
The Steiner k-Cut Problem∗

Chandra Chekuri† Sudipto Guha‡ Joseph (Seffi) Naor§

September 23, 2005

Abstract

We consider the Steiner k-cut problem which generalizes both the k-cut problem and the
multiway cut problem. The Steiner k-cut problem is defined as follows. Given an edge-weighted
undirected graph G = (V,E), a subset of vertices X ⊆ V called terminals, and an integer
k ≤ |X|, the objective is to find a minimum weight set of edges whose removal results in k dis-
connected components, each of which contains at least one terminal. We give two approximation
algorithms for the problem: a greedy (2− 2

k)-approximation based on Gomory-Hu trees, and a
(2− 2

|X|)-approximation based on LP rounding. We use the insight from the rounding to develop
an exact bi-directed formulation for the global minimum cut problem (the k-cut problem with
k = 2).

Keywords: Multiway cut, k-cut, Steiner tree, minimum cut, approximation algorithm.

1 Introduction

The k-cut problem and the multiway cut problem are fundamental graph partitioning problems. In
both problems we are given an undirected edge-weighted graph G = (V,E) with w(e) denoting the
weight of edge e ∈ E. In the k-cut problem the goal is to find a minimum weight set of edges whose
removal separates the graph into k disconnected components. In the multiway cut problem we are
given a set of k terminals, X ⊆ V , and the goal is to find a minimum weight set of edges whose
removal separates the graph into components such that each terminal is in a different connected
component. In this paper we consider a generalization of the two problems, namely, the Steiner
k-cut problem. In this problem, we are given an undirected weighted graph G, a set of terminals
X ⊆ V , and an integer k ≤ |X|. The goal is to find a minimum weight set of edges whose removal
separates the graph into k components with vertex sets V1, V2, . . . , Vk, such that Vi ∩ X 6= ∅ for
1 ≤ i ≤ k. If X = V , we obtain the k-cut problem. If |X| = k we obtain the multiway cut problem.

The k-cut problem can be solved in polynomial time for fixed k [5, 6], but is NP-complete when
k is part of the input [5]. In contrast, the multiway cut problem is NP-complete for all k ≥ 3 and
is also APX-hard for all k ≥ 3 [2]. It follows that the Steiner k-cut problem is NP-complete and
APX-hard for all k ≥ 3. For the multiway cut problem Calinescu, Karloff and Rabani [1] gave a
1.5− 1/k approximation using an interesting geometric relaxation. Karger et al. [7] improved the
∗A preliminary version of this paper appeared in Proc. of ICALP, 2003.
†Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974. chekuri@research.bell-labs.com
‡Dept. of Computer Information Sciences, Univ. of Pennsylvania, Philadelphia, PA 19104.

sudipto@cis.upenn.edu. This research was supported in part by an Alfred P. Sloan Research Fellowship
and by an NSF Award CCF-0430376.
§Computer Science Dept., Technion, Haifa 32000, Israel. naor@cs.technion.ac.il

1

analysis of the integrality gap of this relaxation and obtained an approximation ratio of 1.3438−εk,
where εk → 0 as k →∞. For the k-cut problem Saran and Vazirani [11] gave a 2− 2

k approximation
algorithm using a greedy algorithm. This result was improved by [13] to 2 − 3

k for odd k and to
2− 3k−4

k2−k for even k. Recently, two different 2-approximations for the k-cut problem were obtained.
The algorithm of Naor and Rabani [9] is based on rounding a linear programming formulation of
the problem and the algorithm of Ravi and Sinha [10] is based on the notion of network strength
and Lagrangean relaxation.

The authors have learnt of related independent work of Maeda, Nagamochi and Ibaraki [8] (in
Japanese) and Zhao, Nagamochi, and Ibaraki [14]. The Steiner k-cut was considered in [8] where it
is shown that a greedy algorithm similar to the one we describe in this paper has an approximation
ratio of 2 − 2/k. In [14], the authors define a generalization of the Steiner k-cut problem which
they refer to as the multiway partition problem (MPP). MPP is defined as follows. We are given
a finite set V , a set of terminals X ⊆ V and an integer k such that |X| ≥ k. We are also given a
submodular function f on V that assigns a real value f(S) to each subset S ⊆ V . The function f is
provided as an oracle. The goal is to partition V into k sets V1, V2, . . . , Vk such that Vi ∩X 6= ∅ for
1 ≤ i ≤ k and minimize f(V1) + f(V2) + . . .+ f(Vk). It is shown in [14] that the greedy algorithm
that iteratively increases the size of the partition yields a (2 − 2

k)-approximation for MPP. The
Steiner k-cut problem can be seen to be a special case of MPP: given an edge weighted graph
G = (V,E), we can define a submodular function f where f(S) = 1

2

∑
e∈δG(S)we.

1.1 Results

We provide two approximation algorithms for the Steiner k-cut problem. The first algorithm
we present is combinatorial and has an approximation ratio of (2 − 2

k). This algorithm is based
on choosing cuts from the Gomory-Hu tree of the given graph and is similar to approximation
algorithms developed for the k-cut problem and the multiway cut problem [12]. Maeda et al. [8]
obtained the same result earlier but our proof is considerably simpler. Also, as we mentioned earlier,
Zhao, Nagamochi, and Ibaraki [14] show that the greedy algorithm yields a (2− 2

k) approximation
for MPP. Our main result is a 2-approximation algorithm for the Steiner k-cut problem which
is based on rounding a linear programming formulation. Although our formulation is a straight
forward generalization of the formulation in [9] (for the k-cut problem), our rounding scheme differs
substantially. The rounding in [9] exploits the properties of optimal solutions to the LP relaxation.
These properties do not hold for the relaxation of the Steiner k-cut problem. Instead we rely on the
primal dual algorithm and analysis of Goemans and Williamson [4] for the Steiner tree problem. As
a consequence, our rounding algorithm extends to any feasible solution of the linear programming
formulation. This interesting new connection might have future applications.

We conclude with a bi-directed formulation for the global minimum cut problem and prove that
the linear relaxation of this formulation is exact. The formulation and analysis are inspired by our
analysis for the Steiner k-cut problem. This formulation and its integrality gap may have been
known previously, however, we could not find a published reference and hence include it here.

2 Combinatorial (2− 2
k)-approximation algorithm

We assume without loss of generality that the given graph G is connected. A natural greedy
algorithm for the Steiner k-cut problem is the following iterative algorithm. In each iteration, find
a minimum weight cut that increases the number of distinct components that contain a terminal.
This algorithm has been shown to achieve a (2 − 2

k) approximation algorithm for both the k-cut

2

problem and the multiway cut problem (see for e.g., [12]) and for MPP [14]. However, the analysis
of this algorithm is non-trivial. As in [11, 12], we consider an alternative algorithm that is based
on the Gomory-Hu tree representation of the minimum cuts in a graph. Recall that a Gomory-Hu
tree for an edge-weighted undirected graph G = (V,E) is an edge-weighted tree T = (V,ET) with
weight function c that has the following property: for all u, v ∈ V , the weight of a minimum cut
separating u and v in G is equal to the smallest edge weight on the unique path between u and v
in T . In particular, for (u, v) ∈ ET , c(u, v) is the weight of the minimum cut separating u and v
in G and the partition of V induced by the removal of (u, v) from T induces such a minimum cut.
We run the natural greedy algorithm mentioned above on the tree T :

Iteratively, pick the smallest weight edge in T separating a pair of terminals that are not
already separated, until k components, each of which contains a terminal, are generated.

It is easy to see that we pick k − 1 edges in T . We take the union of the cuts associated with
these edges and this is our solution for the Steiner k-cut problem in G.

Proposition 2.1 The algorithm produces a feasible solution to the Steiner k-cut problem.

We need a simple proposition about Gomory-Hu trees.

Proposition 2.2 Let T = (V,ET) be a Gomory-Hu tree for a connected graph G = (V,E). For
any pair of vertices (s, t) in G and an s− t cut (S, V − S) in G, there is an edge (u, v) ∈ ET such
that u ∈ S, v ∈ V − S, and (u, v) lies on the path between s and t in T .

Now we argue about the cost of the solution. Our analysis is similar to that of the analysis
for the Gomory-Hu tree based algorithm for the k-cut problem (see Theorem 4.8 in [12, Page
42]). However, the analysis is not a straight forward extension - the terminals in the Steiner k-cut
problem constrain the choice of cuts and we need to do identify a mapping to the optimal set of
cuts in a careful manner.

Lemma 2.3 The cost of the (k − 1) edges picked by the algorithm is at most (2 − 2/k) times the
cost of the optimal solution.

Proof: Fix an optimal solution A to the Steiner k-cut problem and let V1, V2, . . . , Vk be the
partitioning of V defined by A. Clearly, each set Vi (i = 1, . . . , k) contains at least one terminal
from X. From each set Vi we arbitrarily choose a terminal ti contained in Vi. Define cuts Ai =
(Vi, V \ Vi) for i = 1, . . . , k, and let w(Ai) denote the weight of cut Ai. Assume without loss of
generality that w(A1) ≤ w(A2) ≤ · · · ≤ w(Ak). Each edge that is cut in the optimum solution A
participates in exactly two of the cuts A1, . . . , Ak, hence the weight of the optimal solution A is
w(A) =

∑k
i=1w(Ai)/2. Let B1, B2, . . . , Bk−1 denote the k−1 cuts chosen by the above Gomory-Hu

tree based algorithm. We claim that

w(Bi) ≤ w(Ai), 1 ≤ i ≤ k − 1. (1)

Assuming the claim, we have that

k−1∑
i=1

w(Bi) ≤
(

1− 1
k

) k∑
i=1

w(Ai) ≤ 2
(

1− 1
k

)
w(A),

which proves the desired bound on the performance of the algorithm.
To prove (1), we identify a set of edges e1, e2, . . . , ek−1 of the Gomory-Hu tree T with the

following properties.

3

1. w(Ai) ≥ c(ei), for 1 ≤ i ≤ k − 1. Since w(A1) ≤ w(A2) ≤ . . . ≤ w(Ak), it follows that
w(Ai) ≥ max1≤j≤i c(ei).

2. The removal of e1, e2, . . . , ei creates i+ 1 components in T , each containing a terminal.

Assuming the existence of e1, e2, . . . , ek−1 as above, let f1, f2, . . . , fk−1 be the edges of T picked
by the algorithm. We claim that c(fi) ≤ max1≤j≤i c(ei); this follows by observing that there is some
edge in {e1, e2, . . . , ei} that when added to {f1, . . . , fi−1} would yield a new component containing
a terminal. If not, removing the edges in {f1, f2, . . . , fi−1} ∪ {e1, . . . , ei} would result in at most i
components each containing a terminal which contradicts the definition of the ei. Therefore,

w(Bi) = c(fi) ≤ max
1≤j≤i

c(ei) ≤ w(Ai).

We obtain e1, . . . , ek−1 as follows. Let E′ ⊆ ET be the set of edges of T that cross the partition
of V induced by the optimum solution V1, V2, . . . , Vk. In other words, (u, v) ∈ E′ if and only if
(u, v) ∈ ET , u ∈ Vi, v ∈ Vj , and i 6= j. Root the tree at tk. For each ti, 1 ≤ i ≤ k − 1, we let
ei to be first edge in the directed path from ti to the root tk that is in E′. By Proposition 2.2, ei
exists. Also, for i 6= j, ei and ej are distinct; otherwise, the path between ti and tj in T would not
have any edges in E′ and this contradicts Proposition 2.2. Since ei crosses the partition Vi, from
the Gomory-Hu tree property, w(Ai) ≥ c(ei). We claim that removing e1, e2, . . . , ei from T will
disconnect the set {t1, t2, . . . , ti, tk} in T . Suppose that this is not the case. Clearly, tk is separated
from t1, . . . , ti, therefore for some h, ` ≤ i, th and t` are connected by a path P after removing
e1, . . . , ei. Let v be the least common ancestor of th and t` in T rooted at tk. From our assumption
eh and e` are both above v. This implies that no edge in P is in E′, and therefore P connects th
and t` even after e1, . . . , ek−1 are removed, contradicting Proposition 2.2.

Given a Gomory-Hu tree for the input graph, the iterative greedy algorithm that we described
can be easily implemented in O(n2) time. This could potentially be improved but we do not attempt
it since the running time to build a Gomory-Hu tree is currently Ω(n2) even for sparse graphs. We
conclude with the following theorem.

Theorem 2.4 There is a (2− 2
k)-approximation algorithm for the Steiner k-cut problem that runs

in O(n2 + T) time where T is the time required to build a Gomory-Hu tree for the input graph.

3 Linear Programming Formulation and a 2-approximation

We consider the following integer programming formulation for the Steiner k-cut problem. For each
edge e we have a binary variable d(e) which is 1 if the edge e belongs to the cut and 0 otherwise.
Let T be a Steiner tree on the terminal set X in G. In any feasible Steiner k-cut, at least k − 1
edges of T have to be cut. Based on this we obtain the following integer program for the Steiner
k-cut problem.

(K) min
∑
e∈E

w(e) · d(e) subject to :∑
e∈T

d(e) ≥ k − 1 ∀ T : T Steiner tree on X

d(e) ∈ {0, 1} ∀ e ∈ E

4

A relaxation of this integer program is obtained by allowing the variables d(e) to assume values
in [0, 1]. The variables d(e) are to be interpreted as inducing a semi-metric1 on V . Our formulation
above is a straight forward extension of the formulation of Naor and Rabani [9] for the k-cut
problem. In the k-cut problem X = V , and hence [9] considers only spanning trees of G.

Unfortunately, we do not know how to solve the above linear program in polynomial time.
Consider, for example, the separation oracle required for running the Ellipsoid algorithm. Given
edge weights d(e), the separation oracle has to check that the minimum weight Steiner tree on X in
G is of weight at least k − 1. However, this problem is NP-hard. Note that for the k-cut problem,
a polynomial time separation oracle is available because the minimum spanning tree (MST) of a
graph can be computed in polynomial time.

We can use an approximate separation oracle based on the MST heuristic for the Steiner tree
problem. Given edge weights d(e), e ∈ E, we define the metric completion. For an unordered pair
or vertices uv we let d(uv) denote the shortest path distance from u to v in G with edge weights
defined by d. Let GX be the complete graph on the terminal set X. The oracle computes the MST
on GX where for each pair uv in GX the weight of the edge uv is d(uv). If the MST is of weight
at least k − 1, the oracle concludes that d is feasible. If the weight of the MST is less than k − 1,
it is easy to find a corresponding Steiner tree on X in G whose weight is less than k − 1. In other
words, we are solving the following relaxation:

(K ′) min
∑

uv∈E(G)

w(uv) · d(uv) subject to :

∑
uv∈E(T)

d(uv) ≥ k − 1 T spanning tree in GX (2)

d(uv) + d(vw) ≥ d(uw) u, v, w ∈ V (3)
d(uv) ∈ [0, 1] u, v ∈ V (4)

For an edge e ∈ E(G) with e = uv, we use d(e) and d(uv) interchangeably. The next lemma
follows from the discussion.

Lemma 3.1 The linear program K ′ is a valid relaxation for the Steiner k-cut problem and it can
be solved optimally in polynomial time.

For the multiway cut problem we note that the linear program K ′ is equivalent to a linear
program that constrains the terminals to be at distance at least 1 from each other. This latter
linear program has been shown to have an integrality gap of 2(1 − 1/k) [2]. We will obtain the
same result as well for the Steiner k-cut problem. We now prove a property of feasible solutions to
K ′ that will be useful later.

Lemma 3.2 In any feasible solution to K ′ there is X ′ ⊆ X such that |X ′| ≥ k, and for any two
distinct vertices u and v in X ′, d(uv) > 0.

Proof: For any two, not necessarily distinct, vertices u and v in X, define a relation R as follows:
uRv if and only if d(uv) = 0. Since d is symmetric and satisfies triangle inequality (hence the
relation is transitive), R defines an equivalence relation on X. We need to prove that the number
of equivalence classes in R is at least k. Suppose this is not the case. For any two vertices a and b

1A semi-metric is a distance function that is symmetric and satisfies the triangle inequality. It differs from a
metric in that it need not satisfy reflexivity, that is, non-identical objects can be at distance 0 from each other.

5

in V , dab ≤ 1. Hence, there is a spanning tree on X of cost at most ` − 1, where ` is the number
of distinct equivalence classes. If ` < k, we get a contradiction to the the feasibility of the solution
to K ′.

Note that the above proof is constructive and a set X ′ satisfying the required properties can
be easily computed. In the rest of the paper it is convenient to assume that X ′ = X and that for
each u, v ∈ X, d(uv) > 0.

3.1 A strategy to round the Linear Program

We show how to round a solution to (K ′) to yield a 2-approximation to the Steiner k-cut problem.
To this end, we use the Goemans and Williamson primal-dual approximation algorithm for the
Steiner tree problem [4] (henceforth referred to as the GW algorithm) to find a family of cuts.

Let d̄ be any feasible solution to linear program (K ′). Then, d̄ defines a weight function on
the edges of G. Let Gd̄ denote the resulting edge weighted graph. We run the GW primal-dual
algorithm on the graph Gd̄ to create a Steiner tree on X. To find a minimum Steiner tree on X in
Gd̄, the GW algorithm uses the following cut based LP relaxation of the Steiner tree problem. Let
x(e) be 1 if e is in the Steiner tree and 0 otherwise: every cut that separates the terminal set has
to be covered by at least one edge. This yields the following linear program where the variables
are relaxed to be in [0, 1]. Note that the variables d̄(e) in the formulations below are treated as
constants obtained from a solution to (K ′).

Every subset of vertices S naturally defines a cut which we denote by δ(S).

(STP) min
∑
e

d̄(e) · x(e) subject to :∑
e∈δ(S)

x(e) ≥ 1 ∀ S : S separates X (5)

x(e) ∈ [0, 1] ∀ e (6)

The dual of this linear program is the following.

(STD) max
∑
S

y(S) subject to :∑
S:e∈δ(S)

y(S) ≤ d̄(e) ∀ e (7)

y(S) ≥ 0 ∀ S : S separates X (8)

The GW algorithm is a primal-dual algorithm that incrementally grows a dual solution while
maintaining feasibility and computes a corresponding feasible primal Steiner tree such that the cost
of the Steiner tree computed is at most twice the value of the dual solution found. Let y′ be the
dual solution produced by the GW algorithm upon termination and let T be the tree returned by
the algorithm. Then the following properties hold for y′ and T [4].

1. y′ is a feasible solution to (STD).

2. T is a tree that spans the terminal set X.

6

3. Sets S (representing cuts) with y′(S) > 0 form a laminar family. Let S denote this family of
sets.

4.
∑

e∈T d̄(e) ≤ 2(1− 1/|X|)
∑

S∈S y
′(S).

5. For any u ∈ X,
∑

S:u∈S y
′(S) ≤ 1

2 ·maxv∈X,v 6=u d̄(uv). In particular,
∑

S:u∈S y
′(S) ≤ 1

2 .

6. For any u, v ∈ X such that d̄(uv) > 0, there exists a cut S such that y′(S) > 0 and |S ∩
{u, v}| = 1.

With the above discussion in place, we are ready to describe our rounding procedure. For a cut
S, let w(S) =

∑
e∈δ(S)w(e) denote the weight of S in G. We observe the following:

Claim 3.3
∑

S∈S y
′(S)w(S) ≤

∑
ew(e)d̄(e).

Proof: We have the following:∑
S∈S

y′(S)w(S) =
∑
S∈S

y′(S)
∑
e∈δ(S)

w(e)

=
∑
e

w(e)
∑

S:e∈δ(S)

y′(S)

≤
∑
e

w(e)d̄(e).

The final inequality follows from Constraint (7) since y′ is a feasible solution to (STD).

Claim 3.4 2(1− 1/|X|)
∑

S∈S y
′(S) ≥ (k − 1).

Proof: The GW algorithm guarantees that 2(1 − 1/|X|)
∑

S y
′(S) ≥

∑
e∈T d̄(e). Since T is a

spanning tree on X, from the feasibility of d̄ for (K ′),
∑

e∈T d̄(e) ≥ k − 1 by Equation (2). The
claim now follows.

3.2 Choosing the Cuts

We describe how we choose the cuts from S. We partition S into classes S1,S2, . . . ,S` such that
two cuts S and S′ are in the same class Si if and only if S ∩ X = S′ ∩ X. Clearly, the number
of classes is at least |X| ≥ k. For a class Si, let Ci be a least weight cut in Si. Let C be the
collection of Ci, 1 ≤ i ≤ `. Without loss of generality assume that the classes are ordered such that
w(C1) ≤ w(C2) ≤ . . . ≤ w(C`).

The algorithm considers classes in increasing order of their index and while considering class Si,
adds Ci to the solution if adding the cut produces a new component containing a terminal from X.
The process stops when k − 1 cuts are chosen. This procedure is well-defined and yields a feasible
for the following reason. From Lemma 3.2 and Property 6 of the GW algorithm, if all the cuts
C1, C2, . . . , C` are chosen, we obtain k (or more) components each containing a terminal from X.
We argue about the quality of the solution. Let 1 = i1 < i2 < . . . < ik−1 < ` denote the indices of
the k − 1 classes chosen by the algorithm. We let y′(Si) denote

∑
S∈Si y

′(S)).

7

Definition 3.5 Given a collection of distinct cuts B, we say that a cut C ∈ B is basic with respect
to B if there is no cut C ′ ∈ B such that C ′ (C.

From laminarity of S and hence of B, the set of basic cuts in B is well defined and they are
disjoint. Let Aj denote the set of cuts C1, C2, . . . , Cj .

Lemma 3.6 Let qj be the number of basic cuts in Aj and let pj be the number of components
created by the algorithm after the first j cuts have been considered. Then

•
∑

1≤h≤j
y′(Sh) ≤ qj/2.

• pj ≥ qj and if pj = qj then the components are induced by the basic cuts in Aj and X ⊂
∪jh=1Cj.

Proof: From the analysis of the GW algorithm we have that for any cut S,
∑

S′⊇S y
′(S′) ≤ ∆/2

where ∆ is the diameter of G. In our case ∆ = 1. Since every cut in Aj is a superset of some basic
cut in Aj , we have that

∑
1≤h≤j y

′(Sh) ≤ qj/2.
Let r1 < r2 < . . . < rqj be the indices of the basic cuts in Aj . Note that the cuts in S are laminar

and hence these basic cuts are disjoint. We now argue that pj ≥ qj . Let Xh = X ∩Crh , 1 ≤ h ≤ qj ,
and let X ′ = X −]qjh=1Xh. We claim that for h < h′, Xh and Xh′ are in separate components;
otherwise, the algorithm when processing Crh would add it to the solution and separate Xh and
Xh′ . Therefore pj ≥ qj . By the same argument, it follows that if X ′ is not empty, Xh and X ′ are
in separate components as well and in this case pj ≥ qj + 1. Thus, if pj = qj , X ′ = ∅ and each Xh

is in a separate component.

Let α = 1/(1 − 1/|X|). From the analysis of the GW algorithm we have that
∑`

h=1 y
′(Sh) =∑

S y
′(S) ≥ α(k − 1)/2. The main tool in our analysis is the following lemma.

Lemma 3.7 For 1 ≤ r ≤ k − 1,
∑

j≥ir y
′(Sj) ≥ α(k − r)/2.

Proof: Let f = ir − 1, then pf = r. We consider two cases based on qf .
If pf > qf , we have that qf ≤ r − 1 and by Lemma 3.6,

∑
1≤h≤f y

′(Sh) ≤ (r − 1)/2. Since∑
1≤h≤` y

′(Sh) ≥ α(k − 1)/2 it follows that
∑

ir≤j≤` y
′(Sj) ≥ α(k − r)/2.

Now we consider the case pf = qf . From Lemma 3.6, the components at this stage are induced
by the basic cuts in Af . Let the basic cuts be Cj1 , Cj2 , . . . , Cjr . Let Xh denote the terminals in Cjh .
Recall that X =]hXh and hence

∑
1≤h≤r |Xh| = |X|. The tree T created by the GW algorithm

is of cost k − 1. We note that the part of the tree that connects the components Cj1 , Cj2 , . . . , Cjr
costs at most r − 1 since the diameter of the graph is at most 1. For 1 ≤ h ≤ r, let Th be the
minimal subtree of T that connects Xh. It follows that

∑
1≤h≤r

∑
e∈Th d̄e ≥ k− 1− (r− 1) ≥ k− r.

Let Lh = {i | (Ci ∩X) (Xh} be the indices of classes that contain a proper subset of terminals
from Xh. From the analysis of the GW algorithm applied to tree Th and terminals set Xh, we
obtain that

∑
i∈Lh

y′(Si) ≥
1

2(1− 1/|Xh|)
∑
e∈Th

d̄e.

Therefore ∑
1≤h≤r

∑
i∈Lh

y′(Si) ≥
∑

1≤h≤r

1
2(1− 1/|Xh|)

∑
e∈Th

d̄e ≥
1

2(1− 1/|X|)
(k − r).

8

We now claim that if i ∈]hLh then i > f = ir − 1. For if i ∈ Lh then Cjh would not be basic in
C1, C2, . . . , Cf . Therefore ∑

j≥ir

y′(Sh) ≥
∑

1≤h≤r

∑
i∈Lh

y′(Si).

The lemma follows.

Corollary 3.8
∑k−1

r=1 w(Cir) ≤ 2(1− 1/|X|) ≤
∑

S y
′(S)w(S).

Proof: For 1 ≤ h ≤ ` let zh =
∑

j≥h y
′(Sj). Recall that 1 = i1 < i2 < . . . < ik−1 < ` are the

indices of the cuts chosen by the algorithm and that w(C1) ≤ w(C2) ≤ . . . ≤ w(C`). Hence,

∑
S

y′(S)w(S) =
∑̀
h=1

∑
S∈Sh

y′(S)w(S)

≥
∑̀
h=1

y′(Sh)w(Ch)

≥ w(Cik−1
)zik−1

+
k−2∑
r=1

w(Cir)(zir − zir+1).

From Lemma 3.7 we have that zir ≥ α(k − r)/2. The right hand side of the last inequality above
is minimized when zir = α(k − r)/2 for 1 ≤ r ≤ k − 1. Therefore,

∑
S

y′(S)w(S) ≥ 1
2
α
k−1∑
r=1

w(Cir).

This yields the desired inequality.

From Corollary 3.8 and Claim 3.3 we obtain that

k−1∑
r=1

w(Cir) ≤ 2(1− 1/|X|)
∑
S

y′(S)w(S) ≤ 2(1− 1/|X|)
∑
e

wed̄e.

Thus the integrality gap of (K ′) is upper bounded by 2(1− 1/|X|).

Lower bound on the integrality gap: The integrality gap of (K ′) (and (K)) is no better than
2(1−1/|X|) even when k = 2 and X = V , i.e., the global minimum cut problem. Consider the unit
weight cycle on n vertices. Clearly, an integral solution has to cut at least two edges to separate
the cycle into two components. Consider the following feasible solution to the relaxation. We set
d(e) = 1/(n − 1) on each edge of the cycle; for all other edges, d(e) is the shortest path distance
induced by the distances on the cycle edges. The value of this solution is n/(n − 1). Hence, the
integrality gap is 2(1− 1/n).

Theorem 3.9 The integrality gap of the LP (K ′) is 2(1− 1/|X|).

9

4 An exact formulation for the global minimum cut problem

In the previous section we saw that linear program (K ′) has an integrality gap of 2(1−1/n) for the
2-cut problem, i.e., for the global minimum cut problem. Here we give a bi-directed formulation of
the global minimum cut problem. Given an undirected weighted graph G = (V,E) let Gb = (V,A)
be the directed graph obtained by replacing each edge e ∈ E between u and v by two directed arcs
(u, v) and (v, u). The weights of both (u, v) and (v, u) in Gb are set to w(e). Let r be any vertex
in V (G). An arborescence in a directed graph rooted at a vertex r is a spanning out-tree from r
(also known as a branching). Our formulation is based on Gb. For an arc a ∈ A, let d(a) = 1 if a
is chosen to the cut, and let d(a) = 0 otherwise. The following is a valid integer program for the
global minimum cut problem. The root r is chosen arbitrarily.

(B) min
∑
a∈A

w(a) · d(a) subject to :∑
a∈T

d(a) ≥ 1 ∀ T : T arborescence rooted at r in Gb

d(a) ∈ {0, 1} ∀ a ∈ A

Although the above integer program is similar to integer program (K), we remark that, for
k > 2, we do not obtain a valid formulation for the k-cut problem if we replace the right hand side
of the constraint above by k − 1.

We obtain a linear program by relaxing each variable d(a) to be in [0, 1]. We show that the
value of the linear program is exactly equal to the global minimum cut of the graph G. The
separation oracle needed to solve (B) in polynomial time by the Ellipsoid algorithm is the minimum
cost arborescence problem in directed graphs. We can use the algorithm of Edmonds [3] for this
purpose. In fact, Edmonds [3] showed that the arborescence polytope is integral and we use this to
show that (B) is exact for the minimum cut problem. The proof is similar in outline to the one in
Section 3, however, we use arborescences in place of spanning trees, and the result of Edmonds [3]
on the integrality of the arborescence polytope in place of the GW algorithm. Let d̄ be an optimal
solution to (B). Let Gbd be the graph Gb equipped with d̄ as costs on the edges of Gb. We find a
minimum cost arborescence in Gbd using the following formulation. For each arc a, variable x(a) = 1
if a belongs to the arborescence and 0 otherwise.

(AP) min
∑
a∈A

d(a) · x(a) subject to :∑
a∈δ(S)

x(a) ≥ 1 ∀ S : S 6= V and r ∈ S

x(a) ∈ [0, 1] ∀ a

The dual of the above linear program is the following.

(AD) max
∑
S

y(S) subject to :∑
S:a∈δ(S)

y(S) ≤ d(a) ∀ a

y(S) ≥ 0 ∀ S : S 6= V and r ∈ S

10

Let x̄∗ and ȳ∗ be optimal primal and dual solutions to (AP) and (AD) on the graph Gbd. From
the feasibility of d̄, it follows that

∑
a d(a)x∗(a) ≥ 1. From weak duality we therefore also obtain

that
∑

S y
∗(S) ≥ 1. Let S = {S | y∗(S) > 0} be the set of all cuts with strictly positive dual

values. Let C ∈ S be a cut such that w(S) is the cheapest cut. We pick C as our solution. We now
show that w(C) ≤

∑
aw(a)d(a) which shows that the weight of the cut is at most the value of the

optimal solution to (B). We see that∑
S

y∗(S)w(S) =
∑
S

y∗(S)
∑
a∈δ(S)

w(a)

=
∑
a

w(a)
∑

S:a∈δ(S)

y∗(S)

≤
∑
a

w(a)d(a).

The last inequality follows from the feasibility of y∗. We have that
∑

S y
∗(S)w(S) ≤

∑
aw(a)d(a)

and
∑

S y
∗(S) ≥ 1. Therefore, the weight of the cheapest cut is no more than

∑
aw(a)d(a).

Theorem 4.1 The LP relaxation of (B) can be solved in polynomial time and is an exact formu-
lation for the global minimum cut problem.

5 Conclusions

Our study of linear programming relaxations for the Steiner k-cut problem was partly motivated
by the goal of obtaining an approximation algorithm for the k-cut problem with a ratio better than
2. This has been accomplished for the multiway cut problem by a strengthened LP relaxation [1].
Our results show that the available approximation techniques for the k-cut problem extend to the
Steiner k-cut problem. In the process we have shown an interesting connection between laminar
cut families obtained from the primal-dual algorithm of Goemans and Williamson [4] and their use
in analyzing the LP relaxation for the Steiner k-cut problem. We hope that our ideas will be useful
in developing and analyzing stronger LP relaxations that have integrality gap strictly smaller than
2 for the k-cut problem and the Steiner k-cut problem. Several important questions are open.

• Is there an approximation algorithm for the k-cut problem with a ratio better than 2?

• Is the k-cut problem APX-hard?

• What is the integrality gap of the geometric relaxation in [1] for the multiway cut problem?

Acknowledgments: We thank David Shmoys and Zoya Svitkina for pointing out an erroneous
proof in a previous version of the paper. We thank two anonymous referees for their comments
which helped improve the clarity of the proofs in Section 3.2.

References

[1] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multiway
cut. Journal of Computer and System Sciences, 60:564–574, 2000.

[2] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. on Computing, 23:864–894, 1994.

11

[3] J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, B71:233-240, 1967.

[4] M. Goemans and D. Williamson. A general approximation technique for constrained forest
problems. SIAM J. on Computing, 24:296–317, 1995.

[5] O. Goldschmidt and D. Hochbaum. Polynomial algorithm for the k-cut problem. Math. of
OR, 19:24–37, 1994.

[6] D. Karger and C. Stein. A new approach to the minimum cut problem. JACM, 43:601–640,
1996.

[7] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for a geometric
embedding of minimum multiway cut. In Proceedings of the 29th ACM Symposium on Theory
of Computing, 668–678, 1999.

[8] N. Maeda, H. Nagamochi, T. Ibaraki. Approximate algorithms for multiway objective point
split problems of graphs (in Japanese). Computing devices and algorithms (in Japanese)
(Kyoto, 1993). Surikaisekikenkyusho Kokyuroku, 833:98–109, 1993.

[9] J. Naor and Y. Rabani. Approximating k-cuts. In Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, 26–27, 2001.

[10] R. Ravi and A. Sinha. Approximating k-cuts via Network Strength. In Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, 621–622, 2002.

[11] H. Saran and V. Vazirani. Finding k-cuts within twice the optimal. SIAM J. on Computing,
24:101–108, 1995.

[12] V. Vazirani. Approximation Algorithms. Springer, 2001.

[13] L. Zhao, H. Nagamochi, T. Ibaraki. Approximating the minimum k-way cut in a graph via
minimum 3-way cuts. J. Combinatorial Optimization, 5:397–410, 2001.

[14] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating mul-
tiway partition problems. Math. Programming, 102:167-183, 2005.

12

