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Building Edge-Failure Resilient Networks1

Chandra Chekuri,2 A. Gupta,3 Amit Kumar,4 J. Naor,5 and Danny Raz5

Abstract. We consider the design of resilient networks that are fault tolerant against link failures. Resilience
against link failures can be built into the network by providing backup paths, which are used in the eventuality
of an edge failure occurring on a primary path in the network. We consider several network design problems in
this context; these problems are motivated by the requirements of current high-speed optical networks. In all
the following problems the objective is to provide resilience in networks while minimizing the cost incurred.

The main problem under consideration in this paper is that of backup allocation: this problem takes as its
input an already provisioned primary network and a parameter k, and allocates backup capacity on the edges
of the underlying network so that all the demand can be routed even in the presence of k edge failures. We
also consider a variant of this problem where the primary network has a tree topology, and it is required that
the restored network retains a tree topology.

We then address the problem of simultaneous primary and backup allocation: we are given specifications
of the traffic to be handled, and the goal is to provision both the primary as well as the backup network. Finally,
we investigate a single-commodity problem motivated by a pragmatic scenario in which the primary network
is not known in advance and demands between source–sink pairs arrive online.
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1. Introduction. Fault tolerance in networks is an important and well-studied topic
with many applications. Telephone networks and other proprietary networks adopt a
variety of techniques to provide reliability and resilience to network failures and have
been in use for many years now. On the other hand data networks such as the Internet have
very little centralized fault tolerance. Instead, the network relies on the routing protocols
that adapt to failures by sending traffic on alternate paths. This has been acceptable till
now, since there have been no guarantees on the quality of service (QoS) on the Internet.
However, with the maturity of the Internet, an increasing number of applications now
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require QoS guarantees. The emergence of very high capacity optical networks has
enabled the move towards providing users with their own virtual private networks or
VPNs [31]. Several virtual networks can be accommodated on the underlying (high
capacity) optical network by splitting the available bandwidth among them. However,
since VPNs also require us to provide QoS guarantees to applications and users, fault
tolerance and network resilience become very critical issues: failure of a single high
capacity link can disrupt all the VPNs that use that link.

In many cases the sheer speed and the large capacity of the links does not permit us to
rely merely on the routing protocols (say, OSPF or BGP) to reroute the traffic successfully
on alternate routes after the failure; it is now imperative to a priori provision the network
to handle failures. This places two broad constraints on these networks: (1) resources for
rerouting traffic should be reserved at the same time the subnetworks are provisioned,
and (2) the routing protocol should be simple, both for regular routing and when a
fault occurs. (See, e.g., [34] and [14] for similar survivability issues of IP over optical
networks, and [24] and [25] for discussions of fast restoration of the MPLS tunnels that
are often used to implement VPNs in optical networks [10].)

In light of the importance of the problem, there has been some recent interest in
obtaining algorithmic solutions for problems of guaranteeing resilience against failures.
A variety of failure and recovery models have been proposed, and it is not feasible to give
even an overview of all the models and their intricacies; the interested reader is referred to
Section 1.2 for some pointers to related work in the literature. At a high level, this paper
focuses on the cases where it is guaranteed that no more than a fixed number of edge
failures can occur, and the algorithm must provision a minimum-cost network to allow
for “local” restoration. We expand on these assumptions in the following paragraphs; a
formal specification of the model is provided in Section 1.1.

Our model of edge failures is adversarial; we make the assumption that there is some
fixed value k such that only k edge failures can happen in the network at any given
instant of time. This should be contrasted with probabilistic models, where edges are
allowed to fail with some specified probabilities. This assumption is commonly used
in practice and seems to work reasonably well [27]. Another pragmatic reason for this
assumption is that most networks are k-connected for some small k, and hence they
cannot tolerate more than k adversarial edge failures. Furthermore, it is interesting to
note that the resulting optimization problems are already hard for the case of k = 1. In
the following discussion we usually restrict our attention to the single edge failure case
of k = 1; where appropriate, we indicate how the ideas for k = 1 extend to general k.
Note that for k ≥ 2, both primary edges as well as backup edges are allowed to fail.

Resilience against single edge failures can be built into the network by providing for
each edge e, a backup path P(e), which is used when the edge e fails. However, since
only one edge is guaranteed to fail, making the backup paths for two different edges
intersect each other and share the same amount of bandwidth results in backup networks
of lower cost. This multiplexing is one of the factors that makes this problem especially
difficult; we spell out some of the others as we explain the models and our results.

In all our models we assume that we are provisioning bandwidth on a given uncapac-
itated underlying network, called the base network. In other words, we assume that there
is unlimited capacity on each edge of the base network; for each edge e, there is an asso-
ciated cost of ce per unit of bandwidth, and we can allocate any amount xe of bandwidth
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on it by paying cexe. This assumption is clearly not true for any practical network, but
we make it for two reasons. First, we believe it to be a reasonable approximation since
the capacities of the underlying network are usually much larger than the capacity of any
single VPN that is to be provisioned. Second, the capacitated versions of the problems
are provably much harder, and we believe that the domain in which they are hard does
not apply to real settings. For example, the disjoint paths problem is notoriously hard for
small capacities, but it is much easier if the capacities of the edges are sufficiently large
compared with the individual demands. Similar assumptions have often been made in
the literature; see, e.g., [7], [12], and [22].

We consider several network design problems with the above assumptions. The first
general problem we consider is that of Backup Allocation. In this problem we are given
an already provisioned (primary) network, and we want to reserve backup capacity on
the edges of the base network so that traffic can be routed in the primary network even
in the case of an edge failure. At this point, we point out the final requirement of the
network: the restoration has to be handled locally; i.e., if edge e = (i, j) carrying u(e)
bandwidth fails, there must be a single path P(e) in the backup network between i and
j with capacity at least u(e), which stands in for the edge e.

Local restoration is important for timing guarantees. Global or end-to-end restoration
could require portions of the network far away from the endpoints of e to be aware
of a failure at e. Another advantage of local restoration is simplicity of the recovery
mechanism. It is imperative for our purposes that there is a single path between u and
v that routes all of u(e); merely having a backup network that is able to push the right
amount of “flow” is not sufficient. This is necessary in optical networks, where splitting
the traffic is not feasible. As an aside, this local restoration can be very easily implemented
using MPLS, and is sketched in Section 1.1. The reader curious about MPLS and the
details of the mechanisms used for efficient local restoration of paths, can refer to the
relevant literature [10], [28], [29].

The second problem we consider is that of simultaneous Primary and Backup Allo-
cation. We look at both offline and online settings of the problem. In the offline case we
are given specifications of the traffic to be handled, and we want to provision both the
primary network as well as the backup network. In the online version of the problem,
demands arrive one by one. On the arrival of a pair of terminals {s, t}, we must find both
a primary path and a backup path between them. Again, the online algorithm endeavors
to multiplex as many backup paths as possible, and models this by allowing different
costs for an edge depending on whether it is a part of a primary or a backup path.

Details of these problems are given in the next section. Though these problems have
some similarities to traditional network design problems, they also differ in some salient
respects. Our contributions include providing formal models and building upon existing
techniques to give algorithms for these new problems. We hope that our techniques and
ideas will be useful in related contexts.

1.1. Models and Results. We now give detailed and precise formulations of the prob-
lems studied and results obtained in this paper. In all these problems we look at undirected
base networks G = (V, E) with edge costs ce per unit bandwidth. Recall that this is
an uncapacitated network, and any amount of bandwidth xe may be allocated on e at
cost cexe.



20 C. Chekuri, A. Gupta, A. Kumar, J. Naor, and D. Raz

5

1 2

5

5

2 2
2

(b)(a)

5

2

4

5
5

5

5

5

2

4

5

6

6

4
1 2

2

5

6

3

9

9

Fig. 1. Backup allocation: backup network indicated in dashed lines. (a) Backup network can handle k = 2
edge failures only in the primary network. (b) Backup network can handle k = 2 edge failures either in the
primary or the backup networks.

Backup allocation. In backup allocation we are given an already provisioned primary
network G p = (V p, E p), with each edge e ∈ E p having provisioned capacity u p(e);
we are also given an upper bound k on the number of edge failures. The objective is to
find an edge set Eb ⊆ E and backup capacities ub for these edges, so that given any set
F ⊆ E p ∪ Eb of failed edges with |F | ≤ k, for each edge e = (u, v) ∈ F ∩ E p, there is
a path PF (e) ∈ Eb\F between u and v. This path PF (e) can be used to restore e locally
lest the set F fails.

Of course, the backup network must have enough capacity, and given any edge e′ ∈
Eb, the total capacity used by the paths in {PF (e) | e ∈ F ∩ E p} is less than ub(e′). That
is, for all e′ ∈ Eb and F ⊆ E p ∪ Eb s.t. |F | ≤ k,

∑

e:e∈F∩E p,e′∈PF (e)

u p(e) ≤ ub(e′).

For an example, see Figure 1; the solid lines are the primary network (with the capacities
indicated), and the dashed lines are one possible backup for it. (We do not require that
the set of edges in the backup and primary networks be disjoint, and Eb ∩ E p could
certainly be non-empty.) Also note that in our model both backup and primary edges can
fail. Figure 1(a) would not be a valid solution in our model, since some of the vertices
on the cycle induced by the primary edges have only one backup edge adjacent to them.
If, for such a vertex, both a primary edge and the backup edge adjacent to it fail, then
the connection cannot be restored.

In Section 3 we describe an O(1) approximation algorithm for the backup problem
when k = 1. When then extend this to give an O(k) approximation algorithm for k > 1.
We first examine the uniform capacity case, i.e., when u p(e) = 1 for all e ∈ E p. This
special case is similar to the Steiner network problem [16], [23], [33] where the goal is
to design a minimum cost network with prescribed connectivity requirements for vertex
pairs; the uniform capacity case has an additional constraint. In Section 2 we describe
an algorithm to handle this uniform capacity case. In Section 3 we extend the algorithm
to handle non-uniform capacities via capacity scaling.



Building Edge-Failure Resilient Networks 21

Primary and backup allocation. In this problem we have to build both the primary
network as well as the backup network. We require the specifications of the traffic that
the primary network should be able to carry. A common model for specifying traffic
requirement is the point-to-point demand model, where a demand matrix D = (di j )

gives demands between each pair of terminals i and j ; the objective is to output the
cheapest network capable of carrying the traffic specified by D. In our setting where the
base network is uncapacitated, the optimal primary network simply routes all the flow
between u and v on a shortest path between the two terminals (with the “length” of an
edge e being ce).

Considering that good estimates are often not known for the pairwise demands in real
networks, Duffield et al. [11] proposed an alternate way to specify traffic patterns, the
so-called VPN hose model. In its simplest form, each terminal i is given a threshold b(i),
and a symmetric demand matrix D = (di j ) is called valid if it respects all thresholds, i.e.,
if

∑
j di j ≤ b(i) for all i . The primary network is specified by two quantities: a vector

u p indicating the bandwidth allocated on the edges of the network, and for each pair
of terminals i j a single path Pi j on which their flow will be routed. A feasible solution
satisfies the following for each valid demand matrix D = (di j ):

∑

i< j

di j χ(Pi j ) ≤ u p.(1.1)

Here χ(P) ∈ {0, 1}|E | is the characteristic vector of a path P , and the sum is a vector
sum. Provisioning the primary network in the hose model has been studied by Gupta et
al. [18], where among other results, an optimal algorithm is given when the provisioned
network is required to be a tree; it is also shown that this tree provides a 2-approximation
for the problem (without the tree restriction). An extension of the model includes the
asymmetric case where both ingress and egress thresholds bin(i) and bout(i) are given,
and a demand matrix is valid if

∑
j di j ≤ bout(i) and

∑
i di j ≤ bin( j); algorithms in this

extended model that find near-optimal trees and general networks are presented in [18]
and [20].

In this paper we study, based on the above, several models for designing primary and
backup networks. Specific details of each model are provided in the relevant sections. We
obtain the following results. We show that an α-approximation algorithm for allocating
the primary network implies an O(α log n) approximation for both primary and backup
allocation. The simple two-stage algorithm for this first uses the α-approximation al-
gorithm to allocate a primary network G p, and then uses the algorithm of Section 3 to
find a near-optimal backup network for G p. We show that our analysis is tight, and give
examples where α = 1 but our algorithm outputs primary and backup networks costing
�(log n) times the optimum. Our algorithm works only for single edge failures (k = 1).

Tree networks. It is often desirable to provision networks having a tree topology; the
advantages include simplicity, scalability, and the presence of good routing schemes for
trees. This prompted Gupta et al. [18] to give algorithms for primary allocation in the
VPN hose model which outputs the optimal tree, which they showed had a cost within a
factor of 2 of the optimal network. Though we can always use the methods of Section 3
to add resilience to trees, when some edge e in a tree fails and is locally restored by P(e),
the new network may no longer be a tree. For some applications, and also for simplicity



22 C. Chekuri, A. Gupta, A. Kumar, J. Naor, and D. Raz

of routing schemes, it is convenient that the network remains a tree at all times, even
after restoration.

In Section 5 we study the problem of allocating backup to a given primary network
T while ensuring that T − e+ P(e) is also a tree. We show that this problem is closely
related to the group Steiner problem on trees [15]. From this, we show that it is hard to
approximate within an �(log2−ε n) factor, and give a backup allocation algorithm with
a pseudo-approximation guarantee of O(log2n).

The single commodity problem. In practical applications, the demands often appear in
an online manner, i.e., new demands for resilient paths (i.e., primary and backup paths)
between pairs of nodes arrive one by one. We consider the case where a demand consists
of a pair of vertices, the source s and sink t , with a specified demand d to be sent between
them; the goal is to construct a primary path P and a set of backup edges Q that can be
used for restoration when an edge on P fails. As explained before, a backup edge can be
used to back up several primary edges, and hence the edges which lie on previous backup
paths may have already been paid for. We model this eventuality by allowing different
primary costs and backup costs for an edge, depending on the purpose for which we
will use this edge; clearly, the primary cost of an edge should be at least as large as the
backup cost. We present a simple 2-approximation algorithm for the resulting problem.
Our 2-approximation extends to the case of protection against k-failures. We also give
two natural linear programming formulations of the problem, and show that one of these
formulations dominates the other for all instances. We point out that we are considering
the local optimization problem that needs to be solved each time a new demand arrives;
our aim is not to perform the usual competitive analysis where the online algorithm is
compared with the best offline solution.

MPLS Implementation. For the reader familiar with MPLS routing, we very briefly
sketch the fact that the local restoration for the edge e = (u, v) can be very easily
implemented. (Readers curious about MPLS are referred to [10]; a theoretical model is
given in [19].) Node u just precomputes the MPLS stack Sb

u,v that routes to v on the
backup path P(e). (Symmetrically, node v has a stack Sb

v,u to route to v.) In case the
edge e fails and u receives a packet desirous of taking the edge e, it could push the stack
Sb

u,v onto the packet’s MPLS stack and send it on the first vertex on P(e).

1.2. Related Work. There have been several papers on (splittable) flow networks re-
silient to edge failures; see, e.g., [7], [8], and [12]. Papers [24] and [25] formulate the
online restoration problem as an integer program, and give some empirical evidence in
favor of their methods. Paper [22] considers backup allocation in the VPN hose model
and gives a constant-factor approximation when accounting only for the cost of edges not
used in the primary network and hence does not provide a true approximation algorithm.
Further, [22] assumes that the primary network is a tree and hence the algorithm does
not generalize to arbitrary networks. Paper [6] looks at the problem of limited-delay
restoration; however, it does not consider the question of bandwidth allocation and its
cost.

The problem of survivable network design has also been investigated extensively (see,
e.g., [2] and the references therein). Most of this work has been focused on obtaining
strong relaxations to be used in cutting plane methods. In fact, the linear programs
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we use have been studied in these contexts, and have been found to give good empirical
performance. For more details on these, and on polyhedral results related to them, see [3]–
[5] and [9]. In contrast to most of these papers, we focus on worst-case approximation
guarantees, and our results perhaps explain the good empirical performance of relaxations
considered in the literature. Our models and assumptions also differ in some way from
those in the literature. We are interested in local restoration, and not necessarily in end-
to-end restoration. This allows our results to be applicable to the VPN hose model as
well, in contrast to the earlier literature, which is concerned primarily with the point-
to-point model. We also focus on path restoration as opposed to flow restoration. On
the other hand, we do consider a simpler model and limit ourselves only to the case of
uncapacitated networks.

1.3. Paper Organization. The rest of the paper loosely follows the structure of the
Introduction: in Section 2 we define and study the Constrained Steiner Network Prob-
lem, giving a constant-factor approximation for the problem. This algorithm is crucially
used in the algorithm for backup allocation presented in Section 3. We then go on to
the problem of simultaneous primary and backup allocation in Section 4, for which we
give an O(log n) approximation algorithm. Section 5 is devoted to the case of backup
provisioning on tree topologies (where the restored network must also be a tree). Finally,
we conclude with the single commodity backup problem in Section 6.

Throughout the paper we use OPT to denote the value of an optimal solution to the
problem being discussed.

2. Constrained Steiner Network Problem. Given a primary network G p = (V p,

E p) in the backup allocation problem with k = 1, the objective is to reserve capacity
on a set of edges Eb and specify paths P(e) ⊆ Eb for each edge e ∈ E p such that the
backup path P(e) must not contain e itself; furthermore, (1.1) requires that the capacity
of any edge on P(e) must be at least u p(e).

Consider a further simplification of the problem where u p(e) = 1 for all e ∈ E p; the
problem is now to find a minimum cost set of edges Eb which, for each e = (u, v) ∈ E p,
contains a path P(e) ⊆ Eb\{e} between the endpoints u and v of e.

Dropping yet another constraint, we can attempt to find a minimum cost set of edges
E ′ which, for all e = (u, v) ∈ E p, contains a path P(e) ⊆ Eb between the u and v.
(Note that now P(e) may be just the edge e itself.) This turns out to be a special case
of a well-studied network design problem, the Steiner Network Design (SND) problem.
Formally, an instance of SND is given by an undirected graph G = (V, E), a cost
function c : E → R

+, and requirements ri j ∈ Z+ for pairs of vertices (i, j) ∈ V . (We
can assume that ri j = 0 for pairs (i, j) for which there is no requirement.) The goal is
to select a minimum cost set of edges E ′ ⊆ E such that there are ri j edge-disjoint paths
between i and j in E ′. A 2-approximation for this problem was given by Jain [23].

We now define the Constrained Steiner Network Design problem, or the CSND prob-
lem, as the SND problem with the added constraint that ri j edge-disjoint paths in E ′

between i and j must not contain the edge (i, j). (Note that (i, j) could still lie in E ′

and be used to connect some other pair (i ′, j ′).) The k = 1, u p = 1 case of the backup
allocation problem now just corresponds to setting ri j = 1 ⇐⇒ {i, j} ∈ E p.
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2.1. An Approximation Algorithm for CSND. We show that an α-approximation al-
gorithm for SND can be used to obtain a 2α-approximation algorithm for CSND. The
algorithm is simple and is given below.

• Let I1 be the instance of SND with requirement r on G. Solve I1 approximately, and
let E ′ be the set of edges chosen.
• Define a new requirement function r ′ as follows. For (i, j) ∈ E ′ such that ri j > 0, set

r ′i j = ri j + 1, else set r ′i j = ri j .
• Let I2 be the instance of SND on G with requirement function r ′ and with the cost of

edges in E ′ reduced to zero. Let E ′′ be an approximate solution to I2. Output E ′′ ∪ E ′.

It is easy to see that the above algorithm produces a feasible solution. Indeed, if (i, j) �∈ E ′

then E ′ − {(i, j)} contains ri j edge-disjoint paths between i and j . If (i, j) ∈ E ′ then
E ′′ contains ri j + 1 edge-disjoint paths between (i, j), and hence E ′′ − {(i, j)} contains
ri j edge-disjoint paths.

LEMMA 2.1. The cost of the solution to CSND produced by the above algorithm is at
most 2αOPT , where α is the approximation ratio of the algorithm used to solve SND.

PROOF. It is easy to see that OPT (I1) ≤ OPT , and hence c(E ′) ≤ αOPT . We claim
that OPT (I2) ≤ OPT . Indeed, if A ⊆ E is an optimal solution to I , then A ∪ E ′

is feasible for requirements r ′. Therefore, c(E ′′ − E ′) ≤ αOPT (I2) ≤ αOPT , and
c(E ′′ ∪ E ′) ≤ 2αOPT .

Using the 2-approximation algorithm for SND due to Jain [23] gives us the following
corollary.

COROLLARY 2.2. There is a 4-approximation algorithm for the CSND problem.

In Section 3 we build on this algorithm to give approximation algorithms for the general
backup allocation problem.

2.2. Integrality Gap of an LP Relaxation for CSND. While our algorithm for CSND
used the algorithm for SND as a black box, it will be useful for us to write down a natural
linear programming (LP) relaxation of the CSND problem, and consider its integrality
gap. This will be useful in Section 4. Consider the following integer linear programming
formulation for CSND, where xe is the indicator variable for picking edge e in the
solution. For compactness we use the following notation to describe the constraints. We
say that a function x̄ on the edges supports a flow of f between s and t if the maximum
flow between s and t in the graph with capacities on the edges given by x̄ is at least f .
This property can be easily modeled by linear constraints:

(IP1) min
∑

e

cexe

s.t. x̄ supports ri j flow between (i, j) in E − {(i, j)} for all i, j,
xe ∈ {0, 1} for all e ∈ E .
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We relax the integrality constraints to obtain the following linear program:

(LP1) min
∑

e

cexe

s.t. x̄ supports ri j flow between (i, j) in E−{(i, j)}, for all i, j,
xe ∈ [0, 1] for all e ∈ E .

LEMMA 2.3. The integrality gap of (LP1) for CSND is upper bounded by 4.

PROOF. Consider the following LP formulation (LP-flow) for SND:

(LP-flow) min
∑

e

cexe

s.t. x̄ supports ri j flow between (i, j) in E for all {i, j},
xe ∈ [0, 1] for all e ∈ E .

Jain’s result in [23] shows that the integrality gap of (LP-flow) is at most 2 for SND.
Note that the optimal solution to (LP-flow) for either of the instances I1 and I2 created in
our algorithm for CSND costs no more than an optimal solution to (LP1) for I ; indeed,
the solution to (LP1) for I is a feasible solution to both those LPs. This, combined
with the fact that (LP-flow) has an integrality gap of at most 2, gives us the claimed
result.

3. Backup Allocation. We now use the algorithm for CSND from Section 2 to show
an O(k) approximation for the problem of computing the cheapest backup network for
a given primary network. Let G = (V, E) be the underlying base network, and let
G p = (V p, E p) be the primary network. We are also given the primary edge capacities
u p : E p → R

+. Our goal is to find an edge set Eb ⊆ E (the backup edges), and a
function ub : Eb → R

+ (the backup bandwidth), and backup paths P(e) for every edge
e ∈ E p satisfying (1.1) for any set of at most k edge failures F p.

We first state the quality of approximation we can obtain for the uniform capacity
problem.

LEMMA 3.1. For the uniform capacity backup allocation problem with k failures, there
is a 4k-approximation algorithm.

PROOF. By scaling capacities we can assume without loss of generality that the primary
capacity of each edge is 1. We solve the CSND problem induced by the backup problem:
for each edge (i, j) in the primary network we set ri j = k. The cost of the CSND problem
is no more than four times the value of an optimum solution to the backup problem. On
each edge e in the solution to the CSND problem we place a capacity of k. This increases
the cost of the solution by a factor of k. The total flow on any backup edge is at most
k since this is the maximum number of edges that can fail. Thus, the modified solution
is feasible for the backup allocation problem. The cost is clearly within 4k times the
optimum cost.



26 C. Chekuri, A. Gupta, A. Kumar, J. Naor, and D. Raz

Let u p
max = maxe∈E p u p(e). Our algorithm for backup allocation given below is based

on scaling the capacities and solving the resulting uniform capacity problems separately:

• Let E p
i = {e ∈ E p | u p(e) ∈ [2i , 2i+1)}. For all e ∈ E p

i , round up u p(e) to 2i+1.
• For 1 ≤ i ≤ �log u p

max�, independently backup E p
i .

Let Eb
i be the edges for backing up E p

i and let ub
i be the backup bandwidth on Eb

i . Note
that rounding up the bandwidths of E p

i causes the the backup allocation problem on E p
i

to be a uniform problem. The lemma below states that solving the problems separately
does not cost much in the approximation ratio.

LEMMA 3.2. There is an approximation algorithm for the backup allocation problem
with ratio 16k.

PROOF. Let Er∗ be an optimal solution for backup allocation, with ur∗ being the
bandwidth allocation function on Er∗. For 0 ≤ i ≤ �log u p

max� construct solutions
Er∗

i , where e ∈ Er∗
i with capacity ur∗

i (e) = 2i+1 if ur∗(e) ≥ 2i , and 0 otherwise.
Clearly,

∑
i ur∗

i (e) ≤ 4ur∗(e) for each e, and hence by linearity of the cost function,∑
i c(Er∗

i ) ≤ 4c(Er∗). Note that Er∗
i is a feasible solution to the CSND problem in-

duced by the backup for E p
i . Hence, for each i , using the approximation algorithm for

the uniform case for E p
i as described in the proof of Lemma 3.1, we obtain a solution of

cost at most 4kc(Er∗
i ). This completes the proof.

The ratio of 16k in Lemma 3.2 can be further improved to 4ek by randomness: instead
of grouping by powers of 2, grouping can be done by powers of e (with a randomly chosen
starting point). This technique is fairly standard by now (e.g., [26] and [17]), but we give
the proof for sake of completeness.

THEOREM 3.3. Given a primary network, there is a 4k · e � 10.87k-approximation for
the k-failure resilient backup allocation problem with linear edge cost functions.

PROOF. We pick a real number α from the interval [1, e) randomly according to the
density function f (t) = 1/t . Here e is the base of the natural logarithm. As before, E p

is the set of edges in the primary network, and u p(a) denotes the primary reservation on
edge a. Now we group the edges in the following manner. Define E p

i as the set of edges
in E p for which u p(a) lies in the interval [α · ei , α · ei+1). Round up u p(a) to α · ei+1

for all edges in the set E p
i . As before, we independently backup E p

i for all i . Observe
that the only difference from the earlier deterministic algorithm is in how we group the
edges.

We now compute the approximation ratio of this algorithm. We follow the proof of
Lemma 3.2. Fix an edge a. Let g(a) = i if ur∗(a) lies in the interval [α · ei , α · ei+1).
Note that g(a) is a random variable that takes one of two values, either �ln ur∗(a)� or
�ln ur∗(a)�−1. Then it can be shown that the cost of our solution is at most 4k ·∑a∈E α ·
eg(a)+1 · (e/(e− 1)). Here the factor 4k comes from the approximation algorithm for the
uniform bandwidth case, the term α · eg(a)+1 comes from rounding the reservations up,
and the term e/(e − 1) comes from the geometric sum.
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Now, a routine calculation shows that the expected value of α ·eg(a)+1 is (e−1)ur∗(a).
Thus, in expectation, we get an approximation ratio of 4k ·e. The algorithm can be easily
derandomized since there are O(|E |) distinct values of α that are of interest and these
can be easily enumerated.

3.1. Integrality Gap of an LP Relaxation. We have shown an O(k) approximation
for the backup allocation problem. We now analyze the integrality gap of a natural LP
relaxation for the problem and show that it is O(k log n). This will allow us to analyze
an algorithm for simultaneous allocation of primary and backup networks in the next
section. The LP formulation uses variables ye which indicate the backup bandwidth
bought on edge e. We relax the requirement that the flow uses k edge-disjoint paths. A
k-flow between a pair of vertices s and t is a flow of k units from s to t such that the flow
on any edge of the graph is at most 1.

(LP2) min
∑

e

ce ye

s.t. ȳ/u p
e supports a k-flow between (i, j) in E−{e} for all e ∈ E p,

ye ≥ 0.

We now analyze the integrality gap. Recall the definition of E p
i as the set of edges in

E p such that u p(e) ∈ [2i , 2i+1). As before we round up the bandwidth of these edges to
2i+1. Let xe(i) = min{1, ye/2i }. Note that xe(i) ∈ [0, 1]. We claim the following.

PROPOSITION 3.4. The variables xe(i) are feasible for the uniform bandwidth backup
allocation LP relaxation induced by E p

i where the bandwidths are scaled to 1.

From Lemma 3.1 it follows that the integrality gap of (LP1), the LP for the uniform
bandwidth problem, is at most 4k. Hence we can find a solution that backs up the edges
in E p

i with cost at most 4k
∑

e ce ye. Since we only have to look at �log u p
max� values of i ,

there is a solution that backs up all edges in E p with cost at most 4k log u p
max

∑
e ce ye.

We can make the upper bound on the integrality gap O(k log n) via a simple argument.
We set xe(i) = 0 if ye/2i ≤ 1/n3, otherwise we set xe(i) = min{1, (1+1/n)ye/2i }. It is
straightforward to argue that Proposition 3.4 still holds for the variables xe(i) defined in
this modified fashion. The cost goes up by a (1+1/n) factor. Each edge e participates in
the backup of at most O(log n) groups E p

i , hence the overall cost is at most O(k log n)
times the LP cost. This gives us the following theorem.

THEOREM 3.5. The integrality gap of (LP2) is O(k min{log n, log u p
max}).

The following theorem shows that our analysis is tight for k = 1.

THEOREM 3.6. The integrality gap of (LP2) is �(log n) for k = 1.

PROOF. We construct a graph G with the required gap as follows. The graph consists of
a complete binary tree T rooted at r with some additional edges. The cost of each edge
in T is 1. The additional edges go from leaves to the root and each of them is of cost
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d , where d is the depth of T . Primary bandwidth is provisioned only on the edges of T
and is given by u p(e): for an edge e at depth d(e), u p(e) = 2d/2d(e). Backup bandwidth
allocation defined by the following function ub(e) is feasible for (LP2): ub(e) = 1 for
each edge e that goes from a leaf to the root and ub(e) = u p(e) for each edge of T . It is
easy to check that the cost of this solution is O(d2d).

We claim that any path solution to the backup of T in G has a cost of�(d22d). Setting
d to be log n gives the desired bound on the integrality gap. We now prove the claim.
Let Ei be the edges of T at depth i . Let ci be the minimum cost of backing up edges in
Ei . We first note that

∑
i ci ≤ 4 OPT . This follows from a simple scaling argument that

we used in the proof of Lemma 3.2. Thus, it is sufficient to prove that ci ≥ d2d . Let e be
an edge in Ei and let Te be the subtree rooted under e. We have that u p(e) = 2d−i . The
backup solution for Ei requires an edge from a leaf in Te to the root with capacity u p(e).
Note that for any e, e′ ∈ Ei , the trees Te and Te′ are disjoint. Therefore ci ≥ |Ei |d2d−i =
d2d .

We note that the primary network in the above proof is a feasible primary network for
an instance in the point-to-point demand model as well as for an instance in the VPN hose
model. Correctness of the former is clear: every edge implicitly defines a point-to-point
demand between its endpoints of value equal to the primary bandwidth allocated to the
edge. To see that the above primary network is feasible for an instance in the VPN hose
model, consider the leaves of T as demand points, each with a bandwidth bound of 1.

3.2. Concave Capacity Costs. We have assumed till now that the cost per bandwidth
on each edge is proportional to the bandwidth. We now demonstrate the applicability
of our ideas to the case where the cost is a concave function of the capacity. Network
design problems with concave cost functions are also referred to as buy-at-bulk problems
[30], [1]. For each edge e in G we let ce : R → R denote the concave function that
defines the cost per capacity on e. The algorithm we use is the same as the one for
linear capacities that we described above, the only difference is in the analysis and the
performance guarantee. We first claim that Lemma 3.1 is also valid for the concave cost
functions. Lemma 3.2 requires a modification as given below.

LEMMA 3.7. Let α be the approximation ratio for the uniform capacity backup allo-
cation problem. Then there is an approximation algorithm for the backup allocation
problem with concave costs with ratio O(α log u p

max).

PROOF. The proof is similar to that of Lemma 3.2. Let Er∗ be an optimal solution
for backup allocation, with ur∗ being the bandwidth allocation function on Er∗. For
1 ≤ i ≤ �log u p

max� construct solutions Er∗
i , where e ∈ Er∗

i with capacity ur∗
i (e) = 2i+1

if ur∗(e) ≥ 2i , and 0 otherwise. By concavity of the cost function, ce(ur∗
i (e)) ≤

2ce(ur∗(e)), hence
∑

i ce(ur∗
i (e)) ≤ 2ce(ur∗

i (e)) log ur∗
e (e). Therefore

∑
i c(Er∗

i ) ≤
2c(Er∗) log u p

max. Note that Er∗
i is a feasible backup for E p

i , since every edge in Er∗

of bandwidth at least 2i lies in Er∗
i with bandwidth 2i+1. Hence, for each i , using the

approximation algorithm for the uniform case for E p
i would give us a solution with

cost at most αc(Er∗
i ). Therefore the algorithm outputs a solution of cost no more than

O(α log u p
max).



Building Edge-Failure Resilient Networks 29

From the above lemma we obtain the following.

THEOREM 3.8. Given a primary network, there is an O(k log u p
max)-approximation for

the k-failure resilient backup allocation problem with concave edge cost functions.

4. Simultaneous Primary and Backup Allocation. In this section we examine the
problem of simultaneously building a primary network as well as the backup network
so as to minimize the overall cost. In this section we restrict ourselves to single edge
failures. We have a constant-factor approximation for backup allocation when given the
primary network. We use it in a natural way to provision both the primary and backup.
We adopt the two-phase strategy of first building the primary network, and then building
a backup network for it. If α is the approximation guarantee for the problem of building
the primary network, we obtain an O(α log n) approximation algorithm for the problem
of primary and backup allocation. This result applies when the primary network has to
support a set of point-to-point demand matrices. The set of point-to-point demands can
be explicitly specified or implicitly specified as in the VPN hose model.

For the two models we use to specify the primary bandwidth requirements, namely
the point-to-point demand model and the VPN hose model, we have constant-factor
approximation algorithms for building the primary network. For the point-to-point model
an optimal solution is obtained by shortest path routing and for the VPN model a constant
factor approximation is given in [18]. We thus obtain O(log n) approximations for the
combined problem for these two models.

4.1. The O(log n) Approximation Algorithm. We analyze the two-stage approach for
primary and backup allocation. Let G p be the subgraph of G that is chosen in this first
step. We provide backup for this network using the algorithm described in Section 3. To
analyze this algorithm we use the LP relaxation (LP2) for the backup allocation problem.
In the following lemma we will be using extra capacity on the edges of the provisioned
network itself. Note that this is allowed. We call a primary solution u p minimal, if for
any edge e with u p(e) > 0, we cannot reduce u p(e) by even an arbitrarily small ε > 0
without violating the feasibility of u p. It follows that for a given minimal primary network
and an edge e with u p(e) > 0, there is a demand matrix De for which e is critical; that
is, reducing u p(e) would imply that De cannot be routed.

LEMMA 4.1. Let u p be any minimal solution to the primary problem. Let u p∗ and ur∗

be the primary and backup in some optimal solution. Then u p + u p∗ + ur∗ is a feasible
solution for (LP2), the LP relaxation for the backup of u p.

PROOF. Let e = (i, j) be such that u p(e) > 0. Let De be the demand matrix for which
e is critical. Let f be a feasible multicommodity flow routing for De in u p. It follows
that f (e) = u p(e) for otherwise e is not critical for De. Let the flow paths that use e in a
flow decomposition for f be P1, P2, . . . , P
 and let fi be the flow on Pi . For 1 ≤ h ≤ 
,
let xh and yh be the endpoints of Ph such that i occurs before j in traversing Ph from
xh to yh . Let G ′ be the capacitated graph obtained from G by removing e and setting
capacities equal to u p+ u p∗ + ur∗. We need to argue that G ′ can support a flow of u p(e)
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from i to j . We do this as follows. For 1 ≤ h ≤ 
, we simultaneously send fh units of
flow from i to xh using a capacity of u p. Let G ′′ be the capacitated graph obtained from
G by removing e and setting capacities equal to u p∗ + ur∗. Since the optimum solution
is resilient against single edge failures, for 1 ≤ h ≤ 
, G ′′ can simultaneously support
a flow of fh units from xh to yh . Since

∑
h fh = f (e) = u p(e), it follows that we can

route a flow of u p(e) from i to j in G ′.

THEOREM 4.2. The two-stage approach yields an O(α log n) approximation to the com-
bined primary and backup allocation problem where α is the approximation ratio for
finding the primary allocation.

PROOF. Let P be the cost of the primary allocation and let B be the cost of backup
allocation in the two-stage approach. From the approximation guarantee on finding P ,
we have P ≤ αOPT . From Lemma 4.1, it follows that there is a feasible (LP2) relaxation
for the backup allocation problem of value at most P+OPT , hence at most (α+1)OPT .
From Theorem 3.5, the backup solution we obtain is at most O(log n) times the LP value.
Hence, B = O(α log n)OPT and the theorem follows.

It turns out that the two-stage approach loses an �(log n) factor even if the first step
obtains a primary network of optimum cost; the example in the proof of Theorem 3.6
demonstrates this. We observe that the two-stage approach cannot guarantee a good
approximation for the case of k edge failures when k ≥ 2. We briefly describe an
example to show this. The underlying graph G consists of two vertices s, t with two
parallel paths P1 and P2 between them. Each path has 
 � k edges on it. In addition,
each edge e on the two paths has k parallel copies which we refer to as the auxiliary
edges associated with e. The auxiliary edges for every e ∈ P1 are “cheap” while the
ones associated with every e ∈ P2 are “expensive.” However, the cost of P1 itself is
marginally more than that of P2. Consider a point-to-point demand between s and t . In
a two-stage process an algorithm for building a primary network might choose P2 as a
solution. For k ≥ 2, if k edges in P2 fail, then one of the expensive auxiliary edges on
P2 will be forced to be chosen in the second stage. An optimum solution consists of P1

and its auxiliary edges. The gap between the two solutions can be made arbitrarily large
by appropriately choosing the costs of the edges.

5. Backup for Tree Networks. In this section we consider the case when the provi-
sioned network T is a tree, and, furthermore, it is required that, when an edge e fails, the
network T − {e} + P(e) also be a tree. The objective, as before, is to minimize the cost
of allocating the backup bandwidth. We prove that this problem is at least as hard as the
group Steiner problem [15] on trees, which in turn is �(log2−ε n)-hard [21].

THEOREM 5.1. The tree backup problem is at least as hard to approximate as the group
Steiner problem on trees. Hence, for any fixed ε > 0, the problem cannot be approximated
to within a ratio of �(log2−ε) unless NP ⊆ ZTIME(npolylog(n)).
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PROOF. The group Steiner tree problem is given by a weighted graph Gs = (Vs, Es), a
root vertex r ∈ Vs , and 
 subsets S1, . . . , S
 of vertices. A solution consists of a subtree
Ts ⊆ Gs containing the root r which intersects every set, i.e., V (Ts) ∩ Si �= ∅ for
1 ≤ i ≤ 
. The objective is to find a tree Ts of minimum cost. We consider an instance
when Gs is restricted to being a tree. Note that in this case, a solution can be completely
specified by giving, for 1 ≤ i ≤ 
, a vertex vi ∈ Si .

We reduce the group Steiner problem on trees to the tree backup problem. The base
network G = (V, E) consists of Gs , and 
 new vertices u1, . . . , u
. Each ui is connected
to all the vertices in Si , and also to r , by an edge ei . Finally, for each edge e ∈ Es , E
contains a parallel copy of the edge e. All the edges in Es have unit cost, while the new
edges have zero cost.

Let δ < 1 be some fixed constant. The primary network G p = (V, E p) has the
tree edges Es along with e1, . . . , e
; furthermore, we set u p(e) = δ for e ∈ Es , and
u p(ei ) = 1. Since each edge e ∈ Es can be protected by this parallel copy at zero cost,
we need only protect the edges ei . Since the restored network is to be a tree when ei fails,
this tree must be T − ei + fi , with fi being an edge from ui to somewi ∈ Si . Hence, for
1 ≤ i ≤ 
, we must reserve one unit of backup bandwidth on the path from the vertex
wi to r in T . This shows that the cost of the optimal backup is the same as the cost of an
optimal solution to the group Steiner tree problem in Gs . Thus the tree backup problem
is at least as hard as the group Steiner problem on trees which is hard to approximate to
within a factor of �(log2−ε n) [21, Theorem 1.1].

We also give an algorithm for the tree problem when k = 1. Let T = G p = (V p, E p)

the primary network, and let Eb be the backup edges, with u p and ub the primary
and backup bandwidth allocations. Let α be the approximation ratio for group Steiner
problem on trees. It is known that α = O(log2 n) [15]. Our algorithm outputs a solution
to the backup problem whose cost is O(α)

∑
e ce(u p(e) + ub(e)). Note that this does

not yield a true O(α) approximation algorithm since we are including the cost of the
primary network in the upper bound. The algorithm and the proof of the upper bound can
be found in Appendix A. We note that the proof of Theorem 5.1 shows (by choosing ε
appropriately) that the problem remains hard even if the algorithm is allowed to compare
its cost against

∑
e ce(u p(e)+ ub(e)).

6. Single Source and Sink. In this section we consider a unit-capacity MPLS primary
and backup allocation problem which is motivated by the online problem of choosing
the best primary and backup paths for demands arriving one by one. Suppose that we
are given source and destination vertices, denoted by s and t , respectively. The goal is
to provision a primary path p from s to t and a backup set of edges q of minimum
overall cost simultaneously. Since we are dealing with a single source–sink pair we
can scale the bandwidth requirement to 1, hence all edges have unit capacity, i.e., the
primary and backup edge sets are disjoint. We require that for any failure of k edges,
e1, . . . , ek , (q ∪ p) − {e1, . . . , ek} contains a path from s to t . We call this problem
SSSPR (Single Source Sink Provisioning and Restoration). Note that this requirement
is slightly different from the backup model discussed earlier in the paper; here, we do
not insist on local restoration. The backup edges together with the primary edges are
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required to provide connectivity from s to t . This problem is in the spirit of the work
of Kodialam and Lakshman [24], [25]. As explained before, we model the online nature
of the problem by using two different costs. Formally, there are two non-negative cost
functions associated with the edges: c1 gives the cost of an edge when used as a primary
edge, and c2 gives the cost of an edge when used as a backup edge. We assume that
c1(e) ≥ c2(e) for all edges e ∈ E .

Let p be a primary path from the source s to the destination t . The following procedure
due to Suurballe [32] computes a minimum cost backup set of edges for a given primary
path p. The idea is to direct the edges on the path p in the “backward” direction, i.e., from
t to s and set their cost to be zero. All other edges are replaced by two anti-symmetric
arcs. The costs of the two arcs a and a− that replace an edge e are set to c2(e). We now
compute a shortest path q from s to t . It can be shown that the edges of q that do not
belong to p define a minimum cost local backup [32].

We first present a 2-approximation algorithm for the SSSPR problem for the case
k = 1, and then generalize it to arbitrary values of k. First, find a shortest path p from s
to t with respect to the c1-cost function. Then use Suurballe’s [32] procedure to compute
an optimal backup q to the path p with respect to the c2-cost function. We show below
that p and q together induce a 2-approximate solution.

THEOREM 6.1. The two-stage approach yields a 2-approximation to SSSPR.

PROOF. Let OPT be the cost of an optimal primary and backup solution, let P =∑
e∈p c1(e) be the cost of p, and let Q = ∑

e∈q c2(e) be the cost of q. It is clear
that P ≤ OPT since we find the cheapest primary path. We next argue that Q ≤ OPT .
Consider Suurballe’s [32] algorithm to find the optimum backup path for p. As described
earlier, the algorithm finds a shortest path in a directed graph obtained from G and p.
The main observation here is that any primary path p′ and a q ′ that backs up p′ yields a
path in the directed graph created by Surballe’s procedure. We omit the (straightforward)
formal proof of this observation. In particular, the observation holds for the set of edges
of p∗ and q∗, where p∗ is an optimal primary path and q∗ is a set of edges that backs up
p∗. Surballe’s procedure finds the shortest path and therefore, Q ≤ ∑

e∈p∗∪q∗ c2(e) ≤∑
e∈p∗ c1(e)+

∑
e∈q∗ c2(e) ≤ OPT . Here we use the assumption that c2(e) ≤ c1(e) for

all e.

Although we provide an approximation algorithm, we note that it is not known whether
SSSPR is NP-hard or not.

Extension to k failures. We note that the above algorithm can be easily extended to the
case where at most k edges can fail. First, find a shortest path p from s to t with respect
to the c1-cost function. Then, similar to Suurballe’s [32] procedure, direct the edges on
the path p in the “backward” direction, i.e., from t to s and set their cost to be zero. All
other edges are replaced by two anti-symmetric arcs. The costs of the two arcs a and a−

that replace an edge e are set to c2(e). We set the capacity of each arc to 1 and compute
a minimum cost flow of k units from s to t . Let q be the support of the flow in G. We
claim that the edges of q that do not belong to p define a minimum cost local backup
which is resilient to k edge failures, since any cut separating s from t contains at least
k + 1 edges from p ∪ q .
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We observe that p and q together induce a 2-approximate solution. Clearly, the cost
of p is upper bounded by the cost of an optimal solution. As in the case where k = 1, any
primary path p′ and backup q ′ (resilient to k failures) define a flow of k units from s to t
in the directed graph obtained from G and p (as above). Therefore, the cost of q is also
upper bounded by the cost of an optimal solution, yielding that the solution computed
is a 2-approximation.

In Appendix B we provide two linear programming formulations for SSSPR. Although
we show that the worst-case integrality gap for both formulations is 2, we nevertheless
believe that the formulations are of interest from the point of view of mathematical
programming. They could be of potential use in a branch and bound scheme to obtain
good solutions in practice.

7. Conclusions. In this paper we explored models and algorithms for designing net-
works that are resilient to failures. Our focus was on local restoration and on uncapacitated
networks. With these two assumptions we were able to provide good approximation algo-
rithms under a fairly general model. Our main result on providing backup networks can
be extended to capacitated networks, however, the algorithm might violate the capacities
by u p

max. Can we obtain a constant factor approximation without violating the capaci-
ties? Can we obtain improved algorithms for designing primary and backup networks
simultaneously? Can we obtain provably good algorithms in the end-to-end restoration
model? We leave these for future work.
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Appendix A. Algorithm for Backup for Tree Networks. Let T = (V, E) be the
already provisioned tree. When an edge e fails, it splits T into two components, and
P(e) must be a path between these two components which is internally node disjoint
from the tree T . We must reserve enough bandwidth on the edges in the graph such that
the tree formed thus can support traffic between the demand nodes.

Our basic strategy is the same as in Section 3: Let Ei be the set of edges in T on which
the bandwidth u p lies in the interval [2i , 2i+1). Let u p

max lie in the interval [2s, 2s+1). Our
algorithm proceeds in stages—in the i th stage, we “protect” the edges in Es+1−i . When
we have already protected the edges in Ei+1, · · · , Es by reserving bandwidth on some
edges, we contract edges in Ei+1 ∪ · · · ∪ Es . This will not affect our performance by
more than a constant, since the bandwidth we may later reserve on some edge e in this
set will be at most

∑
j≤i 2i+1 ≤ 4u p(e). Let Ti and Gi be the resulting tree and base

graph after the contraction. We now consider protecting the edges in Ei , using the edges
of Gi . The root ri of Gi is the node which contains the root r of the original graph.



34 C. Chekuri, A. Gupta, A. Kumar, J. Naor, and D. Raz

The algorithm has a few conceptual steps, which we proceed to describe next.

Structure of Ei . It can be seen that the edges of Ei form a “spider”; i.e., there is a root
r , and a collection of paths {Pi }ki=1 which meet at r but are otherwise node-disjoint. This
is because of the structure of the VPN trees as given in [18].

LEMMA A.1. The edges of Ei form a spider in Gi .

PROOF. As is shown in [18], the reservation u p(e) on an edge e is the total demand of
the set of nodes in the component of Ti −e which does not contain the root ri . Therefore,
the allocated bandwidth on the edges from the root to the leaves is non-increasing. This
shows that Ei is a connected subtree of Ti . Suppose a non-root node v ∈ Ti has two
children u and w such that (v, u) and (v,w) are in Ei . Let the parent of v be p(v).
Clearly, e = (v, p(v)) ∈ Ei as well. However, the reservation on e is at least the sum of
the reservations on (v, u) and (v,w). So, u p(e) ≥ 2i+1, which is a contradiction. This
proves the lemma.

Transforming Gi . Now we transform Gi into a graph G ′ such that Ti Ti is a spanning
tree of G ′i . All non-Ti edges in G ′i go between vertices of Ti . This can be done so that
the backup solutions for Ti in Gi and in G ′i can be translated between each other with
only a constant factor difference in cost. We prove this fact now.

LEMMA A.2. We can transform Gi into a graph G ′i in polynomial time such that the
vertex set of G ′i is same as that of Ti and Ti is a spanning tree of G ′i . Further, we have
the following properties:

• Any backup solution for Ti in G ′i can be transformed to that in Gi without any increase
in cost.
• Any backup solution for Ti in Gi can be transformed to that in G ′i with a constant

factor loss in cost.

PROOF. We construct the graph G ′i as follows. G ′i contains Ti . For every pair of vertices
u, v in Ti , we add an edge euv between them. The cost of euv is the cost of the shortest
path in Gi between u and v which does not have an internal vertex of Ti .

We now use the standard Eulerian tour idea to show equivalence between solutions
in the two graphs. Indeed, a simple proof will go along the following lines. Consider
the backup edges for Ei which do not belong to Ti ; these must form a tree (else we
could drop one of the edges). Take an Eulerian tour of this tree and consider the subpaths
between consecutive nodes in Ti ; these can be replaced by new edges with the appropriate
weight, and all other vertices can be disposed off. Note that the optimal solution in this
new instance will be at most twice the optimal solution before, since the Eulerian tour
counted every edge twice.

However, we need to be careful about one fact—any solution (in Gi or G ′i ) which
protects the edges in Ti may need to reserve some bandwidth on the edges of the tree Ti

itself. So, we must show that when we transform a solution from one graph to the other,
the reservation on the tree edges need not change. This makes the proof more involved.



Building Edge-Failure Resilient Networks 35

Let Si be an optimum backup solution in Gi . Let Si be the set of edges in Gi − Ti

used by Si —we need to reserve at least 2i units of bandwidth on the edges of Si . Further,
if v is a vertex in Ti which is an endpoint of an edge in Si , then it must be the case that at
least 2i units of bandwidth is reserved on the path between v and the root of the tree Ti .

Now, consider an Eulerian tour of Si . Decompose this into paths such that no path
has a vertex of Ti as an internal node. Each of these paths now corresponds to an edge
in G ′i − Ti . Our solution S ′i in G ′i reserves 2i units on these edges. Further, it reserves
2i+1 units on each of the paths which join an endpoint of such an edge to the root of the
tree Ti —as mentioned above, at least 2i units are reserved on these edges of Ti in the
solution Si also. The Eulerian tour counts each edge of Si twice only. Thus, the cost of
S ′i is at most twice that of S.

The other direction can be shown similarly.

Finding the backup cost in G ′i . We now have a simpler problem: a graph G ′i , with a
spanning tree Ti in which we need to find a tree backup for the edges of Ei , which form
a spider. Let ri be the root of Ti , and let Pj ’s be the paths of the spider. Also let Ti, j be
the subtree of Ti hanging off Pj . (See Figure 2 for a picture.) Call a non-tree edge a back
edge if both its endpoints belong to the same tree Ti, j , and a cross edge otherwise. For
example, the edge eb is a back edge, and ec a cross edge in the figure. Now each edge e
of Ei has a savior edge sav(e) which is used to connect the two components formed if
e fails. A crucial fact is that if a cross edge from Ti, j to Ti, j ′ is a savior for some edge e
in Pj , then it is a savior for all edges on Pj which are above e. Hence, fixing the lowest
edge e in Pj whose savior is a cross edge implies that all edges above it are also saved
by that same savior edge, and all edges below it on Pj must be saved by back edges. The
cost Q(e) of saving the rest by back edges depends on the portion of Ti attached to these
edges and the back edges between this portion; note that this is entirely independent of
the rest of the problem.

Suppose we know, for each edge e ∈ ⋃
j Pj , the cost Q(e). (We shall discharge

this assumption later.) Then the cost of backing up all the edges in Ei consists of the
following: for each Pj , picking the single cross edge (say going to Ti, j ′ ) which is going
to be savior (and reserving 2i+1 capacity on it), and reserving 2i+1 capacity on the edges
in Ti, j ′ from the other end of this edge to the root ri . Of course, we have to add the cost
of saving the edges that were not saved by these cross edges to the solution.

1
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Fig. 2. The tree Ti , with tree edges shown in solid lines and non-tree edges in dashed ones.
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We now claim that this can be modeled as a minor variant of the group Steiner tree
problem with vertex costs. Each vertex v ∈ Ti which is the endpoint of some cross edge
e from Ti, j is belongs to the group Sj and has a “cost” 2i+1ce + Q(e′), where e′ is the
lowest edge in Pj that can be saved by e. (Note that Sj must be a multiset, with the vertex
v occurring several times in Sj with various costs, if there are several such cross edges.)
As a pedantic aside, there may be no such cross edge, and so ri also belongs to Sj with
cost equal to saving Pj entirely with back edges. This is done for every vertex and every
value of j . Now the objective is to find the minimum cost subtree of Ti that contains the
root and hits every group Sj at least once, where we also have to pay for the vertex of Sj

picked in the tree. It is fairly easy to see that this can be transformed into a regular group
Steiner tree problem, and the algorithm of Garg et al. [15] then gives us an O(log2 n)
approximation.

Computing Q(e). There is one more assumption to be discharged: we have to show
how to compute all the Q(e). We will not be able to do this optimally, but we give a
constant factor approximation for this as well. Since these are independent problems, let
us consider the case when we want to find the cost of backing up P1 using only back
edges.

LEMMA A.3. Given an edge e ∈ P1, we can compute a 4-approximation to Q(e) in
polynomial time.

PROOF. We would like to use just the Eulerian trick done above to reduce the problem to
edges between vertices of P1 only, and then find the least cost augmentation. The technical
problem that arises is that the optimal solution could be using edges in Ti,1 − P1, and
doing this trick naively could result in our paying several times for this reservation, when
paying once would have sufficed. However, we can avoid this problem. Let P1(e) be the
part of P1 below e.

Let G ′i,1 be the subgraph of G ′i induced by the vertices in Ti,1. We construct a graph
G ′′ = (V ′′, E ′′) as follows: the vertex set is the set of vertices in P1(e). Further, it
contains all the edges in P1(e). For any two vertices u, v ∈ P1(e), we add an edge eu,v

between them in G ′′. The cost of eu,v is the cost of the shortest path between u and v in
G ′i,1 − P1(e). We now define an instance of the minimum augmentation problem—the
instance is the graph G ′′, and a solution needs to find a set of edges S ⊆ E ′′ − P1(e) such
that for every edge e′ = (u, v) ∈ P1(e), F ′′−e′ contains a path between u and v. The goal
is to find such a set S of smallest cost. There exists a polynomial time 2-approximation
algorithm for this problem [13].

We claim that the cost of an optimal solution to the minimal augmentation problem
and the value of Q(e) are within a factor of 2 of each other.

Suppose we are given a set of edges S′ such that the S′ protects the edges in P1(e)
in the graph G ′i,1. Clearly, S′ is acyclic. So by taking an Eulerian tour of S′, we can
transform it into a solution to the above instance of the minimum augmentation problem
by doubling its cost.

Let us prove the converse now. Suppose we are given a solution to the minimum
augmentation problem in G ′′. Let the set of edges protecting P1(e) be S. Note that no
vertex of P1(e) can be incident with three edges of S—indeed, this would imply that
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one of these edges is redundant. So, assuming this is the case, we can map it back to a
solution for protecting P1(e) in the graph G ′i,1 whose cost is at least half the cost of S.
This proves the lemma.

Thus we have shown the following theorem.

THEOREM A.4. Given a polynomial time α-approximation algorithm for the group
Steiner tree problem, there exists a polynomial time algorithm for the backup problem
for tree networks that produces a solution of cost O(α)

∑
e ce(u p(e)+ ub(e)) where ub

is a minimum cost feasible backup solution to the given primary network u p.

Appendix B. Linear Programming Formulations for SSSPR. We provide two
linear programming relaxations of SSSPR. The first formulation is based on cuts and the
second formulation is based on flows. We show that the second formulation dominates
the first one on all instances.

A cut in a graph G is a partition of V into two disjoint sets V1 and V2. The edges of
the cut are those edges that have precisely one endpoint in both V1 and V2. Let T be a
subgraph of G which is a tree. A cut (V1, V2) of G is a canonical cut of G with respect
to T if there exists an edge e ∈ T , decomposing T into T1 and T2, such that T1 ⊆ V1 and
T2 ⊆ V2.

Let p be a primary path from the source s to the destination t . It follows from
Suurballe’s [32] procedure that a set of edges q is a backup to a path p if it covers all
the canonical cuts of p. This leads us to the following linear programming formulation
which is based on covering cuts. For an edge e, let x(e) denote the primary indicator
variable and let y(e) denote the backup indicator variable.

(Cut-LP) min
∑

e∈E

c1(e) · x(e)+ c2(e) · y(e)
s.t.

∑

e∈C

(x(e)+ y(e)) ≥ 2 for all {s, t}-cuts C ,
∑

e∈C

x(e) ≥ 1 for all {s, t}-cuts C ,

x(e)+ y(e) ≤ 1 for all e ∈ E ,
x(e), y(e) ≥ 0 for all e ∈ E .

It is not hard to see that the value of an optimal (fractional) solution to (Cut-LP) is a lower
bound on the value of an optimal integral solution to SSSPR. We now present a second
linear programming formulation of SSSPR which is based on flows. Our formulation
relies on the following lemma.

LEMMA B.1. Let p be a primary path from s to t and let q be a set of backup edges.
Replace each edge from p and q by two parallel anti-symmetric unit capacity arcs. Then
two units of flow can be sent from s to t .

PROOF. Let path p be s = v1, . . . , vk = t . We send the first unit of flow from s to t
through p. For the second unit of flow we proceed as follows. There has to be a backup
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edge (s, vi ), 1 ≤ i ≤ k. Let a1 be the arc (s, vi ) that maximizes i . There has to be a
backup edge (vj , vi ′) where 1 ≤ j ≤ i and i < i ′ ≤ k. Let a2 be the arc (vj , vi ′) that
maximizes i ′. We continue this way until we reach the sink, i.e., the sink is the tail of arc
a
. The second unit of flow is sent first on arc a1, then it goes back in p until it reaches
the head of arc a2, then it is sent on arc a2, then it goes back in p until it reaches the head
of arc a3, and so on till it reaches the sink t .

This leads us to the following bidirected flow relaxation. We replace each edge by two
parallel anti-symmetric unit capacity arcs. Denote by D = (V, A) the directed graph
obtained. The goal is to send two units of flow in D from s to t , one from each commodity,
while minimizing the cost. Denote the two commodities by blue and red, corresponding
to primary and backup edges, respectively. The cost of the blue commodity on an arc
a (obtained from edge e) is equal to c1(e). The cost of the red commodity on an arc a
(obtained from edge e) is defined as follows. Suppose there is a blue flow on arc a− of
value f . Then the red flow on a up to the value of f is free. Beyond f , the cost of the
red flow is c2(e).

(Flow-LP) min
∑

e∈E

c1(e) · f1(e)+ c2(e) · f2(e)

s.t. x̄ supports a unit flow ( f1) between s and t ,
ȳ supports a unit flow ( f2) between s and t ,
f1(e)≥max( f1(a), f1(a−)) for all e = (a, a−),
f2(e)≥max(( f2(a)− f1(a−)), 0)+max(( f2(a−)− f1(a)), 0)

for all e = (a, a−),
x(a)+ y(a) ≤ 1 for all a ∈ A,
x(a), y(a) ≥ 0 for all a ∈ A.

Given a solution to the SSSPR problem, Lemma B.1 tells us how to obtain a two-
commodity flow solution from it. We claim that the cost of the two-commodity flow
solution is equal to the cost of the solution to the SSSPR problem. Notice that the blue
flow costs the same as the blue edges in the SSSPR solution. The cost of the red flow
is zero on arcs which are obtained from blue edges. On other edges, the cost of the red
flow and the cost of the SSSPR solution are the same. Therefore, the value of an optimal
(fractional) solution to (Flow-LP) is a lower bound on the value of an optimal integral
solution. We now prove that (Flow-LP) dominates (Cut-LP).

THEOREM B.2. For any instance of the SSSPR problem, the cost of the optimal solution
produced by (Flow-LP) is at least as high as the cost of the optimal solution produced
by (Cut-LP).

PROOF. We show that given a feasible solution to (Flow-LP), we can generate a feasible
solution to (Cut-LP) without increasing the cost. Consider edge e ∈ E which is replaced
by two anti-parallel arcs a and a− in (Flow-LP). Without loss of generality, we can assume
that at most one of { f1(a), f1(a−)} is non-zero and at most one of { f2(a), f2(a−)} is non-
zero. Define x(e) = f1(e) (or x(e) = f1(a)+ f1(a−)) and y(e) = min( f2(e), 1− f1(e)).
We show that {x(e), y(e)}e∈E defines a feasible solution for (Cut-LP). Let the x-capacity
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(y-capacity) of a cut be the sum of the variables x(e) (y(e)) taken over the edges e
belonging to the cut. Clearly, the x-capacity of all {s, t}-cuts is at least one, since flow f1

in D sends one unit of flow from s to t . It remains to show that the x-capacity together
with the y-capacity of all {s, t}-cuts is at least 2.

Consider a particular {s, t}-cut C . Decompose flow function f1 in D into flow paths,
each of flow value ε. Let n(k) denote the number of flow paths in the decomposition that
use precisely 2k + 1 edges from C . Clearly,

∑∞
k=0 n(k) · ε = 1, and so the contribution

of flow f1 in D to the x-capacity of C is

∞∑

k=0

(2k + 1) · n(k) · ε = 2
∞∑

k=0

k · n(k) · ε +
∞∑

k=0

n(k) · ε

= 2
∞∑

k=0

k · n(k) · ε + 1.

Suppose
∑∞

k=0 k · n(k) · ε < 1
2 , otherwise we are done. The red flow in D, f2, can send

for “free” flow of value at most
∑∞

k=0 k ·n(k) ·ε using arcs belonging to cut C . (For each
arc a carrying a blue flow of value ε, the red flow of value ε can be sent on a− for free.)
Therefore, the red flow must send a flow of value at least 1 −∑∞

k=0 k · n(k) · ε using
capacity “paid” for by f2. (Note that for this flow we have y(e) = f2(e) for all edges e.)
Hence, the y-capacity of C is at least 1−∑∞

k=0 k · n(k) · ε, yielding that the capacity of
cut C (x-capacity and y-capacity) is 1+ 2

∑∞
k=0 k · n(k) · ε+ 1−∑∞

k=0 k · n(k) · ε ≥ 2,
thus completing the proof.

Integrality gap. It is not hard to show that a fractional solution to both formulations
can be rounded to an integral solution while increasing the cost by at most a factor
of 2. The proof is along the lines of the proof for the combinatorial 2-approximation
algorithm presented earlier. Unfortunately, this is the best approximation factor that
can be obtained by rounding a fractional solution to (Flow-LP). Consider the instance
depicted in Figure 3. The cost of the primary and backup flows on each edge e in the
graph is denoted by (c1(e), c2(e)). In the figure C is a constant that is at least 2. In an

0 , 0 0 , 0

0 , 0
C , 0

C , 0

C , 0

0 , 0

1 , 1

C , 0 C , 0

0 , 0

0 , 0

0 , 0

ts

1 , 1

0 , 0

C , 0

Fig. 3. The gap between the optimal fractional and the integral solutions is 2.
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optimal fractional solution, the primary flow is equally split between the two dashed
paths from s to t and its cost is 1. The backup flow is also equally split between the
two solid paths and its cost is 0. The total fractional cost is thus 1. Any integral solution
has to choose one of the two dashed paths for the primary flow and pay a cost of 1,
and then choose a solid path which is disjoint from the chosen primary path, and pay
a cost of 1. Thus, the gap between the optimal fractional and the integral solutions
is 2.
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