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Abstract

We examine the throughput benefits that network coding offers with respect to the average through-

put achievable by routing, where the average throughput refers to the average of the rates that the indi-

vidual receivers experience. We relate these benefits to theintegrality gap of a standard LP formulation

for the directed Steiner tree problem. We describe familiesof configurations over which network coding

at most doubles the average throughput, and analyze a class of directed graph configurations withN

receivers where network coding offers benefits proportional to
√

N . We also discuss other throughput

measures in networks, and show how in certain classes of networks, average throughput bounds can be

translated into minimum throughput bounds, by employing vector routing and channel coding. Finally,

we show configurations where use of randomized coding may require an alphabet size exponentially

larger than the minimum alphabet size required.
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I. I NTRODUCTION

Consider a communication network represented as a directed graph G = (V,E) with unit

capacity edges, andh unit rate information sourcesS1, . . . , Sh that simultaneously transmit

information to N receiversR1, . . . , RN located at distinct nodes. Assume that the min-cut

between the sources and each receiver node ish. The Ford-Fulkerson’s min-cut, max-flow

theorem states that, if a single receiver could utilize the network resources by itself, it would be

able to receive information at rateh. Recently, it has been realized that allowing network nodes to

re-encode the information they receive (in addition to re-routing) enables each receiver to retrieve

information at rateh, even whenN receivers simultaneously share the network resources [1],

[2]. This type of coding is now known as network coding. Moreover, it was shown that by linear

network coding, the min-cut rate can be achieved in multicasting to multiple sinks [1], [2]. This

is not always the case when network nodes are only allowed to forward the infromation they

receive, and network coding in general offers throughput benefits as compared to routing.

A natural question to ask is how large these throughput benefits are. LetTc = h denote

the rate that the receivers experience when network coding is used. We consider two types

of routing: integral routing, which requires that through each unit capacity edge we route at

most one unit rate source, andfractional routing, which allows multiple fractional rates from

different sources that add up to at most one. LetAi and Af denote the space of all integral

and fractional routing schemes respectively. Under a givenintegral routing schemeA ∈ Ai, let

T j
i (A) denote the rate that receiverj experiences. Similarly letT j

f (A) be the rate that receiverj

experiences under a given fractional routing schemeA ∈ Af . Let Ti = maxA∈Ai
minj=1...N{T j

i }
andTf = maxA∈Af

minj=1...N{T j
f (A)}, be the maximum integral and fractional rate we can route

to each of theN receivers. The benefits that network coding can offer as compared to routing

are quantified by the ratiosTi/Tc andTf/Tc, and we will derive bounds on these quantities. We

observe thatTf ≥ Ti.

In [3] it was shown that, for undirected graphs, if we allow fractional routing, the throughput

benefit that network coding offers over routing is bounded bya factor of two,i.e., Tf/Tc ≤ 2.

Experimental results in [4] over the network graphs of six Internet service providers also showed

small throughput benefits in this case. This result does not transfer to directed graphs. The authors

in [5] provide an example of a directed graph (known ascombination networkin the network
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coding literature) where the integral throughput benefits scale proportionally to the number of

sources, namely,Ti/Tc = 1/h. We show in this paper that a similar result is true even if we allow

fractional routing. In other words, if we compare the commonrate guaranteed to all receivers

under routing with the rate that network coding can offer, the benefits network coding offers are

proportional to the number of sourcesh.

In [6] it was shown that, for both directed and undirected graphs,Tf/Tc equals the integrality

gap of a standard linear programming formulation for the directed Steiner tree problem. Known

lower bounds on the integrality gap for directed graphs areΩ(
√

N) [7] andΩ((log n/ log log n)2)

[8] where n is the number of nodes in the underlying graph. For undirected graphs, a known

gap is8/7 (see [6]).

In this paper we focus on the throughput benefits network coding offers when multicasting to

a set of receivers that have the same min-cut. Work in the literature has also started examining

throughput benefits that network coding can offer for other types of traffic, see for example

[3], [9], and [10]. Even for the case of multicasting, there is still limited understanding of

structural properties of multicast configurations that require network coding (instead of plain

routing) to achieve optimal or near optimal rates. In order to increase our understanding in

this aspect, we relax the requirement that routing has to convey the same rate to each receiver

of the multicast session, and examine the highestaveragethroughput achievable with integral

and fractional routing where the averaging is performed over the rate that each individual

receiver experiences. We denote these quantities byT av
i = maxA∈Ai

1
N

∑

j=1...N T j
i (A) and

T av
f = maxA∈Af

1
N

∑

j=1...N T j
f (A), respectively, where the maximization is over all possible

routing strategies.

By decoupling the problem of achieving a high average rate from the problem of balancing

the rate towards different receivers, we hope to increase our intuition of when network coding

offers throughput benefits from a theoretical point of view.Moreover, from a practical point of

view, for applications that are robust to loss of packets such as real time audio and video, the

average throughput is a more appropriate measure of performance. This is also true when (as in

the combination network example [5], [11]) the number of receivers is large, and the throughput

they experience tends to concentrate around the average value. In fact, multicast sessions where

different receivers experience different rates is the normrather than the exception in practical

scenarios, and erasure coding schemes (e.g., Fountain codes [12], [13]) have been developed
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to address this situation. We here present a method which combines vector routing and erasure

coding to translate the average to common throughput for an arbitrary multicast configuration.

The contributions of this paper also include the following.We describe a linear programming

(LP) formulation for calculatingT av
f over directed graphs that performs packing of partial Steiner

trees. Using this formulation we show that the average throughput benefits of network coding

can be related to the integrality gap of a standard LP formulation for the directed Steiner tree

problem.

For N much larger thanh, the behavior ofT av
f and Tf can be quite different. The set of

configurations where the average rate achieves a constant factor of the min-cut is larger than the

set of configurations where the common rate guaranteed to allreceivers can be made a constant

factor of the min-cut. For example, as we will discuss in Section IV, for the combination network

of [5], Tc = h, Ti = 1 while T av
i ≥ h/2. We will describe a number of other configurations

where whileTf/Tc can be arbitrarily small, network coding can only offer a constant factor

benefit with respect to the average rateT av
f . Virtually all configurations studied as examples so

far in network coding literature belong to this category.

We will then describe and analyze a class of directed graph configurations where network

coding offers significant benefits as compared to the averagethroughput [14]. These configura-

tions were originally constructed by Zosin and Khuller in [7] to obtain a lower bound on the

integrality gap for the directed Steiner tree problem. We show that employing network coding

over this class of directed graphs can offer throughput benefits proportional to
√

N , where

N is the number of receivers, with regard to the average (and asa result to the common)

throughput,i.e., Tf

Tc
≤ T av

f

Tc
≤ 1

O(
√

N)
. These graphs also illustrate that use of randomized coding

may require an alphabet size significantly larger than the minimum alphabet size required. The

idea in randomized network coding [5], [15], [16] is to randomly combine over a finite field the

incoming information flows and show that the probability of error can become arbitrarily small

as the size of the finite field increases. We show that for this class of configurations, to guarantee

a small probability of error, we need to use an exponentiallylarge alphabet size. In contrast,

we prove that a binary alphabet size is in fact sufficient for network coding. We construct

a deterministic algorithm that has linear complexity, can be used to perform network coding

over this class of configurations, and requires binary alphabet. This coding scheme effectively

transforms the configuration in [7] to abipartiteconfiguration,i.e.,a configuration where network
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coding is performed only on information streams carrying the source symbols.

The paper is organized as follows. The problem is formulatedin Section II. A connection

between coding throughput benefits and certain combinatorial optimization problems on graphs

is presented in Section III. Configurations for which networkcoding offers limited average

throughput benefits are discussed in Section IV. A hybrid vector-routing/channel-coding scheme

which translates the average to common throughput for an arbitrary multicast configuration

is also presented in Section IV. A family of networks where network coding offers large

average throughput benefits is described an analyzed in Section V. Code alphabet size effects

on throughput are discussed throughout the paper. Section VI concludes the paper.

II. N ETWORK MODELS AND PROBLEM FORMULATION

We consider a communications network represented by a directed acyclic graphG = (V,E)

with unit capacity edges. There areh unit rate information sourcesS1, . . . , Sh andN receivers

R1, . . . , RN . For each receiver, there areh edge disjoint paths to it, one from each of theh

sources. For receiverj, we denote these paths as(Si, Rj), i = 1, . . . , h. The h information

sources multicast information simultaneously to allN receivers at rateh.

We are interested in the throughput benefits that network coding can offer as compared to

routing (uncoded transmission). LetTc denote the rate that the receivers experience when network

coding is used. We will use the following notation for the routing throughput.

• T j
i and T j

f denote the rate that receiverj experiences with fractional and integral routing

respectively under some routing strategy.

• Ti = max minj=1...N{T j
i } andTf = max minj=1...N{T j

f } denote the maximum integral and

fractional rate we can route to all receivers, where the maximization is over all possible

routing strategies.

• T av
i = 1

N
max

∑N
j=1 T j

i and T av
f = 1

N
max

∑N
j=1 T j

f denote the maximum integral and

fractionalaveragethroughput. We will useT av to discuss results that apply both to integral

and fractional average routing.

The benefits of network coding in the case of the common throughput measure are described

by
Ti

Tc

and
Tf

Tc

.
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The problem of calculatingTf (Ti) is equivalent to the problem of packing fractional (integral)

trees that are rooted at the source nodes and span the set of receivers.

In this paper we are mainly interested in comparing the average throughput when network

coding is used to the average throughput when only routing transmission is allowed. Equivalently,

we will be comparing the sum rate achieved with and without network coding. The benefits of

network coding in the case of the average throughput measureare described by

T av
i

Tc

and
T av

f

Tc

.

The problem of calculatingT av
f (T av

i ) is equivalent to the problem of packing fractional (integral)

partial Steiner trees,i.e., trees that are rooted at the source nodes that span a subset ofthe

receivers.

For a multicast configuration withh sources andN receivers, it holds that

Tc = h,

from the main network multicast theorem [1], [2]. Also, because there exists a tree spanning the

source and the receiver nodes, the uncoded throughput is at leastN . We, therefore, have

1 ≤ T av
i ≤ T av

f ≤ h,

and thus
1

h
≤ T av

i

Tc

≤
T av

f

Tc

≤ 1. (1)

The upper bound in (1) is achievable by the configurations in which network coding is not

necessary for multicast. Much less is known about the lower bound on the ratioT av
i /Tc. We

here find lower bounds to this quantity for several classes ofnetworks, where classification of

networks is performed based on their information flow decomposition described in [17].

The information flow decomposition partitions the network into subgraphs through which the

same information flows, and the coding (information flow combining) happens at the borders of

these subgraphs. Each such part is a tree, that is rooted either at the source, or at nodes where

we might need to perform coding operations. For the network code design problem, the structure

of the network inside these trees does not play any role; we only need to know how the trees

are connected and which receiver nodes observe the information that flows in each tree. Thus,

we can contract each tree to a single vertex, and get a graph whose nodes correspond to entire
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areas of the original network. We call this process and the resulting graph the information flow

decomposition of the network.

In the information flow decomposition graph, there are nodeswith no incoming edges, called

sources (or source nodes), and nodes with two or more in-going edges called coding nodes. We

say a nodecontainsRj to indicate that receiverRj observesthat node (flow), and label the

node accordingly. Note that each receiver observesh nodes in the information flow graph. An

example of a network and its information flow decompositionsis given in Fig. 1(a)− (b). There

exist two source nodes and five coding nodes; each of the10 receivers observes two coding

nodes.

We are in particular interested in information flow graphs that areminimal with the min-cut

property, namely those for which removing any edge would violate the min-cut property for at

least one receiver. A minimal information flow graph for the network in Fig. 1(a) is depicted

in Fig. 1(c). The procedure for information flow decomposition for a network is described in

S1 S2

1 2 3 4 5 6 7 8 9 10

(a)

S1 S2

1 2
3 4

1 5
6 7

(b)

2 5
8 9

3 6
8 10

4 7
9 10

S1 S2

1 2
3 4

1 5
6 7

2 5
8 9

3 6
8 10

4 7
9 10

(c)

Fig. 1. (a) A network with two sources and 10 receivers; (b) an information flow decomposition of the network, and (c) a

minimal information flow graph.

detail in [17]. Note that in Fig. 1(b) and Fig. 1(c), each coding point has only source nodes as
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its parents,i.e., network coding is performed only on information streams carrying the source

symbols. We refer to this type of information flow graph as abipartite configuration.

III. LP FORMULATIONS

In this section we consider a directed graphG = (V,E), a root (source) vertexS ∈ V ,

and a setR = {R1, R2, . . . , RN} of N terminals (receivers) which we describe together as an

instance{G,S,R}. With every edgee of the graph, we can in general associate two parameters:

a capacityce ≥ 0, and a cost (weight)we ≥ 0. Let c = [ce] andw = [we], e ∈ E denote vectors

that collect the set of edge capacities and edge weights respectively. Either the edge weights or

the edge capacities or both may be relevant in a particular problem.

In the Steiner treeproblem, we are given an instance{G,S,R} and a set of non-negative

edge weightsw. We are asked to find the minimum weight tree that connects thesource to all

the terminals. Here edge capacities are not relevant: the Steiner tree either uses or does not use

an edge.

We call a set of verticesD ⊂ V separating,if D contains the source vertexS and V \ D
contains at least one of the terminals inR. Let δ(D) denote the set of edges fromD to V \ D,

that is, δ(D) = {(u, v) ∈ E : u ∈ D, v /∈ D}. We consider the following formulation for the

Steiner tree problem

min
∑

e∈E

wexe

∑

e∈δ(D)

xe ≥ 1, ∀ D: D is separating

xe ∈ {0, 1}, ∀ e ∈ E

where there is a binary variablexe for each edgee ∈ E to indicate whether the edge is contained

in the tree. Note that any vectorx = {xe, e ∈ E} satisfying the constraints of the above LP can

be interpreted as a set of capacities for the edges ofG, and that the constraints then ensure that

the min-cut from the sourceS to each receiver in the capacitated graph(G,S, x) is at least one.

Let OPT(G,w, S,R) be the value of the optimum solution for the given instance.

In the above formulation, the objective function and the constraints are linear in the underlying

variables. Further, the variables are constrained to be integers. Such a formulation is referred

to as an integer program (IP). If all the variables can take onvalues from the domain of real
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numbers, we obtain a linear program (LP). Please see [18, Parts 3 and 4] for more details on

integer and linear programs. It is easy to see that the constraints in the above integer program are

necessary for the Steiner tree problem. It is less obvious that they are sufficient but this can be

shown by some elementary graph theoretic arguments. We givea brief sketch below. Consider a

feasible solution to the integer program and letE ′ ⊂ E be the set of edgese such thatxe = 1.

Let G′ = (V,E ′) the graph induced byE ′. Consider the setD of all vertices that can be reached

from S in G′. If D does not include all the receivers, then it can be seen thatD is a separating set

with no edge crossing it and hence contradicts the feasibility of the solutionx. This ensures that

in G′ there is a path fromS to every receiver. A minimal subset ofE ′ that ensures connectivity

from S to every receiver can be shown to be a tree. Thus we conclude that any feasible solution

of the above integer program induces a Steiner tree. The formulation above has an exponential

number of constraints; however, there is an equivalent compact formulation with a polynomial

number of constraints and variables. This equivalence relies on the well-known maxflow-mincut

theorem for single-commodity flows. We refer the reader to [19, Ch. 9] for more details.

A linear relaxation of the above IP is obtained by replacing the constraintsxe ∈ {0, 1}, e ∈ E

by 0 ≤ xe ≤ 1, e ∈ E. We can further simplify this toxe ≥ 0, e ∈ E, by noticing that if

a solution is feasible withxe ≥ 1, then it remains feasible by settingxe = 1. For a given

instance(G,S,R), let LP(G,w, S,R) denote the optimum value of the resulting linear program

on the instance. The valueLP(G,w, S,R) lower bounds the cost of the integer program solution

OPT(G,w, S,R). The integrality gapof the relaxation onG is defined as

α(G,S,R) = max
w≥0

OPT(G,w, S,R)

LP(G,w, S,R)
,

where the maximization is over all possible edge weights. Note thatα(G,S,R) is invariant to

scaling of the optimum achieving weights.

Let w∗ be the set of edge weights that achieves the maximum valueα(G,S,R), andx∗ =

{x∗
e, e ∈ E} be an optimum solution for the associated LP. In [6] it was shown that, if we

consider the instance{G,S,R}, associate capacityce = x∗
e with each edgee, and compare the

throughput we can get with and without network coding (Tc andTf respectively) on this capac-

itated graph, thenα(G,S,R) = OPT(G,w∗,S,R)
LP(G,w∗,S,R)

= Tc(G,c=x∗,S,R)
Tf (G,c=x∗,S,R)

. Note that this does not imply that

OPT(G,w∗, S,R) = Tc(G, c = x∗, S,R) and LP(G,w∗, S,R) = Tf (G, c = x∗, S,R). In general,

it was shown in [6] that given an instance{G,S,R}, maxw
OPT(G,w,S,R)
LP(G,w,S,R)

= maxc
Tc(G,S,R,c)
Tf (G,S,R,c)

. That
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is, for a given multicast configuration{G, S, R}, the maximum throughput benefits we may

hope to get with network coding will equal the largest integrality gap of the Steiner tree problem

possible on the same graph. This result refers to fractionalrouting; if we restrict our problem

to integral routing on the graph, we may get larger throughput benefits.

We now consider the coding advantage for average throughputover a multicast configuration

{G, S, R} and a set of non-negative capacitiesc on the edges ofG. We will assume for technical

reasons that the min-cut fromS to each of the terminals is the same. This can be easily arranged

by adding dummy terminals. That is, if the min-cut to a receiver Ri is larger than required, we

connect the receiver node to a new dummy terminal through an edge of capacity equal to the

min-cut. Then the network coding throughput is given by

Tc(G, c, S,R) = mincut(S,Ri).

The maximum achievable average throughput with routing is given by the maximum fractional

packing ofpartial Steiner trees. A partial Steiner treet stems from the sourceS and spans all or

only a subset of the terminals. With each treet, we associate a variableyt denoting a fractional

flow through the tree. Letτ be the set of all partial Steiner trees in{G, S, R}, and nt the

number of terminals int. Then the maximum fractional packing of partial Steiner trees is given

by the following linear program.

max
∑

t∈τ

nt

N
yt

∑

t∈τ :e∈t

yt ≤ ce, ∀ e ∈ E

yt ≥ 0, ∀ t ∈ τ.

Let T av
f (G,S,R, c) denote the value of the above linear program on a given instance. The

coding advantage for average throughput onG is given by the ratio

β(G,S,R) = max
c

Tc(G, c, S,R)

T av
f (G, c, S,R)

.

Note thatβ(G) is invariant to scaling of the optimum achieving capacities. It is easy to see

that β(G,S,R) ≥ 1, since we assumed that the min-cut to each receiver is the same, and

thus network coding achieves the maximum possible sum rate.It is also straightforward to see

that β(G,S,R) ≤ α(G,S,R), since for any given configuration{G, c, S, R}, the average
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throughput is at least as large as the common throughput we can guarantee to all receivers,

namely,T av
f ≥ Tf .

Let β(G,S,R∗) denote the maximum average throughput benefits we can get on graph G

when multicasting from sourceS to any possible subsetof the receiversR′ ⊆ R:

β(G,S,R∗) = max
R′⊆R

β(G,S,R′).

Theorem 1:For a configuration{G,S,R} where |R| = N and the min-cut to each receiver

is the same, we have

β(G,S,R∗) ≥ max{1, 1

HN

α(G,S,R)},

whereHN is theN th harmonic number, namely,HN =
∑N

j=1 1/j.

Proof: Consider an instance of a Steiner tree problem{G,S,R} with |R| = N . Let w∗

be a weight vector such that

α(G,S,R) =
OPT(G,w∗, S,R)

LP(G,w∗, S,R)
= max

w

OPT(G,w, S,R)

LP(G,w, S,R)
.

Let x∗ be an optimum solution for the LP on the instance(G,w∗, S,R). HenceLP(G,w∗, S,R) =
∑

e w∗
ex

∗
e. As discussed above, we can think of the optimum solutionx∗ as associating a capacity

ce = x∗
e with each edgee so that the min-cut to each receiver is greater or equal to one, and the

cost
∑

e w∗
ex

∗
e is minimized.

We are going to examine the average coding throughput benefits we can get on the instance

{G, c = x∗, S,R}. Since the min-cut to each receiver is at least one, we can achieve throughput

Tc(G, c = x∗, S,R) ≥ 1. Now, let y∗ = {y∗
t , t ∈ τ} be the optimal fractional packing of partial

Steiner trees on{G, c = x∗, S,R}. From the definition ofβ(G,S,R), it follows, for the capacity

vector c = x∗, that

β(G,S,R) = max
c

Tc(G, c, S,R)

T av
f (G, c, S,R)

≥ Tc(G, c = x∗, S,R)

T av
f (G, c = x∗, S,R)

≥ 1

T av
f (G, c = x∗, S,R)

=
1

∑

nt

N
y∗

t

(2)

To further boundβ(G,S,R), we will find a bound on
∑

nt

N
y∗

t .

Let wt =
∑

e∈t w
∗
e denote the weight of partial treet, and consider

∑

t∈τ wty
∗
t (the total weight

of the packingy∗). We have
∑

t∈τ

wty
∗
t =

∑

t∈τ

wt
N

nt

· y∗
t

nt

N

≥ min
t∈τ

{

wt
N

nt

}

∑

t∈τ

y∗
t

nt

N
.
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Thus there exists a partial treet1 of weight wt1 such that

wt1 ≤
1

∑

t∈τ
nt

N
y∗

t

· nt1

N

∑

t∈τ

wty
∗
t . (3)

Moreover, we claim that
∑

t∈τ wty
∗
t ≤

∑

e∈E w∗
ex

∗
e. Indeed, by changing the order of summation,

we get
∑

t∈τ

wty
∗
t =

∑

t∈τ

yt

∑

e∈t

w∗
e ≤

∑

e∈E

w∗
e

∑

t:e∈t

y∗
t .

By the feasibility ofy∗ for the capacity vectorx∗, the quantity
∑

t:e∈t y
∗
t is at mostx∗

e. Hence

we have that
∑

t∈τ

wty
∗
t ≤

∑

e∈E

w∗
ex

∗
e. (4)

From Eq. (2), (3) and (4), it follows that there exists a partial treet1 of weight wt1 such that

wt1 ≤ β(G,S,R) · nt1

N

∑

e∈E

w∗
ex

∗
e. (5)

Now, if nt1 = N , thent1 is a Steiner tree spanning all receivers. From Eq. (5) and definitions

of β(G,S,R∗) andα(G,S,R), we get that

β(G,S,R∗) ≥ β(G,S,R) ≥ wt1
∑

e∈E w∗
ex

∗
e

≥ α(G,S,R), (6)

which proves the the theorem.

Otherwise, letRt1 be then1 6= N terminals int1, and consider a new instance of the Steiner

tree problem obtained by removing terminals inRt1 from R. Note that the solutionx∗ remains

feasible for this new problem. LetN2 = |R \ Rt1| = N − n1. We can now repeat the above

argument for the instance{G,w∗, c∗, S,R \ Rt1}, and, in the same manner, find a new treet2

for which a counterpart of (5) holds:

wt2 ≤ β(G,S,R \Rt1)
nt2

N2

∑

e∈E

w∗
ex

∗
e ≤ β(G,S,R∗)

nt2

N2

∑

e∈E

w∗
ex

∗
e.

We continue the above process until we cover all terminals bytrees, say,t1, t2, . . . , tℓ. Let Ni be

the number of terminals inR that remain to be covered before theith tree is computed. From

the above argument, we have that

wti ≤ β(G,S,R∗)
nti

Ni

∑

e

w∗
ex

∗
e,
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and thus
ℓ

∑

i=1

wti ≤ β(G,S,R∗) ·
∑

e

w∗
ex

∗
e ·

ℓ
∑

i=1

nti

Ni

.

It is easy to see that
ℓ

∑

i=1

nti

Ni

≤
N

∑

i=1

1

N − i + 1
= HN .

By construction, the union of the treest1, t2, . . . , tℓ contains all the terminals, and thus there is

a Steiner tree of weight at most
∑

i wti. Consequently,

α(G,S,R) =
OPT(G,w∗, S,R)

∑

e∈E w∗
ex

∗
e

≤
∑

i wti
∑

e∈E w∗
ex

∗
e

≤ β(G,S,R∗)HN .

Theorem 1 enables us to prove bounds onβ(G,S,R∗) using bounds onα(G,S,R). We can

think of this theorem as follows. Given{G,S,R}, without loss of generality, we can normalize

all possible capacity-vectors so thatTc(G, c, S,R) = 1. Then

max
c

Tc(G, c, S,R∗)

T av
f

≥ 1

HN

max
c

Tc(G, c, S,R)

Tf

,

giving

max
c

T av
f (R∗) ≤ HN max

c
Tf .

Note that the maximum value ofTf andT av
f is not necessarily achieved for the same capacity

vectorc, or for the same number of receiversN . What this theorem tells us is that, for a given

{G,S,R}, with |R| = N , the maximum common rate we can guarantee to all receivers will be

at mostHN times smaller than the maximum average rate we can send fromS to any subset

of the receiversR. The theorem quantitatively bounds the advantage in going from the stricter

measureα(G,S,R) to the weaker measureβ(G,S,R∗). Furthermore, it is often the case that

for particular instances of(G,S,R), eitherα(G,S,R) or β(G,S,R∗) is easier to analyze and

the theorem can be useful to get an estimate of the other quantity.

We comment on the tightness of the bounds in the theorem. There are instances in which

β(G,S,R∗) = 1; take for example the case whenG is a tree rooted atS. On the other

hand there are instances in whichβ(G,S,R∗) = O(1/ ln N)α(G,S,R). Examples include

bipartite graphs discussed in the next section and also graphs defined in [8]. In general, the

ratio α(G,S,R)/β(G,S,R∗) can take on a value in the range[1, HN ].
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IV. CONFIGURATIONS WITH SMALL NETWORK CODING BENEFITS

We here describe classes of networks for which coding can at most double the average rate

achievable by routing. Note that we can achieve a constant fraction of the coding throughput

by using very simple routing schemes. In all the examples in this section we use simple, not

necessarily optimal, routing schemes. We note that computing an optimum routing is in general

NP-hard.

A. Configurations with Two Receivers

Consider the case of an arbitrary network withh sources andN = 2 receiversR1 and R2.

The throughput achievable by network coding isTc = h. In the scenario when only receiverR1

uses the network, no coding is required, and the throughput to R1 is h. Therefore, we have

h

2h
=

1

2
≤ T av

i

Tc

≤ 1.

B. Configurations with Two Sources

For networks with two sources, the bounds in (1) give

1

2
≤ T av

i

Tc

≤ 1

by settingh = 2. We can tighten the lower bound as follows:

Theorem 2:For all networks withh = 2 sources andN receivers, if the min-cut condition is

satisfied for every receiver, it holds that

T av
i

Tc

≥ 1

2
+

1

2N
.

There are networks for which the bound holds with equality.

Proof: Consider a minimal information flow graph, and choose one of the sources to

transmit to all the coding points in the information flow graph. Since the configuration is minimal,

the other source node contains at least one receiver [17, Theorem3]. Therefore, at least one of

the receivers will receive both sources. Thus a lower bound on the achievableT av
i throughput

is (N + 1)/N .

The bound is achievable since, for everyN , there exist minimal configurations where without

network coding we can not achieve a sum throughput better than N +1. Such configurations are

the minimal information flow graphs withN − 1 coding points, described in [17, Theorem4].
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For these configurations, each of the two source nodes contains one receiver node, thus we

immediately start with sum rate2. Moreover each of theN − 1 coding points contains exactly

two receiver nodes. Using routing, only one of the two receiver nodes in each coding point

will collect incremental information. This fact can be proved by using induction on the number

of coding nodes and the fact that such a minimal configurationwith N coding nodes can be

created by a minimal configuration withN − 1 coding points by adding one receiver. Thus we

can achieve sum rate2 + N − 1 = N + 1 andT av
i = 1 + 1/N .

There are networks with two sources with even smaller codingthroughput advantage. Consider,

for example, the network in Fig. 2. Two sources are connectedthroughq +1 intermediate nodes

S1 S2

σ1 σ2

1 2 3 q + 1· · ·

· · · · · · · · ·

· · · · · ·

←
(

q+1
2

)

receivers.

α is a primitive element ofFq.[1, 1] [1, αq−2][1, 0][0, 1]

A receiver observesσ1 + αiσ2 andσ1 + αjσ2.

Fig. 2. A network with two sources and
(

q+1

2

)

receivers.

and branches to
(

q+1
2

)

receivers. The network code which achievesTc = 2 is described in the

figure. Note that the alphabet size required to achieve this throughput equalsq. A simple routing

scheme can achieve the average throughput of at least3Tc/4 as follows: We routeS1 through

one half of theq + 1 intermediate nodes, andS2 through the other half. Therefore, the average

routing throughput, for evenq + 1, is given by

T av
i =

1
(

q+1
2

)

[

q + 1

2

(q + 1

2
− 1

)

· 1 +
(q + 1

2

)2

· 2
]

>
3

4
· Tc.
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Note that the routing throughput does not depend onq. Thus routing may be of interest when

the number of receivers is large and consequently coding requires a large alphabet size.

C. Bipartite Configurations with2–Input Coding Points

Proposition 1: Consider a bipartite information flow graph withh sources andN receivers.

Assume that each coding point has two parents which are source nodes. Then

T av
i

Tc

≥ 1

2
. (7)

Proof: Since each coding pointc has two parents, sourcesS1(c) and S2(c), it contains

N1 ≥ 1 receivers observing sourceS1(c) and N2 ≥ 1 receiver observing sourceS2(c). If

N1 ≥ N2, we assign toc sourceS1(c), and sourceS2(c) otherwise. This way we ensure that by

merely routing at each coding point, at least half of its receivers observe one of its inputs. Note

that a receiver is observing a particular source at exactly one coding point. Therefore the total

routing throughput is at least half of the total throughput achievable by coding.

D. Configurations withh-input Coding Points

We first consider networks withh sources andN receivers whose minimal information flow

graphs are bipartite and each coding point hash inputs. An example of such networks is illustrated

in Fig. 3. In network coding literature, these networks are known as combination networks

B(h, k). There are three layers of nodes. The first layer contains thesource node, at whichh

information sources are available. The second layer contains kh nodes connected to the source

node. The third layer contains
(

kh
h

)

receiver nodes. Note that eachh nodes of the second layer are

observed by a receiver. This example was introduced in [5] toillustrate the benefits of network

coding in terms of the integral throughputTi. We look into the average throughput benefits first.

Theorem 3:The average throughput benefits of network coding for combination networks

B(h, k) is bounded as
T av

i

Tc

> 1 − 1

e
, (8)

for all h andk.

Proof: Note that the min-cut condition is satisfied for every receiver, and thusTc = h.

Route each of the sources through exactlyk edges going out of the source node. LetMi denote

the number of receivers that do not receive sourceSi, under this routing scheme. The total loss
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S1 Sh

· · ·

· · ·

· · ·

· · ·

· · · · · ·
h

kh

h

R1
R(kh

h )

Fig. 3. CombinationB(h, k) network.

of throughput will be equal to
∑h

i=1 Mi. Since sourceSi is transmitted tok nodes, there exist

Mi =
(

kh−k
h

)

receivers that do not receive sourceSi. Using symmetry, the total loss in throughput

is h
(

kh−k
h

)

and thus

T av
i =

[

h

(

kh

h

)

− h

(

kh − k

h

)]

/

(

kh

h

)

.

The ratio between the routing and coding throughput can, therefore, be lower-bounded as

T av
i

Tc

=
h
(

kh
h

)

− h
(

kh−k
h

)

h
(

kh
h

)

= 1 −
(

kh−k
h

)

(

kh
h

)

= 1 −
h−1
∏

i=0

(

1 − k

kh − i

)

>
(

1 − 1

h

)h

> 1 − 1

e
.
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However, the benefits of network coding as compared to the fractional and integral (common)

throughput are much higher. It straightforward to upper-bound the fractional throughput of

combination networksB(k, h). Note that each Steiner tree needskh − (h − 1) out of the

kh edges going out of the source node. Therefore, the fractional packing number is at most

kh/(kh − h + 1), and consequently

Tf

Tc

≤ k

h(k − 1) + 1
. (9)

The above bound is a special case of the result obtained in [20]. The network coding benefits

of integral routing can be bounded as
Ti

Tc

≤ 1

h
, (10)

since we can only have exactly one Steiner tree. Note that fortheB(h, k) networks,h = O(ln N),

and the bound in Theorem 1 is tight. Indeed, comparing (8) and(10), we get that

Tf

Tc

= O(1/ ln N)
T av

i

Tc

= O(1/ ln N)
T av

f

Tc

.

In Sec. IV-E, we will show a way to make the integral routing throughputTi equal to the average

by the employing a suitable erasure correcting code.

We now examine more general configurations. The following theorem removes the bipartite

graph assumption.

Theorem 4:Consider an information flow configuration withh sources andN receivers.

Assume that the vertex min-cut to each coding point ish, and that each subset ofh coding

points shares a receiver. Then
T av

i

Tc

≥ 1 − 1

e
. (11)

Proof: Assume that the number of coding points iskh. It is sufficient to show that we can

route each source tok coding points, since the claim then follows from the result of Thm. 3.

In other words, it sufficient to show that our graph can be decomposed intoh vertex-disjoint

trees, each tree rooted at a different source node, since then we can route each source to its

corresponding tree.

Let τi = (Vi, Ei) denote the tree through which we will route sourceSi. We will first create

τ1, then τ2, and continue toτh. Consider sourceS1. We are going to constructτ1 in k steps,

where in each step we will add one vertex and one edge toτ1. Let V i
1 andEi

1 denote the vertices

and edges respectively that are allocated toτ1 at stepi. Initially V 1
1 = {S1}, where withS1 we
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denote the node corresponding to sourceS1, andE1 = ∅. At stepi, we add a coding pointCi to

the setV i
1 that has a parentPi in V i

1 , to createV i+1
1 = {V i

1

⋃

Ci} andEi+1
1 = {Ei

1

⋃

(Pi, Ci)}.

We then remove all incoming edges toCi, apart from(Pi, Ci). We want to choose aCi so that

after removing these edges the vertex min-cut property towards the rest of the coding points is

not affected. That is, for the rest of the coding points, there still exist h vertex disjoint paths,

one that starts from any vertex ofV i+1
1 andh − 1 that start from the source nodesS2 . . . Sh. It

is sufficient to show that such aCi always exists.

From the theorem assumption, each coding point hash parentsP1, . . . Ph. Any operation in

the graph that does not affect the min-cut property ofP1, . . . Ph will not affect the min-cut

property of their child either. Thus, if we add coding pointCi to the setV i
1 , we need to make

sure that the min-cut property is not violatedonly for the coding points that have a parent in

the set{V i
1

⋃

Ci}. Assume that addingCi to V i
1 violates the min-cut property for some coding

point Cj. ThenCj is a child ofCi and another nodePj ∈ Vi. To see that, note the following:

1) If a set of nodes is affected, at least one of them, sayCj, is a child ofCi.

2) Assume thatCj is a child ofP1 = Ci and none of its remainingh − 1 parentsP2, . . . Ph

belongs inV i
1 . Note that the min-cut to each ofP2, . . . Ph is h. But then allocating source

S1 to P1 = Ci cannot affect the min-cut condition, sinceCj can still receive the remaining

h− 1 sources throughP2, . . . Ph. Thus, if theCj ’s min-cut condition is violated,Cj must

have at least one parent, sayPj, in Vi.

We then choose asV i+1
1 = {V i

1

⋃

Cj} and Ei+1
1 = {Ei

1

⋃

(Pj, Cj)}. We repeat this procedure

until we find a setV i+1
1 that does not violate the min-cut condition. Since the graphis finite,

there will be at least one coding point that is a child of a vertex in Vi and does not have any

child in common with any vertex inVi.

Following this procedure, we can create a treeτ1 that containsk subtrees. We then remove

τ1 from the information flow graph, and all the edges adjacent tovertices inτ1. We are now left

with an information flow graph withh − 1 sources such that the min-cut to each coding point

is h − 1, and we can repeat the same procedure.

We next examine the case of a bipartite graph where every coding point hash parents, but

no constraint is placed on how the receivers are distributed. Combination networks as shown in

Fig. 3, but with arbitrary number of receivers, belong to this class of networks.

Theorem 5:Consider a bipartite information flow configuration withh sources andN re-
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ceivers. Assume that each coding point hash parents, and that allocation of the sources to the

coding points is done uniformly at random. Then, each receiver will on the average experience

the integral throughputT av
i satisfying

T av
i

Tc

≥ 1 − 1

e
. (12)

Proof: For each receiver, this scenario is a classic occupancy model in which h balls,

corresponding to the receiver’sh leaves (incoming edges) are thrown independently and uni-

formly into h urns corresponding to theh sources. LetTi be the random variable representing

the number of occupied bins (sources a receiver observes). Then, for this occupancy model, we

have (see for example [21, Ch. 1])

T av
i = h

[

1 −
(

1 − 1

h

)h]

. (13)

Therefore, the ratio between the expected throughput when no coding is used and the average

throughput when coding is used is given by

T av
i

Tc

≥
[

1 −
(

1 − 1

h

)h]

> 1 − 1

e
.

In the combination network example in Fig. 3, this corresponds to the routing strategy in which

the source to be routed through an edge going out of the sourcenode is chosen uniformly at

random from theh information sources.

The connection with the classic occupancy model enables us to directly obtain several other

results listed below. The results can be easily derived fromthe material in [21, Ch. 1].

Theorem 6:For each receiver, the probability distribution of the random variableTi repre-

senting the number of observed sources (filled urns) is givenby

Pr{Ti = k} =

(

h

k

)

(

1 − h − k

h

)h

Pr{µ0(k) = 0}

where Pr{µ0(k) = 0} =
k

∑

l=0

(

k

l

)

(−1)l
(

1 − l

k

)h

.

Theorem 7:As h → ∞, the mean and the variance ofTi behave as follows:

T av
i → h(1 − (1 − e−1) andσ2(Ti) → h(1 − e−1)(1 − 2e−1).
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Theorem 8:As h → ∞, the probability that the observed throughputTi is different from its

average value becomes exponentially small:

Pr

{

Ti − T av
i

σ(Ti)
< x

}

→ 1

2π

∫ x

−∞
e−u2/2du < e−x2/2.

The result of Theorem 8 gives yet another reason for looking at the average throughput: when

the number of receivers is large, the throughput they experience tends to concentrate around a

much larger value than the minimum. For example, Fig. 4 plotshow the throughput is distributed

among the receivers for two combination networkB(h, k) instances with the above described

random routing. In both cases the fraction of receivers whose throughput is low is very small
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Fig. 4. Normalized number of receivers vs the throughput they observe for two combinationB(k, h) multicast networks.

Similar results hold for bipartite multicast configurations withh source nodes andkh coding nodes where no constraint is

placed on how the receivers are distributed.

compared to the number of receivers whose throughput is close to the average. These simulation

results do not change noticeably even if the number of receivers is much smaller then
(

kh
h

)

as

in the combination networks.
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E. Achieving the Average Throughput for all Receivers by Channel Coding

Here, we first describe a joint routing-coding scheme that achievesTi = T av
i asymptotically

in time for the set of configurationsB(h, k) and then discuss how this scheme can be possibly

generalized to arbitrary configurations. We start with introducing time as an additional dimension

in our routing problem, which is in network coding literature known as vector routing (see

for example [20]). We show that by combined vector routing and channel coding, the integral

throughput can achieve the average asymptotically over time.

Consider a combination network as shown in Fig. 3 but with arbitrary number of receivers,

where the information source to be routed through an edge going out of the source node is

chosen uniformly at random from theh information sources. The probability that a receiver will

not observe sourceSi is given by

ǫ =
(h − 1

h

)h

. (14)

Therefore, with this routing strategy, the expected value of the integral throughput is given by

T av
i = h

[

1 −
(h − 1

h

)h]

= h(1 − ǫ). (15)

Recall that we have obtained this result in Theorem 5, together with the entire probability

distribution for the random variableTi in Sec. IV-C.

Under this scenario, a receiver observes the sequence of each source outputs as if it had

passed through an erasure channel with the probability of erasureǫ given by (14). Therefore,

the symbols of each source can be encoded by an erasure-correcting code of ratek/n which

will allow recovering thek information symbols aftern transmissions, with probability of error

going to zero, as formally stated by the following theorem.

Theorem 9:For the combination networks as shown in Fig. 3 but with arbitrary number of

receivers, there exist a sequence of channel codes of ratesk/n → 1 − ǫ and a routing strategy

such that the integral throughputTi(n) → hk/n → T av
i asn → ∞.

Proof: Under the routing strategy described above, a receiver observes the sequence of each

source outputs as if it had passed through an erasure channelwith the probability of erasure

ǫ given by (14). The channel capacity of such a channel is equalto 1 − ǫ, and there exists a

sequence of codes with ratesk/n < 1 − ǫ such that the probability of incorrect decoding goes

to 0 as n → ∞. Therefore, since there areh sources, we haveTi(n) → h · k/n as n → ∞.



IEEE TRANSACTION ON INFORMATION THEORY (TO APPEAR) 23

Sincek/n can be taken arbitrary close to the capacity, we haveTi(n) → h(1 − ǫ) = Ti, where

the last equality follows from (15).

We underline that this result holds over any bipartite information flow configuration withh

sources where each coding subtree hash parents and allocation of the sources to the coding

subtrees is done uniformly at random. When the configuration is symmetric, as in the case

of B(h, k) networks, the random routing can be replaced by deterministic, and the integral

throughputTi can achieve the average after a finite number of time units. For example, in the

case ofB(h, k) networks, the routing strategy can circulate over then , (kh)!/(k!)h possible

assignments ofh sources tokh edges s.t. each source is assigned to exactlyk edges. After a

sequence of lengthn is transmitted from each source, a receiver will have exactly

n − m ,

(

kh − h

k

)

(kh − k)!

(k!)h−1

symbols erased from each source. Thus the fraction of received symbols per source is given by

1 −
(

kh−h
k

)

(kh−k)!
(k!)h−1

(kh)!
(k!)h

= 1 −
(

kh−k
h

)

(

kh
h

) =
T av

i

h
.

Therefore, employing an(n,m) Reed-Solomon code at each source would result inTi(n) = Tav.

Note that, as shown above, this scheme cannot be implementedwith scalar fractional routing,

in which case the coding benefits are quantified by (9).

We now describe how this hybrid scheme, which combines vector routing and channel coding,

can be generalized to arbitrary multicast configurations inwhich all the sources are co-located

at the same node. In this setting, we can assume that there is asingle source and focus on

the maximum common rate that all receivers can obtain from the source. The scheme consists

of a routing schedule overn time-slots and an appropriate erasure code. The routing schedule

problem is formulated as a linear program. We adopt the notation of Section III and consider

an instance{G,S,R}. Let τ denote the set of partial Steiner trees inG rooted at the source

nodeS with terminal setR. For a treet ∈ τ and a time slotk, the non-negative variabley(t, k)

denotes the throughput thatt conveys in time slotk. In each of then time slots, we seek a

feasible fractional packing of partial Steiner trees so that the cumulative throughputf provided

to each receiver over then time slots is maximized. The throughputf and the routing schedule
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y(t, k) can be found by solving the following linear program:

max f

n
∑

k=1

∑

t∈τ :R∈t

y(t, k) ≥ f, ∀R ∈ R

∑

t∈τ :e∈t

y(t, k) ≤ ce, ∀ e ∈ E, 1 ≤ k ≤ n

y(t, k) ≥ 0, ∀ t ∈ τ, 1 ≤ k ≤ n

Let f ∗ denote the optimum value of the above linear program and lety∗ be a solution that

achieves the valuef ∗. Letm =
∑n

k=1

∑

t∈τ y∗(t, k). For simplicity, suppose the optimum solution

y∗ is integral, that is,y∗(t, k) is an integer for allt, k. Then m is an integer representing the

number of symbols produced by the source over then time slots, and we can use an(m, f ∗) MDS

code that employsm coded symbols to conveyf ∗ information symbols to all receivers. Note

that each receiver receives at leastf ∗ of the m code symbols and hence this scheme achieves a

common rate off ∗/m information symbols per channel use. In general, the solution y∗ need not

be integral. However, if the edge capacitiesce are all integer (or even rational), then there is an

optimum solution that has rational coordinates (since the solution is obtained at an intersection

of hyperplanes with rational coordinates). In this case we can asymptotically achieve a rate of

f ∗/m by multiplying y∗ by an appropriately large integerL, and then using the resulting integral

solutionLy∗, as above. This would require using an erasure scheme withLm code symbols of

which each receiver would receive at leastLf symbols. We note thatf ∗/n is non-decreasing as

a function ofn, the number of time slots. We also note that the computing an optimum solution

to the above linear program is intractable even forn = 1, unlessP = NP . However, for special

cases or small instances, one might be able to compute near-optimum solutions.

The described scheme can be viewed as a generalization of thevector routing solution

described in [20]. The vector routing solution in [20], similarly to our approach, uses time

as an additional dimension. The difference is that in [20] weare still trying to find Steiner trees

that span all receivers (albeit not necessarily at the same time-slot), that is, perform packing of

Steiner trees inG′. In our scheme, we allow the flexibility of packing partial Steiner trees, thus

possibly achieving a higher rate, and then use an erasure correcting code to convey common

information. Also note that our scheme does not employ coding at intermediate nodes, only at
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the source nodes. Thus, it offers an upper bound on the maximum throughput we may achieve

without allowing intermediate nodes in the network to code,i.e., without use of network coding.

V. CONFIGURATIONS WITH LARGE NETWORK CODING BENEFITS

We here describe a class of networks for which network codingcan offer up to
√

N -fold

increase of the average throughput achievable by routing. This class of networks, which we call

ZK(p,N), was originally described by Zosin and Khuller in [7] to demonstrate the integrality

gap of a standard LP for the directed Steiner tree problem.

A. The NetworkZK(p,N)

Let N and p, p ≤ N , be two integers andI = {1, 2, . . . , N} be an index set. We define

two more index sets:A as the set of all(p − 1)-element subsets ofI andB as the set of all

p-element subsets ofI. We consider a class of layered acyclic networksZK(p,N), illustrated in

Fig. 5, and defined by the two parametersN andp as follows: SourceS transmits information

S1 Sh

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

h

(

N

p−1

)

h

p
N − p + 1

A-nodes

B-nodes

C-nodes

R1 RN

Fig. 5. The network configurationZK(p, N). The min-cut to each of theN receivers ish =
(

N−1

p−1

)

.

to N receiver nodesR1 . . . RN through a network of three sets of nodesA, B andC. A-nodes

are indexed by the elements ofA, andB and C-nodes, by the elements ofB. An A node is

connected to aB node if the index ofA is a subset of the index ofB. A B node is connected

to a C node if and only if their indices are identical. A receiver node is connected to theC

nodes whose indices contain the index of the receiver. All edges in the graph have unit capacity.
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The out-degree of the source node is
(

N
p−1

)

. Two specific members of this family of networks

are shown in Fig. 6 and Fig. 7.

We can compute the degrees of the nodes in the network by simple combinatorics:

Proposition 2:

• the out-degree ofA nodes isN − (p − 1),

• the in-degree ofB nodes isp,

• the out-degree ofC nodes isp,

• the in-degree of the receiver nodes is
(

N−1
p−1

)

.

We next compute the value of the min-cut between the source node and each receiver node, or

equivalently, the number of edge disjoint paths between thesource and each receiver.

Proposition 3: There are exactly
(

N−1
p−1

)

edge disjoint paths between the source and each

receiver.

Proof: Consider receiveri. It is connected to the
(

N−1
p−1

)

distinct C-nodes indexed by the

elements ofB containingi. Each of theC-nodes is connected to theB-node with the same

index. All paths between the source and the receiveri have to go through theseB andC-nodes.

Therefore the number of edge disjoint paths between the source and the receiver can not be larger

than
(

N−1
p−1

)

. To show that there exist that many edge disjoint paths, we proceed as follows: After

removingi from the indices of theB-nodes receiveri is connected to, we are left with
(

N−1
p−1

)

distinct sets of sizep − 1, i.e., distinct elements ofA. We use theA-nodes indexed by these

elements ofA to connect the receiveri B-nodes to the source.

Therefore, the sum rate with network codingNTc is equal toN
(

N−1
p−1

)

. We next find an upper

bound to the sum rate without network codingTf and to the ratioTfav/Tc.

Theorem 10:In a network in Fig. 5 whereh =
(

N−1
p−1

)

,

T av
f

Tc

≤ p − 1

N − p + 1
+

1

p
. (16)

Proof: If only routing is permitted, the information is transmitted from the source node

to the receiver through a number of trees, each carrying a different information source. Letat

be the number ofA-nodes in treet, andct, the number ofB andC-nodes. Note thatbt ≥ at,

and that thect C-nodes are all descendants of theat A-nodes. Therefore, we can count the

number of the receivers spanned by the tree as follows: Letnt(A(j)) be the number ofC-nodes
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connected to thejth A-node in the tree. Note that
at

∑

j=1

nt(A(j)) = ct.

The maximum number of receivers the tree can reach through this A-node isnt(A(j)) + p− 1.

Consequently, the maximum number of receivers the tree can reach is
at

∑

j=1

[nt(A(j)) + p − 1] = at(p − 1) + ct.

To find and upper bound to the routing throughput, we need to find the number of receivers that

can be reached by a set of disjoint trees. Note that for any setof disjoint trees we have
∑

t

at ≤
(

N

p − 1

)

and
∑

t

ct ≤
(

N

p

)

.

Therefore,Tu can be upper-bounded as

Ti ≤
1

N

∑

t

(at(p − 1) + ct)

=
1

N
(p − 1)

∑

t

at +
∑

t

ct ≤ (p − 1)

(

N

p − 1

)

+

(

N

p

)

.

(17)

The sum rate with network codingTc is equal toN
(

N−1
p−1

)

. Thus we get that

T av
i

Tc

≤ p − 1

N − p + 1
+

1

p
.

We can apply the exact same arguments to upper boundT av
f , by allowing at and ct to take

fractional values, and interpreting these values as the fractional rate of the corresponding trees.

For a fixedN , the LHS of the above inequality is minimized for

p =
N + 1√
N + 1

≅
√

N,

and for this value ofp,
T av

f

Tc

≤ 2

√
N

1 + N
.

2√
N

. (18)

B. Deterministic Coding

We show that for theZK(p,N) configurations there exist network codes over the binary

alphabet. Thus, very simple operations are sufficient to achieve significant throughput benefits.

We first explain how the coding is done for two special cases ofp: when p = 2 and when

p = N − 1, and then proceed with the general case.
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1) p = 2: Consider the caseZK(2, N) where p = 2 and N is arbitrary. An example for

N = 4 is shown in Fig. 6. In this case the number of information sources ish = N − 1. We can

1 2 3 4

1 2 3 4

12 13 14 23 24 34

Fig. 6. The networkZK(p = 2, N = 4).

code over the binary field as follows: Since the number of edges going out ofS into A nodes

is N , we can send theN − 1 sources over the firstN − 1 of these edges and not use theN th

edge. In other words, the coding vector of theith of these edges is theith basis vectorei for

i = 1, 2, . . . , N − 1. TheB-nodes merely sum their inputs overF
h
2 , and forward the result to the

C-nodes. Consequently, the coding vectors on the branches going to receiverN are theN − 1

basis vectors, and the coding vectors on the branches going to receiveri for i = 1, 2, . . . , N − 1

areei andej + ei for j = 1, . . . , N − 1 and j 6= i.

2) p = N − 1: Consider the case whenp = 2 for arbitrary N . An example forN = 5 is

shown in Fig. 7. In this case the number of information sources is h = N − 1. The number of

C-nodes isN . Each subset ofN − 1 C-nodes is observed by a receiver. Therefore, anyN − 1

of coding vectors of the edges between theB andC-nodes should be linearly independent. The
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1 2 3 4 5

1234 1235 1245 1345 2345

123 124 134 234 125 135 235 145 245 345

Fig. 7. The networkZK(p = 4, N = 5).

following list of vectors can be used for coding along thesesedges:

1 0 . . . 0

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

1 1 . . . 1

(19)

We can obtain this list by coding as follows: To theN − 1 edges going from the source to the

A nodes whose label does not containN , we assignN − 1 basis vectors of overF(N−1)
2 . We

remove all other edges outgoing of the source, and then allA-nodes which lost their connection

with the source, and the edges coming out of the removedA nodes. Consequently, the first of

the B-nodes hasN − 1 inputs. By addition, of these inputs the coding vector between this B

and its correspondingC node becomes[1 1 ... 1]. The rest of theB-nodes have only one input.

Thus we get the binary arc (19) at the last set of edges.

3) The General Case:For arbitrary values ofp andN , network coding can be done as follows:

We first remove the edges going out ofS into thoseA-nodes whose labels containN . There are
(

N−1
p−2

)

such edges. Since the number of edges going out ofS into A-nodes is
(

N
p−1

)

, the number

of remaining edges is
(

N
p−1

)

−
(

N−1
p−2

)

=
(

N−1
p−1

)

. We label these edges by theh =
(

N−1
p−1

)

different

basis elements ofFh
2 . We further remove allA-nodes which have lost their connection with the
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sourceS, as well as their outgoing edges. TheB-nodes merely sum their inputs overF
h
2 , and

forward the result to theC-nodes.

Consider aC-node that theN th receiver is connected to. Its label, sayω, is ap-element subset

of I containingN . Because of our edge removal, the onlyA-node that thisC-node is connected

to is the one with the labelω\{N}. Therefore, allC-nodes that theN th receiver is connected to

have a single input, and all those inputs are different. Consequently, theN th receiver observes

all the sources directly.

Each of the receivers1, 2, . . . , N − 1 will have to solve a system of equations. Consider one

of these receivers, sayj. Some of theC-nodes that thejth receiver is connected to have a single

input: those are the nodes whose label containsN . There are
(

N−2
p−2

)

such nodes, and they all

have different labels. For the rest of the proof, it is important to note that each of these labels

containsj, and the
(

N−2
p−2

)

labels are all(p − 1)-element subsets ofI which containj and do

not containN . Let us now consider the remaining
(

N−1
p−1

)

−
(

N−2
p−2

)

=
(

N−2
p−1

)

C-nodes that thejth

receiver is connected to. Each of these nodes is connected top A-nodes. The labels ofp− 1 of

theseA-nodes containj, and only one does not. That label is different for allC-nodes that the

receiverj is connected to. Consequently, thejth receiver gets
(

N−2
p−2

)

sources directly, and each

source of the remaining
(

N−2
p−1

)

as a sum of that source and somep − 1 of the sources received

directly.

C. Randomized Coding

For a general network withN receivers in which coding is performed by random assignment

of coding vectors over the alphabetFq, the probabilityP d
N that all N receivers will be able to

decode can be bounded as

P d
N ≥

(

1 − N

q

)n

,

wheren is the number of edges where coding is performed [16]. In general, coding is performed

at all edges coming out of nodes with multiple inputs. Therefore, for theZK(p,N) configurations,

n ≥
(

N
p

)

(the number of edges betweenB andC-nodes), and the above lower bound becomes

P d
N ≥

(

1 − N

q

)(N
p)

≅ e−N(N
p)/q.

Thus, if we want this bound to be greater thane−1, we need to chooseq ≥ N
(

N
p

)

.
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We next look into randomized coding forZK(p,N) configurations in which certain edges are

removed as for the deterministic coding described in Sec. V-B.3, and derive another bound on

P d
N . While in the deterministic case,B-nodes summed their inputs, in this randomized coding

scenario,B-nodes randomly combine their inputs overFq. As in the deterministic case, each

receiver is connected to
(

N−2
p−2

)

C-nodes whose correspondingB-nodes have single inputs. Thus

the sources connected to theseB-nodes are directly observed. Consider receiverj and one of the

remaining
(

N−2
p−1

)

C-nodes it is connected to, sayc. The correspondingB-node forms a random

linear combination of itsp inputs consisting of thep− 1 sources directly observed byj and an

additional source. We denote this source bys(c, j) and refer to it as critical for receiverj at

c. Receiverj will fail to decodes(c, j) if and only if 0 is chosen as the coefficient fors(c, j)

at theB-node thatc is connected to. Observe that at each of the
(

N
p−1

)

multi-input B-nodes,

each of its inputs is critical for some receiver. Therefore it follows that all receivers will be able

to decode all sources if and only if each of the inputs to the multi-input B-nodes receives a

non-zero coefficient in the output. There are a total ofp
(

N
p−1

)

such inputs, and the coefficient for

each input is chosen independently and uniformly at random from an alphabet of sizeq. Hence

the probability of all receivers decoding successfully canbe bounded as follows:

P d
N ≥

(

1 − 1

q

)p( N
p−1)

.

For the above bound to be greater thane−1, it is sufficient to chooseq ≥ p
(

N
p−1

)

. We conclude

that for ZK(p,N) configurations, randomized coding may require an alphabet size which is

exponential in the number of receivers.

D. The Information Flow Graph Properties

We here examine in more detail the structure of theZK(p,N) configurations through their

information flow graphs, which posses a number of interesting properties. In particular, this

enables us to study a hybrid coding/routing scheme in which afraction of the nodes that are

supposed to perform coding according to the scheme described in Section V-B.3 are actually

allowed only to forward one of their inputs. We derive an exact expression for the average

throughput in this scenario.

Let ΓZK be the family of bipartite information flow graphs corresponding to the family ofZK

networks. According to the scheme described in Section V-B.3, coding is performed only atB-
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nodes. Therefore, the information flow graphΓZK(p,N) is bipartite, consisting of
(

N−1
p−1

)

source

nodes and
(

N−1
p−1

)

coding nodes. ReceiverN observes only source nodes, and always receives rate

h, while the throughput of the remainingN − 1 receivers depends on the operations performed

at coding points,e.g., if all coding points add their inputs, all receivers observerateh.

We will index the source nodes and the coding nodes based on the receivers1, 2, . . . , N − 1

as follows. LetI ′ = {1, 2, . . . , N − 1} be an index set. We define two more index sets:A′ as

the set of all(p − 1)-element subsets ofI ′ andC as the set of allp-element subsets ofI ′.

1) There areh =
(

N−1
p−1

)

source nodes indexed by the elements ofA′. Each source node is

observed by the set ofp − 1 receivers corresponding to its index.

2) There are
(

N−1
p

)

coding nodes indexed by the elements ofB′. Each coding node is observed

by the set ofp receivers corresponding to its index.

3) A source node is connected to a coding node if the index of the source node is a subset

of the index of the coding node.

Proposition 4: The family of information flow graphsΓZK have the following properties.

1) Each source node has out-degreeN − p and each coding node has in-degreep.

2) Each receiver (except receiverN ) observesx1 =
(

N−2
p−2

)

source nodes andx2 =
(

N−2
p−1

)

=

N−p
p−1

x1 coding nodes.

3) The configuration is symmetric with respect to receivers and sources.

4) Removing any edge of the graph reduces the min-cut by one forexactly one receiver.

5) Each time an edge is removed, the resulting graph still hasproperty 4.

Proof: The first three properties are straightforward. We will thusprove here the last two.

The above described indexing of nodes is helpful in this proof. Consider coding pointc with

index ℓ(c) connected to a source nodes with index ℓ(s). Let R be the receiver in the singleton

ℓ(c) \ ℓ(s). Clearly s is observed byR only in c. Moreover, onlyR observess in c since the

remaining receivers are inℓ(s) and therefore observes directly. Therefore, removing the edge

betweens andc disconnects onlyR from s.

In Section II and in more detail in ([17], Def.3) we defined a subtree graph to be minimal

with the min-cut property if removing any edge will violate the min-cut property for at least

one receiver. Proposition 4 tells us that the familyΓZK is minimal with the min-cut property, and

moreover, removing any number of edges leads to a configuration that is again minimal.
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Since the configurationΓZK(p,N) is minimal, to achieve throughputh =
(

N−1
p−1

)

for all

receivers, we need to employ all
(

N−1
p

)

= hN−p
p

coding points. If, for example,p ≪ N ,

we needO(hN) coding points. In a real network, the coding points correspond to nodes in

the network that have enhanced functionalities and their number may be limited. In [22], the

number of required coding points was referred to as encodingcomplexity, and it was shown

that an upper bound to this number ish3N2. The following theorem characterizes the trade-off

between encoding complexity and achievable rate for theΓZK configurations.

Theorem 11:Let Ak
ZK be a hybrid coding/routing scheme in which the number of coding

points inΓZK(p,N) that are allowed to perform linear combining of their inputs(as opposed to

simply forwarding one of them) is restricted tok. The average throughput under this scheme

T (Ak
ZK) is given by

T (Ak
ZK) =

Tc

N

(

p +
N − p

p
+ k

p − 1

h

)

. (20)

Proof: If only k out of the
(

N−1
p

)

coding points are allowed to code, we get that

T (Ak
ZK) =

1

N

[

(

N − 1

p − 1

)

+ (N − 1)

(

N − 2

p − 2

)

+
(

(

N − 1

p

)

− k
)

+ kp
]

. (21)

In the above equation, we have

• the first term because receiverN observes all sources,

• the second term because each of the remainingN − 1 receivers observes
(

N−2
p−2

)

sources

directly at the source nodes,

• the third term because, at the
(

N−1
p

)

− k forwarding points, exactly one receiver gets rate

1, (see the proof of Proposition 4).

• the fourth term because, thek coding points where coding is allowed, all of itsp receivers

get rate1 by binary addition of the inputs at each coding point (see thedescription of the

coding scheme in Sec. V-B.3).

Equation (20) follows from (21) by simple arithmetic.

Note that substitutinghN−p
p

for k in (21), i.e., using network coding at all coding points, gives

T (Ak
ZK) = Tc = h, as expected. At the other extreme, by settingk = 0, i.e., using only routing,

we get an exact characterization of the average routing throughput in this network scenario:

T (Ak
ZK) =

Tc

N

(

p +
N − p

p

)

.
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For p =
√

N , we havep + (N − p)/p = O(
√

N), which coincides with the upper bound on

T av
f /Tc in (16). Additionally, Theorem 11 shows that the throughputbenefits increaselinearly

with the number of coding pointsk, at a rate of(p − 1)/(hN). Thus, a significant number of

coding points is required to achieve a constant fraction of the network coding throughput.

VI. CONCLUSIONS

We have investigated benefits that network coding offers with respect to the average throughput

achievable by routing, where the average throughput refersto the average of the rates that the

individual receivers experience. It was shown that these benefits are related to the integrality gap

of a standard LP formulation for the directed Steiner tree problem. Based on this connection, a

class of directed graph configurations withN receivers for which network coding offers benefits

proportional to
√

N was identified. However, it was remarkable to see that for fairly large classes

of networks, network coding at most doubles the average throughput. Several such classes were

identified. A comparison between the average and other throughput measures used in network

coding literature was addressed, often to point out the difference in coding benefits. It was shown

that for certain classes of networks, the average throughput can be achieved uniformly by all

receivers by employing vector routing and channel coding. Some issues concerning the network

code alphabet size as a trade-off between routing and codingas well as between required for

deterministic and randomized coding were addressed. It wasshown, that for certain classes of

networks, there are huge savings to be made in terms of alphabet size if one resorts to routing

as opposed to coding with a small throughput loss, or to deterministic as opposed to random

coding with no throughput loss.
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