, be lower-bounded as
T k() = (M)

Tc h (kh)
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However, the benefits of network coding as compared to tratidrzal and integral (common)
throughput are much higher. It straightforward to uppeuwiab the fractional throughput of
combination networksB(k,h). Note that each Steiner tree neekls — (h — 1) out of the
kh edges going out of the source node. Therefore, the fradtipmeking number is at most
kh/(kh — h + 1), and consequently

Ty k
L
T. ~ h(k—1)+1

The above bound is a special case of the result obtained in TA@ network coding benefits

(9)

of integral routing can be bounded as

~

7

< (10)

el
S

since we can only have exactly one Steiner tree. Note thaihédB (5, k) networks,h = O(In V),

and the bound in Theorem 1 is tight. Indeed, comparing (8)(a09, we get that

Ty _ e ¥
7 =001/ InN)= = 001/ InN) -

In Sec. IV-E, we will show a way to make the integral routingotighput?; equal to the average
by the employing a suitable erasure correcting code.

We now examine more general configurations. The followirgptem removes the bipartite
graph assumption.

Theorem 4:Consider an information flow configuration with sources andV receivers.
Assume that the vertex min-cut to each coding point,jsand that each subset a&f coding
points shares a receiver. Then
17 >1-— 1. (11)

T. e
Proof: Assume that the number of coding pointstis. It is sufficient to show that we can

route each source tb coding points, since the claim then follows from the resdliTbm. 3.
In other words, it sufficient to show that our graph can be dgmmsed intoh vertex-disjoint
trees, each tree rooted at a different source node, sincewkecan route each source to its
corresponding tree.

Let 7, = (V;, E;) denote the tree through which we will route souts;e We will first create
71, thenr,, and continue tar,. Consider sources;. We are going to construet, in k& steps,
where in each step we will add one vertex and one edge. tioet V/ and Ei denote the vertices

and edges respectively that are allocated;tat stepi. Initially V! = {S;}, where with.S; we
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denote the node corresponding to sousgeand £, = @. At stepi, we add a coding poinf’; to
the setV/ that has a paren®; in V/, to createV; ™ = {Vi|JC;} and B = {E: (P, Cy)}.
We then remove all incoming edges @9, apart from(P;, C;). We want to choose &’; so that
after removing these edges the vertex min-cut property ridsvéhe rest of the coding points is
not affected. That is, for the rest of the coding points, ¢hstill exist 2 vertex disjoint paths,
one that starts from any vertex &' andh — 1 that start from the source nodss. .. S;. It

is sufficient to show that such @; always exists.

From the theorem assumption, each coding point/hasarentsP;, ... P,. Any operation in
the graph that does not affect the min-cut property/®f... P, will not affect the min-cut
property of their child either. Thus, if we add coding podit to the setl’/, we need to make
sure that the min-cut property is not violatedly for the coding points that have a parent in
the set{V/JC;}. Assume that adding; to V' violates the min-cut property for some coding
point C;. ThenCj is a child of C; and another nodé’; € V;. To see that, note the following:

1) If a set of nodes is affected, at least one of them,Sayis a child of C;.

2) Assume that’; is a child of P, = C; and none of its remainingg — 1 parentsp, ... P,

belongs inV}. Note that the min-cut to each @%, ... P, is h. But then allocating source
S to P, = C; cannot affect the min-cut condition, sin€g can still receive the remaining
h — 1 sources througl®, ... P,. Thus, if theC);’s min-cut condition is violated¢'; must
have at least one parent, s&y, in V;.
We then choose ag/ "' = {V/JC;} and Ej™ = {Ei|J(P;, C;)}. We repeat this procedure
until we find a setl//*! that does not violate the min-cut condition. Since the gripfinite,
there will be at least one coding point that is a child of aeerih V; and does not have any
child in common with any vertex ifv;.

Following this procedure, we can create a trgehat contains: subtrees. We then remove
71 from the information flow graph, and all the edges adjacemettices int;. We are now left
with an information flow graph withh — 1 sources such that the min-cut to each coding point
is h — 1, and we can repeat the same procedure. [ |

We next examine the case of a bipartite graph where everyngaabint hash parents, but
no constraint is placed on how the receivers are distribi@@mnbination networks as shown in
Fig. 3, but with arbitrary number of receivers, belong tethbiass of networks.

Theorem 5:Consider a bipartite information flow configuration withsources andV re-
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ceivers. Assume that each coding point hagarents, and that allocation of the sources to the
coding points is done uniformly at random. Then, each recenill on the average experience

the integral throughput* satisfying

Tav 1
Lo>1 ——. 12
1. — e (12)

Proof: For each receiver, this scenario is a classic occupancy Imodehich A balls,
corresponding to the receiverls leaves (incoming edges) are thrown independently and uni-
formly into i urns corresponding to the sources. Lefl; be the random variable representing
the number of occupied bins (sources a receiver observhsh, Tor this occupancy model, we

have (see for example [21, Ch. 1])

av - - l h
T _h[1 (1 h) ] (13)
Therefore, the ratio between the expected throughput wieecoding is used and the average
throughput when coding is used is given by

Tiav>[1 <1 1>h]>1 !
T. — h e

[
In the combination network example in Fig. 3, this corregisto the routing strategy in which
the source to be routed through an edge going out of the sawade is chosen uniformly at
random from theh information sources.
The connection with the classic occupancy model enables d#dctly obtain several other
results listed below. The results can be easily derived fitoenmaterial in [21, Ch. 1].
Theorem 6:For each receiver, the probability distribution of the ramdvariableT; repre-

senting the number of observed sources (filled urns) is goyen

PHT, = k) =(’;) (1= ") ety = 0)

where Pfu(k) =0} = Ek: (?) (—1)1(1 — é)h

1=0
Theorem 7:As h — oo, the mean and the variance 6f behave as follows:

T — h(1 — (1 —e Y ando®(T;) — h(1 —e 1) (1 —2e7h).
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Theorem 8:As h — oo, the probability that the observed throughgutis different from its

average value becomes exponentially small:

T, —T™ 1 r 2 2
Pri———~= < — Ry < e,
{ o(T,) x}ﬁw/_me e

The result of Theorem 8 gives yet another reason for lookirtheaaverage throughput: when
the number of receivers is large, the throughput they egpeé tends to concentrate around a
much larger value than the minimum. For example, Fig. 4 glots the throughput is distributed
among the receivers for two combination netwdskh, k) instances with the above described

random routing. In both cases the fraction of receivers whbsoughput is low is very small

0.5
|

0.5
I
0.4

0.4

0.2
0.2

0.1

fraction of receivers observing T; sources
. 0.1 . 0.3 . . .

I
fraction of receivers observing T; sources

0.0
|

@h=4 k=S8 () h="6,k=6

Fig. 4. Normalized number of receivers vs the throughput they gbsfar two combinationB(k, k) multicast networks.
Similar results hold for bipartite multicast configurations withsource nodes anéih coding nodes where no constraint is

placed on how the receivers are distributed.

compared to the number of receivers whose throughput ie ¢tothe average. These simulation
results do not change noticeably even if the number of recgiis much smaller theﬁjf‘) as

in the combination networks.
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E. Achieving the Average Throughput for all Receivers by @eafoding

Here, we first describe a joint routing-coding scheme thatezesT; = 7 asymptotically
in time for the set of configuration8(h, k) and then discuss how this scheme can be possibly
generalized to arbitrary configurations. We start withadtrcing time as an additional dimension
in our routing problem, which is in network coding literaduknown as vector routing (see
for example [20]). We show that by combined vector routingl @hannel coding, the integral
throughput can achieve the average asymptotically oves.tim

Consider a combination network as shown in Fig. 3 but withteaky number of receivers,
where the information source to be routed through an edgeggout of the source node is
chosen uniformly at random from theinformation sources. The probability that a receiver will

not observe sourcs; is given by

h—1\h
= (=) (14)
Therefore, with this routing strategy, the expected valuithe integral throughput is given by
w h—1\h
T _h[1—(T> ] — h(1—e). (15)

Recall that we have obtained this result in Theorem 5, togethth the entire probability
distribution for the random variabl€; in Sec. IV-C.

Under this scenario, a receiver observes the sequence bfssacce outputs as if it had
passed through an erasure channel with the probability agueee given by (14). Therefore,
the symbols of each source can be encoded by an erasuretowreode of ratek/n which
will allow recovering thek information symbols aften transmissions, with probability of error
going to zero, as formally stated by the following theorem.

Theorem 9:For the combination networks as shown in Fig. 3 but with aabjt number of
receivers, there exist a sequence of channel codes of kates- 1 — ¢ and a routing strategy
such that the integral throughpiit(n) — hk/n — T asn — oc.

Proof. Under the routing strategy described above, a receivemodséhe sequence of each
source outputs as if it had passed through an erasure chatthethe probability of erasure
e given by (14). The channel capacity of such a channel is efqual— ¢, and there exists a
sequence of codes with ratégn < 1 — e such that the probability of incorrect decoding goes

to 0 asn — oo. Therefore, since there arve sources, we hav&;(n) — h-k/n asn — oo.
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Sincek/n can be taken arbitrary close to the capacity, we HAYe) — h(1 — €¢) = T;, where
the last equality follows from (15). [ |

We underline that this result holds over any bipartite infation flow configuration with
sources where each coding subtree hasarents and allocation of the sources to the coding
subtrees is done uniformly at random. When the configuratsosymmetric, as in the case
of B(h,k) networks, the random routing can be replaced by deterraniahd the integral
throughput7; can achieve the average after a finite number of time unitsekample, in the
case of B(h, k) networks, the routing strategy can circulate over th& (kh)!/(k!)* possible
assignments oh sources tokh edges s.t. each source is assigned to exactylges. After a

sequence of length is transmitted from each source, a receiver will have eyactl

symbols erased from each source. Thus the fraction of redesymbols per source is given by

S0 e I
G () h

Therefore, employing afn, m) Reed-Solomon code at each source would result(in) = 7,,.
Note that, as shown above, this scheme cannot be implemaitiedcalar fractional routing,
in which case the coding benefits are quantified by (9).

We now describe how this hybrid scheme, which combines veotding and channel coding,
can be generalized to arbitrary multicast configurations/mch all the sources are co-located
at the same node. In this setting, we can assume that theresiiggle source and focus on
the maximum common rate that all receivers can obtain froenstiurce. The scheme consists
of a routing schedule over time-slots and an appropriate erasure code. The routingdsié
problem is formulated as a linear program. We adopt the iootaif Section Il and consider
an instance{G, S,R}. Let 7 denote the set of partial Steiner treesGinrooted at the source
nodeS with terminal setR. For a treet € 7 and a time slok, the non-negative variablgt, k)
denotes the throughput thatconveys in time slot:. In each of then time slots, we seek a
feasible fractional packing of partial Steiner trees sd tha cumulative throughput provided

to each receiver over the time slots is maximized. The throughpfitand the routing schedule



IEEE TRANSACTION ON INFORMATION THEORY (TO APPEAR) 24

y(t, k) can be found by solving the following linear program:

max f
Y ytk)>f, VReER
k=1 teT:Ret

Z y(t,k) <c., VeeFE, 1<k<n

teT:ect

y(t,k) >0, Vier, 1<k<n

Let /* denote the optimum value of the above linear program ang*ldte a solution that
achieves the valug*. Letm = >/, >~ y*(¢, k). For simplicity, suppose the optimum solution
y* is integral, that isy*(¢, k) is an integer for allt, k. Thenm is an integer representing the
number of symbols produced by the source overiliene slots, and we can use an, f*) MDS
code that employsn coded symbols to convey* information symbols to all receivers. Note
that each receiver receives at ledstof the m code symbols and hence this scheme achieves a
common rate off* /m information symbols per channel use. In general, the smiuyti need not
be integral. However, if the edge capacitiesare all integer (or even rational), then there is an
optimum solution that has rational coordinates (since tietion is obtained at an intersection
of hyperplanes with rational coordinates). In this case we asymptotically achieve a rate of
f*/m by multiplying y* by an appropriately large integér, and then using the resulting integral
solution Ly*, as above. This would require using an erasure scheme/witttode symbols of
which each receiver would receive at leégt symbols. We note that*/n is non-decreasing as
a function ofrn, the number of time slots. We also note that the computingpimam solution
to the above linear program is intractable evenrfee 1, unlessP = N P. However, for special
cases or small instances, one might be able to compute p&armn solutions.

The described scheme can be viewed as a generalization ofettter routing solution
described in [20]. The vector routing solution in [20], dianly to our approach, uses time
as an additional dimension. The difference is that in [20]are still trying to find Steiner trees
that span all receivers (albeit not necessarily at the sameglot), that is, perform packing of
Steiner trees ir;’. In our scheme, we allow the flexibility of packing partiakBter trees, thus
possibly achieving a higher rate, and then use an erasurectiog code to convey common

information. Also note that our scheme does not employ @pdinintermediate nodes, only at
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the source nodes. Thus, it offers an upper bound on the maxithtoughput we may achieve

without allowing intermediate nodes in the network to cade, without use of network coding.

V. CONFIGURATIONS WITHLARGE NETWORK CODING BENEFITS

We here describe a class of networks for which network codiag offer up toyv/N-fold
increase of the average throughput achievable by routihis dlass of networks, which we call
ZK(p, N), was originally described by Zosin and Khuller in [7] to demstrate the integrality

gap of a standard LP for the directed Steiner tree problem.

A. The NetworkzK (p, N)

Let N andp, p < N, be two integers and = {1,2,..., N} be an index set. We define
two more index setsA as the set of al(p — 1)-element subsets &f and B as the set of all
p-element subsets &f. We consider a class of layered acyclic netwazksp, V), illustrated in

Fig. 5, and defined by the two parametéfsandp as follows: Source5 transmits information

Fig. 5. The network configurationk (p, N). The min-cut to each of th&/ receivers ish = (Nfl).

p—1

to IV receiver nodes?; ... Ry through a network of three sets of nodés B andC. A-nodes
are indexed by the elements gf, and B and C-nodes, by the elements &. An A node is
connected to & node if the index ofA is a subset of the index dB. A B node is connected
to a C node if and only if their indices are identical. A receiverdeois connected to thé’

nodes whose indices contain the index of the receiver. Ajeedn the graph have unit capacity.
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The out-degree of the source node(]iﬁ'l). Two specific members of this family of networks
are shown in Fig. 6 and Fig. 7.
We can compute the degrees of the nodes in the network by esiogphbinatorics:
Proposition 2:
. the out-degree ofi nodes isN — (p — 1),
. the in-degree of3 nodes isp,
« the out-degree of’ nodes isp,

the in-degree of the receiver nodes(f%jll).
p

We next compute the value of the min-cut between the sourde aad each receiver node, or
equivalently, the number of edge disjoint paths betweersthece and each receiver.

Proposition 3: There are exactly(];’jll) edge disjoint paths between the source and each
receiver.

Proof: Consider receivet. It is connected to théf_’f) distinct C-nodes indexed by the
elements of3 containingi. Each of theC-nodes is connected to thB-node with the same
index. All paths between the source and the receilave to go through these andC-nodes.
Therefore the number of edge disjoint paths between thes@und the receiver can not be larger
than (]Zjll). To show that there exist that many edge disjoint paths, wegad as follows: After
removing: from the indices of theé3-nodes receiver is connected to, we are left wit(f;'_‘f)
distinct sets of sizep — 1, i.e,, distinct elements of4. We use theA-nodes indexed by these

elements of4 to connect the receiver B-nodes to the source. [ |

Therefore, the sum rate with network codingl. is equal toN(JZ_‘ll). We next find an upper

bound to the sum rate without network codiiig and to the raticl .. /T...

Theorem 10:In a network in Fig. 5 wheré, = (];’__11),

T(M) o
o _p-t 1
T. " N—-p+1 p
Proof: If only routing is permitted, the information is transmidté&rom the source node

(16)

to the receiver through a number of trees, each carryingfareift information source. Let,
be the number ofd-nodes in treg, andc¢;, the number ofB and C-nodes. Note that; > ay,
and that thec; C-nodes are all descendants of the A-nodes. Therefore, we can count the

number of the receivers spanned by the tree as followsnl(et(;)) be the number of’-nodes
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connected to thgth A-node in the tree. Note that
Znt(A(])) = Ct-
j=1

The maximum number of receivers the tree can reach througMthnode isn,(A(j)) +p — 1.

Consequently, the maximum number of receivers the tree aohrns

ag

Z[nt(A<])) +p—=1=a(p—1)+c.

j=1
To find and upper bound to the routing throughput, we need tbtfie number of receivers that
can be reached by a set of disjoint trees. Note that for angfsaisjoint trees we have

Yoyl e ()

t
Therefore,T,, can be upper-bounded as

T; < %Z(at(p — 1) +c)

t

:%(p—l)zat-i-;qg (p—l)(p]l[l> - (]D

t

(17)

The sum rate with network coding. is equal toN(];’_’ll). Thus we get that
ﬂav p— 1 1

. “N_—pt1 p
We can apply the exact same arguments to upper bdyfid by allowing a; and ¢; to take

fractional values, and interpreting these values as thatidraal rate of the corresponding trees.

[
For a fixed NV, the LHS of the above inequality is minimized for
N+1 JN
— ~ VN,
PoUN
and for this value op,
Ta’l) N 2
P, VN (18)

T. — 1+N"~ N
B. Deterministic Coding
We show that for thezk(p, N) configurations there exist network codes over the binary
alphabet. Thus, very simple operations are sufficient taeaehsignificant throughput benefits.

We first explain how the coding is done for two special caseg:oivhenp = 2 and when

p =N — 1, and then proceed with the general case.



IEEE TRANSACTION ON INFORMATION THEORY (TO APPEAR) 28

1) p = 2: Consider the casek(2,N) wherep = 2 and N is arbitrary. An example for

N = 4 is shown in Fig. 6. In this case the number of information sesrish = N — 1. We can

Fig. 6. The networkzk(p = 2, N = 4).

code over the binary field as follows: Since the number of sdg®ng out ofS into A nodes
is N, we can send thé&/ — 1 sources over the firstV — 1 of these edges and not use thih
edge. In other words, the coding vector of title of these edges is th#h basis vectoe; for
i=1,2,...,N —1. The B-nodes merely sum their inputs ovig}, and forward the result to the
C-nodes. Consequently, the coding vectors on the brancheg ¢mireceiverN are theN — 1
basis vectors, and the coding vectors on the branches goiregeiveri for i =1,2,... , N —1
aree; ande; +¢; for j=1,...,N —1 andj # .

2) p = N — 1. Consider the case when= 2 for arbitrary N. An example forN = 5 is
shown in Fig. 7. In this case the number of information sasiisé: = N — 1. The number of
C-nodes isN. Each subset ofV — 1 C'-nodes is observed by a receiver. Therefore, any 1

of coding vectors of the edges between thend C-nodes should be linearly independent. The
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Fig. 7. The networkzk(p = 4, N = 5).

following list of vectors can be used for coding along thesdges:

10 0
01 0
(19)
00 ...1
11 1

We can obtain this list by coding as follows: To thé— 1 edges going from the source to the
A nodes whose label does not contaip we assign/V.— 1 basis vectors of ove]FéN D We
remove all other edges outgoing of the source, and theA-albdes which lost their connection
with the source, and the edges coming out of the removetdes. Consequently, the first of
the B-nodes hasV — 1 inputs. By addition, of these inputs the coding vector betwies B
and its corresponding’ node becomes§l 1 ... 1]. The rest of theB-nodes have only one input.
Thus we get the binary arc (19) at the last set of edges.

3) The General CasefFor arbitrary values gf and NV, network coding can be done as follows:
We first remove the edges going out®fnto thoseA-nodes whose labels contain. There are
(7-,) such edges. Since the number of edges going ostiato A-nodes is(,",), the number
of remaining edges i¢ ) — (7=,) = (7_/). We label these edges by the- (7~} different

p—2
basis elements df. We further remove ali-nodes which have lost their connection with the
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sourceS, as well as their outgoing edges. Tienodes merely sum their inputs ovEg, and
forward the result to thé€'-nodes.

Consider a”-node that theVth receiver is connected to. Its label, sayis ap-element subset
of Z containing/N. Because of our edge removal, the orlynode that this”-node is connected
to is the one with the labeb\ { N'}. Therefore, allC-nodes that théVth receiver is connected to
have a single input, and all those inputs are different. Cqunsatly, theNth receiver observes
all the sources directly.

Each of the receivers,2,..., N — 1 will have to solve a system of equations. Consider one

of these receivers, sgy Some of the”-nodes that thegth receiver is connected to have a single

N-2

input: those are the nodes whose label containsThere are(pi2

) such nodes, and they all
have different labels. For the rest of the proof, it is impattto note that each of these labels
containsj, and the(];’_‘f) labels are all(p — 1)-element subsets &f which containj and do
not containN. Let us now consider the remainir(@’jll) — (]ij) = (]Ifjf) C-nodes that theth
receiver is connected to. Each of these nodes is connecteditoodes. The labels gf — 1 of
theseA-nodes contairy, and only one does not. That label is different for @Hnodes that the
receiverj is connected to. Consequently, thih receiver gets(];j) sources directly, and each
source of the remainingg:f) as a sum of that source and some 1 of the sources received

directly.

C. Randomized Coding

For a general network wittV' receivers in which coding is performed by random assignment
of coding vectors over the alphabigf, the probability % that all N receivers will be able to

decode can be bounded as

NA\"
P;éz(1——) ,
q

wheren is the number of edges where coding is performed [16]. In ggneoding is performed
at all edges coming out of nodes with multiple inputs. Thereffor thezk (p, N') configurations,
n > (];) (the number of edges betweéhand C-nodes), and the above lower bound becomes

NNG) NV
ch\lfz(l_g> ~e (p)/.

Thus, if we want this bound to be greater thart, we need to choose > N(];’)
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We next look into randomized coding fak (p, N) configurations in which certain edges are
removed as for the deterministic coding described in SeB.3/-and derive another bound on
P¢. While in the deterministic casd3-nodes summed their inputs, in this randomized coding
scenario,5-nodes randomly combine their inputs ougy. As in the deterministic case, each
receiver is connected t@_‘j) C-nodes whose correspondidgrnodes have single inputs. Thus
the sources connected to thésenodes are directly observed. Consider recejvand one of the
remaining(ﬁj) C-nodes it is connected to, say The corresponding3-node forms a random
linear combination of it® inputs consisting of the — 1 sources directly observed hyand an
additional source. We denote this source dy, j) and refer to it as critical for receiver at
c. Receiver; will fail to decodes(c, j) if and only if 0 is chosen as the coefficient fefc, j)
at the B-node thatc is connected to. Observe that at each of (;ﬁél) multi-input B-nodes,
each of its inputs is critical for some receiver. Therefar®liows that all receivers will be able
to decode all sources if and only if each of the inputs to thdtirmput B-nodes receives a
non-zero coefficient in the output. There are a toteyb(%ffl) such inputs, and the coefficient for
each input is chosen independently and uniformly at rand@m fan alphabet of size. Hence

the probability of all receivers decoding successfully banbounded as follows:

d 1 p(p]jl)
P> (1 - 5) .

For the above bound to be greater than, it is sufficient to choose > p(p]fl). We conclude
that for zk(p, N) configurations, randomized coding may require an alphalzet which is

exponential in the number of receivers.

D. The Information Flow Graph Properties

We here examine in more detail the structure of tedp, N) configurations through their
information flow graphs, which posses a number of intergsproperties. In particular, this
enables us to study a hybrid coding/routing scheme in whiéfaction of the nodes that are
supposed to perform coding according to the scheme dedciib&ection V-B.3 are actually
allowed only to forward one of their inputs. We derive an éxexpression for the average
throughput in this scenario.

Let I',x be the family of bipartite information flow graphs corresgong to the family ofzk

networks. According to the scheme described in Section V-848ing is performed only aB-



IEEE TRANSACTION ON INFORMATION THEORY (TO APPEAR) 32

nodes. Therefore, the information flow grapkx(p, V) is bipartite, consisting o(];’jll) source
nodes anc(];’_‘ll) coding nodes. Receivéy observes only source nodes, and always receives rate
h, while the throughput of the remaininyy — 1 receivers depends on the operations performed
at coding pointse.g.,if all coding points add their inputs, all receivers obserate /.

We will index the source nodes and the coding nodes basedeoreteiversl,2,..., N — 1
as follows. LetZ’ = {1,2,...,N — 1} be an index set. We define two more index setSas

the set of all(p — 1)-element subsets & andC as the set of alp-element subsets &f'.

1) There areh = (]I\fjll) source nodes indexed by the elements4df Each source node is

observed by the set gf — 1 receivers corresponding to its index.

2) There are(Np*l) coding nodes indexed by the elementd3afEach coding node is observed
by the set ofp receivers corresponding to its index.

3) A source node is connected to a coding node if the index ®@fsthurce node is a subset
of the index of the coding node.

Proposition 4: The family of information flow graph$’,, have the following properties.

1) Each source node has out-degrée- p and each coding node has in-degfee

2) Each receiver (except receivar) observesr; = (7_) source nodes and, = (177) =
N—p
p—1

3) The configuration is symmetric with respect to receiverd sources.

x1 coding nodes.

4) Removing any edge of the graph reduces the min-cut by onexfactly one receiver.
5) Each time an edge is removed, the resulting graph stillphagerty 4.

Proof. The first three properties are straightforward. We will tipusve here the last two.
The above described indexing of nodes is helpful in this pr@onsider coding point with
index ¢(c) connected to a source nodevith index /(s). Let R be the receiver in the singleton

¢(c) \ £(s). Clearly s is observed byRr only in c. Moreover, onlyR observess in ¢ since the
remaining receivers are if(s) and therefore observe directly. Therefore, removing the edge
betweens and ¢ disconnects only? from s. [ |

In Section Il and in more detail in ([17], DeR) we defined a subtree graph to be minimal
with the min-cut property if removing any edge will violatket min-cut property for at least
one receiver. Proposition 4 tells us that the fanbily is minimal with the min-cut property, and

moreover, removing any number of edges leads to a configuar#tiat is again minimal.
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Since the configuratiod’,«(p, N) is minimal, to achieve throughput = (];:l) for all
receivers, we need to employ aﬂfvp‘l) = h% coding points. If, for examplep < N,
we needO(hN) coding points. In a real network, the coding points correspbto nodes in
the network that have enhanced functionalities and thembar may be limited. In [22], the
number of required coding points was referred to as encodargplexity, and it was shown
that an upper bound to this number/isN?2. The following theorem characterizes the trade-off
between encoding complexity and achievable rate forltheconfigurations.

Theorem 11:Let A% be a hybrid coding/routing scheme in which the number of rgdi
points inT",«(p, V) that are allowed to perform linear combining of their inp(as opposed to
simply forwarding one of them) is restricted to The average throughput under this scheme

T(A%) is given by

T, N — ~1
T(Ab) = (p+ =+ k) (20)

N1) coding points are allowed to code, we get that

p

T(Ak) = %[(];[__11) + (N — 1)(5__22) + ((Np_ 1) —k) +kp] (1)

In the above equation, we have

Proof: If only % out of the (

. the first term because receivar observes all sources,

» the second term because each of the remaiNng 1 receivers observe(si’_’j) sources
directly at the source nodes,

« the third term because, at tt(éfp‘l) — k forwarding points, exactly one receiver gets rate
1, (see the proof of Proposition 4).

. the fourth term because, thiecoding points where coding is allowed, all of jigeceivers
get ratel by binary addition of the inputs at each coding point (seediscription of the
coding scheme in Sec. V-B.3).

Equation (20) follows from (21) by simple arithmetic. [ ]

Note that substitutin@% for k£ in (21),i.e.,using network coding at all coding points, gives

T(A%) =T, = h, as expected. At the other extreme, by setting 0, i.e., using only routing,

we get an exact characterization of the average routingi¢fimout in this network scenario:

Tt = 3 (p+ ).
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For p = v/N, we havep + (N — p)/p = O(v/N), which coincides with the upper bound on
177" /T, in (16). Additionally, Theorem 11 shows that the throughpanefits increasénearly
with the number of coding points, at a rate of(p — 1)/(hN). Thus, a significant number of

coding points is required to achieve a constant fractiorhefrietwork coding throughput.

VI. CONCLUSIONS

We have investigated benefits that network coding offerk v@spect to the average throughput
achievable by routing, where the average throughput reéfetbe average of the rates that the
individual receivers experience. It was shown that thesefits are related to the integrality gap
of a standard LP formulation for the directed Steiner tre@bj@m. Based on this connection, a
class of directed graph configurations withreceivers for which network coding offers benefits
proportional toy/N was identified. However, it was remarkable to see that folyffarge classes
of networks, network coding at most doubles the averagaugimput. Several such classes were
identified. A comparison between the average and other ¢giwmut measures used in network
coding literature was addressed, often to point out thewifice in coding benefits. It was shown
that for certain classes of networks, the average througbguo be achieved uniformly by all
receivers by employing vector routing and channel codimmm&issues concerning the network
code alphabet size as a trade-off between routing and cadingell as between required for
deterministic and randomized coding were addressed. Itsawn, that for certain classes of
networks, there are huge savings to be made in terms of apls&e if one resorts to routing
as opposed to coding with a small throughput loss, or to detestic as opposed to random

coding with no throughput loss.
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