
Improved Algorithms for Orienteering
and Related Problems

Chandra Chekuri∗ Nitish Korula † Martin Pál‡

Abstract

In this paper, we consider the orienteering problem in undirected and directed graphs and obtain im-
proved approximation algorithms. The point to point-orienteering problem is the following: Given an edge-
weighted graphG = (V,E) (directed or undirected), two nodes s, t ∈ V and a time limitB, find an s-t walk
inG of total length at mostB that maximizes the number of distinct nodes visited by the walk. This problem
is closely related to tour problems such as TSP as well as network design problems such as k-MST. Orien-
teering with time-windows is the more general problem in which each node v has a specified time-window
[R(v), D(v)] and a node v is counted as visited by the walk only if v is visited during its time-window. We
design new and improved algorithms for the orienteering problem and orienteering with time windows. Our
main results are the following:

• A (2 + ε) approximation for orienteering in undirected graphs, improving upon the 3-approximation
of [6].

• An O(log2 OPT) approximation for orienteering in directed graphs, where OPT ≤ n is the number
of vertices visited by an optimal solution. Previously, only a quasi-polynomial time algorithm due to
[12] achieved a poly-logarithmic approximation (a ratio of O(log OPT)).

• Given an α approximation for orienteering, we show an O(α · max{log OPT, log Lmax
Lmin
}) approxi-

mation for orienteering with time windows, where Lmax and Lmin are the lengths of the longest and
shortest time windows respectively.

1 Introduction

The traveling salesperson problem (TSP) and its variants have been an important driving force for the devel-
opment of new algorithmic and optimization techniques. This is due to several reasons. First, the problems
have many practical applications. Second, they are often simple to state and intuitively appealing. Third, for
historical reasons, TSP has been a focus for trying new ideas. See [23, 21] for detailed discussion on various
aspects of TSP. In this paper, we consider some TSP variants in which the goal is to find a tour or a walk that
maximizes the number of nodes visited, subject to a strict time limit (also called budget) requirement. The
main problem of interest is the ORIENTEERING problem [20]1 which we define formally below. The input to
the problem consists of an edge-weighted graph G = (V,E) (directed or undirected), two vertices s, t ∈ V and
a non-negative time limit B. The goal is to find an s-t walk of total length at most B so as to maximize the
number of distinct vertices visited by the walk. Note that a vertex may be visited multiple times by the walk,
∗Dept. of Computer Science, University of Illinois, Urbana, IL 61801. chekuri@cs.illinois.edu. Partially supported by

an NSF grant CCF 0728782.
†Dept. of Computer Science, University of Illinois, Urbana, IL 61801. nkorula2@uiuc.edu. Partially supported by an NSF

grant CCF 0728782.
‡Google Inc., 76 9th Avenue, New York, NY 10011. mpal@google.com
1The problems we describe are referred to by several different names in the literature, one of which is prize-collecting TSP.

1

but is only counted once in the objective function. (Alternatively, we could work with the metric completion of
the given graph.) One could consider weighted versions of ORIENTEERING, where the goal is to maximize the
sum of the weights of visited vertices; using standard scaling techniques, one can reduce the weighted version
to the unweighted problem at the loss of a factor of (1 + o(1)) in the approximation ratio. Hence, we focus
on the unweighted version throughout this paper. We use OPT to denote the number of vertices in an optimal
solution; OPT can be as large as n, the number of vertices in the graph, but may be much smaller.

We also study the more general problem of orienteering with time-windows. In this problem, we are addi-
tionally given a time-window (or interval) [R(v), D(v)] for each vertex v. A vertex is counted as visited only
if the walk visits v at some time t ∈ [R(v), D(v)]. (If a vertex v is reached before R(v), we may choose to
“wait” at v until R(v), so the walk can obtain credit for v, and then resume the walk. The time spent “waiting”
is included in the length of the walk.) For ease of notation, we use ORIENT-TW to refer to the problem of
orienteering with time-windows. A problem of intermediate complexity is the one in which R(v) = 0 for
all v. We refer to this problem as orienteering with deadlines (ORIENT-DEADLINE); it has also been called
the Deadline-TSP problem by [6]. The problem where vertices have release times but not deadlines (that is,
D(v) =∞ for all v) is essentially equivalent to ORIENT-DEADLINE.

One of the main motivations for budgeted/time-limited TSP problems comes from real world applications
under the umbrella of vehicle routing; a large amount of literature on this topic can be found in operations
research. Problems in this area arise in transportation, distribution of goods, scheduling of work, etc. Most
problems that occur in practice have several constraints, and are often difficult to model and solve exactly. A
recent book [25] discusses various aspects of vehicle routing. Another motivation for these problems comes
from robot motion planning where typically, the planning problem is modeled as a Markov decision process.
However there are situations where this does not capture the desired behaviour and it is more appropriate to
consider Orienteering-type objective functions in which the reward at a site expires after the first visit; see [8],
which discussed this issue and introduced the discounted-reward TSP problem. In addition to the practical
motivation, budgeted TSP problems are of theoretical interest.

ORIENTEERING is NP-hard via a straightforward reduction from TSP and we focus on approximation
algorithms; it is also known to be APX-hard to approximate [8]. The first non-trivial approximation algorithm
for ORIENTEERING is due to Arkin, Mitchell and Narasimhan [2], who gave a (2 + ε) approximation for
points in the Euclidean plane. For points in arbitrary metric spaces, which is equivalent to the undirected
case, [8] gave the first approximation algorithm with a ratio of 4; this was shortly improved to a ratio of
3 by [6]. More recently, [14] obtained a PTAS for points in fixed-dimensional Euclidean space. The basic
insights for approximating ORIENTEERING were obtained in [8], where a related problem called the minimum-
excess problem was defined. It was shown in [8] that an approximation for the min-excess problem implies an
approximation for ORIENTEERING. Further, the min-excess problem can be approximated using algorithms for
the k-stroll problem. In the k-stroll problem, the goal is to find a minimum length walk from s to t that visits at
least k vertices. Note that the k-stroll problem and the ORIENTEERING problem are equivalent in terms of exact
solvability but an approximation for one does not immediately imply an approximation for the other. Still, the
clever reduction of [8] (via the intermediate min-excess problem) shows that an approximation algorithm for
k-stroll implies a corresponding approximation algorithm (losing a small constant factor in the approximation
ratio) for ORIENTEERING. The results in [8, 6] are based on existing approximation algorithms for k-stroll
[18, 10] in undirected graphs. In directed graphs, no non-trivial algorithm is known for the k-stroll problem
and the best previously known approximation ratio for ORIENTEERING was O(

√
OPT). A different approach

was taken for the directed ORIENTEERING problem by [12]; the authors use a recursive greedy algorithm to
obtain a O(log OPT) approximation for ORIENTEERING and for several generalizations, but unfortunately the
running time is quasi-polynomial in the input size.

In this paper, we obtain improved algorithms for ORIENTEERING and related problems in both undirected
and directed graphs. Our main results are encapsulated by the following theorems.

2

Theorem 1.1 For any fixed ε > 0, there is an algorithm with running time nO(1/ε2) achieving a (2 + ε)-
approximation for ORIENTEERING in undirected graphs.

Theorem 1.2 There is an O(log2 OPT)-approximation for ORIENTEERING in directed graphs.2

Orienteering with Time Windows: ORIENT-DEADLINE and ORIENT-TW are more difficult problems; in fact
ORIENT-TW is NP-hard even on the line [26]. The recursive greedy algorithm of [12] mentioned previously
applies to ORIENTEERING even when the reward function is a given monotone submodular set function3 f
on V , and the objective is to maximize f(S) where S is the set of vertices visited by the walk. Several non-
trivial problems, including ORIENT-TW, can be captured by using different submodular functions. Thus, the
algorithm from [12] provides an O(log OPT) approximation for ORIENT-TW in directed graphs, but it runs in
quasi-polynomial time. Therefore, we make the following natural conjecture:

Conjecture 1.3 There is a polynomial timeO(log OPT) approximation for ORIENT-TW in directed (and undi-
rected) graphs.

As can be seen from Table 1, even in undirected graphs the best ratio known previously for ORIENT-TW
was O(log2 OPT). Our primary motivation is to close the gap between the ratios achievable in polynomial
and quasi-polynomial time respectively. We remark that the quasi-polynomial time algorithm in [12] is quite
different from all the other polynomial time algorithms, and it does not appear easy to find a polynomial time
equivalent. In this paper we make some progress in closing the gap, while also obtaining some new insights.
An important aspect of our approach is to understand the complexity of the problem in terms of the maximum
and minimum time-window lengths. Let L(v) = D(v) − R(v) be the length of the time-window of v. Let
Lmax = maxv L(v) and Lmin = minv L(v). Our results depend on the ratio L = Lmax/Lmin

4; our main result
in this setting is the following theorem:

Theorem 1.4 In directed and undirected graphs, there is an O(αmax{log OPT, logL}) approximation for
ORIENT-TW, where α denotes the approximation ratio for ORIENTEERING.

Our results for ORIENT-TW are stated in more detail in Section 5; note that for polynomially-bounded
instances, Theorem 1.4 implies an O(log n) approximation. We define the parameter L following the work of
[15]; they showed that a constant factor approximation is achievable in undirected graphs if all time-windows
are of the same length (that is, L = 1) and the end points of the walk are not specified. We believe this
is a natural parameter to consider in the context of time-windows. In many practical settings L is likely to
be small, and hence, algorithms whose performance depends on L may be better than those that depend on
other parameters. In [6] an O(logDmax) approximation is given for ORIENT-TW in undirected graphs where
Dmax = maxvD(v) and only the start vertex s is specified (here it is assumed that all the input is integer
valued). We believe that Lmax is a better measure than Dmax for ORIENT-TW; Lmax ≤ Dmax for all instances,
and Lmax is considerably smaller in many instances. Further, our algorithm applies to directed graphs while the
algorithm in [6] is applicable only for undirected graphs. Finally, our algorithm is for the point-to-point version
while the one in [6] does not guarantee that the walk ends at t.

2A similar result was obtained concurrently and independently by [24]. See related work for more details.
3A function f : 2V → R+ is a montone submodular set function if f satisfies the following properties: (i) f(∅) = 0, f(A) ≤ f(B)

for all A ⊆ B and (ii) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A, B ⊆ V .
4If Lmin = 0, consider the set of vertices which have zero-length time-windows. If this includes a significant fraction of the vertices

of an optimal solution, use dynamic programming to get a O(1)-approximation. Otherwise, we can ignore these vertices and assume
Lmin > 0 without losing a significant fraction of the optimal reward.

3

Rd Undirected Graphs Directed Graphs
ORIENTEERING 1 + ε 2 + ε O(log2 OPT)

ORIENT-DEADLINE ∗ O(log OPT)† O(log3 OPT)
ORIENT-TW ∗ O(log2 OPT)† O(log4 OPT)

O(max{log OPT, logL}) O(log2 OPT ·max{log OPT, logL})

Table 1: The best currrently known polynomial-time approximation ratios for ORIENTEERING and ORIENT-
TW. The 1 + ε-approximation for ORIENTEERING in Euclidean Space (Rd for fixed dimension d) is due to
[14]; the other entries for Euclidean space marked ‘∗’ have the same approximation ratio as the more general
undirected graph problems. The two entries marked ‘†’ in undirected graphs are due to [6]; all remaining entries
are from this paper. The quasi-polynomial time algorithm of [12] gives an O(log OPT)-approximation for all
problems in this table.

Our results for ORIENT-TW are obtained using relatively simple ideas. Nevertheless, we believe that they
are interesting, useful and shed more light on the complexity of the problem. In particular we are optimistic that
some of these ideas will lead to an O(log n) approximation for the time-window problem in undirected graphs
even when L is not poly-bounded.

Table 1 above summarizes the best known approximation ratios for ORIENTEERING and ORIENT-TW.

We now give a high level description of our technical ideas.

Overview of Algorithmic Ideas: For ORIENTEERING we follow the basic framework of [8], which reduces
ORIENTEERING to k-stroll via the min-excess problem (formally defined in Section 2). We thus focus on the
k-stroll problem.

In undirected graphs, [10] give a 2+ε approximation for the k-stroll problem. To improve the 3-approximation
for ORIENTEERING via the method of [8], one needs a 2-approximation for the k-stroll problem with some ad-
ditional properties. Unfortunately it does not appear that even current advanced techniques can be adapted to
obtain such a result (see [18] for a more technical discussion of this issue). We get around this difficulty by
giving a bi-criteria approximation for k-stroll. For k-stroll, let L be the length of an optimal path, and D be
the shortest path in the graph from s to t. (Thus, the excess of the optimal path is L−D.) Our main technical
result for k-stroll is a polynomial-time algorithm that, for any given ε ≥ 0, finds an s-t walk of length at most
max{1.5D, 2L−D} that contains at least (1− ε)k vertices. For this, we prove various structural properties of
near optimal k-strolls via the algorithm of [10], which in turn relies on the algorithm of [3] for k-MST. We also
obtain a bi-criteria algorithm for min-excess.

For directed graphs, no non-trivial approximation algorithm is known for the k-stroll problem. In [12] the
O(log OPT) approximation for ORIENTEERING is used to obtain an O(log2 k) approximation for the k-TSP
problem in quasi-polynomial time. In the k-TSP problem, the goal is to find a walk containing at least k
vertices that begins and ends at a given vertex s; that is, k-TSP is the special case of k-stroll where t = s.
Once again we focus on a bi-criteria approximation for k-stroll and obtain a solution of length 3OPT that
visits Ω(k/ log2 k) nodes. Our algorithm for k-stroll is based on an algorithm for k-TSP for which we give
an O(log3 k) approximation - for this we use simple ideas inspired by the algorithms for asymmetric traveling
salesperson problem (ATSP) [16, 22] and an earlier poly-logarithmic approximation algorithm for k-MST [4].

For ORIENT-TW, we scale time window lengths so Lmin = 1; our main insight is that (with a constant-
factor loss in approximation ratio), the problem can be reduced to either a collection of ORIENT-DEADLINE

instances (for which we use an O(log OPT)-approximation), or an instance in which all release times and
deadlines are integral and in which the longest window has length L = Lmax/Lmin. In the latter case, we note
that windows of length at most L can be partitioned into O(logL) smaller windows whose lengths are powers

4

of 2, such that a window of length 2i begins and ends at a multiple of 2i. This allows us to decompose the
instance into O(logL) instances of ORIENTEERING.

Related Work: We have already mentioned some of the related work in the discussion so far. The literature
on TSP is vast, so we only describe some other work here that is directly relevant to the results in this paper.
We first discuss undirected graphs. The ORIENTEERING problem seems to have been formally defined in [20].
[19] considered the prize-collecting Steiner tree and TSP problems (these are special cases of the more general
version defined in [5]); in these problems the objective is to minimize the cost of the tree (or tour) plus a penalty
for not visiting nodes. They used primal-dual methods to obtain a 2-approximation. This influential algorithm
was used to obtain constant factor approximation algorithms for the k-MST, k-TSP and k-stroll problems
[9, 17, 3, 18, 10], improving upon an earlier poly-logarithmic approximation [4]. As we mentioned already,
the algorithms for k-stroll yield algorithms for ORIENTEERING [8]. ORIENT-TW was shown to be NP-hard
even when the graph is a path [26]; for the path, [7] give an O(log OPT) approximation. The best known
approximation for general undirected graphs is O(log2 OPT), given by [6]; the ratio improves to O(log OPT)
for the case of deadlines only [6]. A constant factor approximation can be obtained if the number of distinct
time windows is fixed [11].

In directed graphs, the problems are less understood. For example, we have no non-trivial approximation
for the k-stroll problem, though it is only known to be APX-hard. In [12] a simple recursive greedy algorithm
that runs in quasi-polynomial time was shown to give an O(log OPT) approximation for ORIENTEERING and
for ORIENT-TW. The algorithm also applies to the problem where the objective function is any given sub-
modular functions on the vertices visited by the walk; several more complex problems can be captured by this
generalization. Motivated by the lack of algorithms for the k-stroll problem, in [13] the asymmetric traveling
salesperson path problem (ATSPP) was studied. ATSPP is the special case of k-stroll with k = n. Although
closely related to the well studied ATSP problem, an approximation algorithm for ATSPP does not follow
directly from that for ATSP. In [13] an O(log n) approximation is given for ATSPP.

In concurrent and independent work, [24] obtained an O(log2 n) approximation for ORIENTEERING in
directed graphs. They also use a bi-criteria approach for the k-stroll problem and obtain results essentially
similar to those in this paper for directed graph problems, including rooted k-TSP. However their algorithm for
(bi-criteria) k-stroll is based on an LP approach while we use a simple combinatorial greedy merging algorithm.
Our ratios depend only on OPT or k while theirs depend also on n. On the other hand, the LP approach has some
interesting features; in particular, an improved upper bound on the integrality gap of a natural LP relaxation
for ATSP would directly lead to an improved approximation ratio for ORIENTEERING in directed graphs. (See
[24] for more details.)

2 Preliminaries and Notation

Recall that in the k-stroll problem, we are given a graph G(V,E), two vertices s, t ∈ V , and a target integer k;
the goal is to find a minimum-length walk from s to t that visits at least k vertices. In [8], ORIENTEERING was
reduced to the k-stroll problem; for completeness, we provide a brief description of this reduction. We adapt
some of their technical lemmas for our setting.

Given a (directed or undirected) graph G, for any path P that visits vertices u, v (with u occurring before
v on the path), we define dP (u, v) to be the distance along the path from u to v, and d(u, v) to be the shortest
distance in G from u to v. We define excessP (u, v) (the excess of P from u to v) to be dP (u, v) − d(u, v).
We simplify notation in the case that u = s, the start vertex of the path P : we write dP (v) = dP (s, v),
d(v) = d(s, v), and excessP (v) = excessP (s, v).

If P is a path from s to t, the excess of path P is defined to be excessP (t). That is, the excess of a
path is the difference between the length of the path and the distance between its endpoints. (Equivalently,

5

length(P) = d(t) + excessP (t).) In the min-excess path problem, we are given a graph G = (V,E), two
vertices s, t ∈ V , and an integer k; our goal is to find an s-t path of minimum-excess that visits at least k
vertices. The path that minimizes excess clearly also has minimum total length, but the situation is slightly
different for approximation. If x is the excess of the optimal path, an α-approximation for the minimum-excess
problem has length at most d(t) + αx ≤ α(d(t) + x), and so it gives us an α-approximation for the minimum-
length (i.e. the k-stroll) problem; the converse is not necessarily true. Below, we reduce the min-excess problem
to k-stroll, and then reduce ORIENTEERING to min-excess.

2.1 From k-stroll to ORIENTEERING, via min-excess:

We first describe the algorithm due to [8] for the min-excess problem, given one for the k-stroll problem. If an
optimal path P visits vertices in increasing order of their distance from s, we say that it is monotonic. The best
monotonic path can be found via dynamic programming. In general, however, P may be far from monotonic; in
this case, we break it up into continuous segments that are either monotonic, or have large excess. An optimal
path in monotonic sections can be found by dynamic programming, and we use an algorithm for k-stroll in
the large-excess sections. Intuitively, in these large-excess sections, the length of the path is comparable to
its excess; therefore, a good approximation for k-stroll in these sections yields a good approximation for the
min-excess problem. We formalize this intuition below.

For each real r, define f(r) as the number of edges on the optimal path P with one endpoint at distance
from s less than r, and the other endpoint at distance at least r from s. We partition the real line into maximal
intervals with f(r) = 1 and f(r) > 1. (See Figure 1 below, essentially similar to that of [8].) Let bi denote the
left endpoint of the ith interval: An interval from bi to bi+1 is of type 1 (corresponding to a monotonic segment)
if, for each r between bi and bi+1, f(r) = 1. The remaining intervals are of type 2 (corresponding to segments
with large excess).

Distance from s→
b1 b2 b3 b4 b5dt

s t

Type 1 Type 2 Type 1 Type 2

Figure 1: A breakdown of a path P into type 1 (monotonic) and type 2 (large-excess) segments. The solid
vertical lines indicate segment boundaries, with dots corresponding to s and t, and the first and last vertex of
each segment.

For each interval i, from vertex u (at distance bi from s) to vertex v (at distance bi+1 from s), we define ex(i)
as the increase in excess that P incurs while going from u to v. (That is, ex(i) = excessP (v) − excessP (u).)
Also, we let `i be the length of P contained in interval i, and di be the length of the shortest path from u to
v contained entirely in interval i. From our definitions, the overall excess of the optimal path P is given by
excessP (t) =

∑
i ex(i). In [8], it is shown that in undirected graphs, for any type-2 interval i, `i ≥ 3(bi+1−bi).

(For the last interval, we instead obtain `i ≥ 3(d(t)− bi).) To see that this is true, note from Figure 1 that `i is
at least the integral of f(d) for each d between bi and bi+1. Since i is an interval of type 2, f(d) ≥ 2; further,
one can observe using a parity argument that f(d) ≥ 3, since if P crosses distance d only twice, it must end
at distance less than d. For the results of [8], it suffices to prove that the global excess, excess(P), is at least
2
3

∑
i of type 2 `i, which follows from the previous argument. We need to refine this slightly in the following

6

lemma by bounding the local excess in each interval, instead of the global excess.

Lemma 2.1 For any type-2 interval i of path P in an undirected graph, ex(i) ≥ max{`i − di, 2`i
3 }.

Proof: We have:

ex(i) =
(
dP (v)− d(v)

)
−
(
dP (u)− d(u)

)
=

(
dP (v)− dP (u)

)
− (d(v)− d(u))

= `i − (bi+1 − bi).

(In the case of the last segment, containing t, the last equality should be `i − (d(t) − bi).) For any type-2
segment, `i ≥ 3(bi+1 − bi) (or 3(dt − bi)), so we have ex(i) ≥ 2`i

3 . Also, the shortest-path distance di from u
to v contained in interval i is at least bi+1 − bi. Therefore, ex(i) ≥ `i − di. 2

We now briefly describe the dynamic-programming algorithm of [8] for min-excess: A vertex v belongs
to interval i if its distance from s is greater than bi and at most bi+1. (Note that v may be any vertex of G,
not necessarily one on an optimal path P .) For each interval that might be in an optimal solution, and for each
reward that might be collected in this interval, find a short path using vertices of this interval that collects at least
the desired reward. For each interval, find paths assuming that it is both a type-1 interval and a type-2 interval.
In the former case, the optimal path is monotonic, so we can easily find it using a dynamic programming
subroutine. In the latter case, we use an approximation algorithm for k-stroll to find a short path that collects at
least the desired reward. Having found a good solution for each possible interval, one can “guess” the intervals
of the optimal solution and stitch them together using a master dynamic program. Thus, the following lemma
is proved in [8]; we omit the proof here, but we note that it is very similar to that of Lemma 2.4 for directed
graphs which we prove subsequently, the only difference being that we can use Lemma 2.1 instead of the
weaker Lemma 2.3 for directed graphs.

Lemma 2.2 ([8]) In undirected graphs, a β-approximation to the k-stroll problem implies a (3β
2 −

1
2)-approximation

to the min-excess problem.

Using very similar arguments, we can prove an analogous result for directed graphs. First, we need the
equivalent of Lemma 2.1. In directed graphs, for each real r, we let f(r) be the number of arcs a on the optimal
path P such that the tail of a is at distance less than r from s, and the head of a is at distance at least r from s.
All other definitions are identical to those in the undirected case. Now, we can only observe that f(d) is at least
2 for all d in type 2 intervals. (As before, a parity argument implies that path P must cross distance d at least 3
times, but on one of these occasions, the tail of the arc will have distance at least d from s, while the head has
distance less than d. Hence, this does not contribute to f(d).) It is now easy to prove the required lemma:

Lemma 2.3 For any type-2 interval i of path P in a directed graph, ex(i) ≥ max{`i − di, `i2 }.

Proof: Exactly as in Lemma 2.1, we obtain ex(i) = li − (bi+1 − bi). Again, the shortest path distance di from
the first vertex of the interval to the last is at least bi+1 − bi, and so ex(i) ≥ li − di. However, we can now only
conclude that li ≥ 2(bi+1 − bi). Therefore, ex(i) ≥ li/2. 2

We now reduce min-excess to k-stroll in directed graphs, similar to Lemma 2.2 in undirected graphs.

Lemma 2.4 In directed graphs, a β-approximation to the k-stroll problem implies a (2β − 1)-approximation
to the min-excess problem.

7

Proof: Recall that for every type 1 interval, we can find the optimal path using dynamic programming, and for
every type 2 interval, we use our approximation algorithm for k-stroll to find a short path that collects the reward
we desire. LetL denote the total length of an optimal path P , L1 denote the total length of P in type-1 segments,
and L2 the total length in type-2 segments. The path P ′ we find has total length at most L1+βL2. The excess of
the optimal path P isL−d(t), while the excess of our path P ′ is at mostL1+βL2−d(t) = L−d(t)+(β−1)L2.
From Lemma 2.1, L2

2 ≤ excess(P). Hence, the excess of P ′ is at most excess(P) + 2(β − 1)excess(P). 2

We now reduce ORIENTEERING to the min-excess problem. The following lemma, due to [6], applies to
both directed and undirected graphs.

Lemma 2.5 ([6]) A γ-approximation to the min-excess problem implies a dγe-approximation for ORIENTEER-
ING.

Proof: Consider an optimal path P that visist OPT vertices, and break it into h = dγe consecutive segments
P1, P2, . . . Ph, each containing OPT/h vertices. Guess (that is, try all possible choices for) the first and last
vertex of each segment. For each i, let si, ti be the first and last vertices of segment Pi, and let exi, the local
excess of Pi, be the difference between the length of Pi and the shortest-path distance from si to ti. Let Pj
be the segment with least excess; h · exj ≤

∑h
i=1 exi = dP (s, t) −

∑h
i=1 d(si, ti). Now, use the min-excess

approximation algorithm to find a new sj-tj path P ′j that visits at least OPT/h vertices, and with excess at most
γ ≤ h times that of Pj .

Finally, construct a path P ′ by going directly from s to sj , follow P ′j from sj to tj , and then go directly from
tj to t. The total length of this path is at most

∑h
i=1 d(si, ti) + h · exj ≤ dP (s, t) = length(P). Therefore, we

have an s− t path of length at most the given time limit, that visits at least OPT/dγe vertices. 2

The way in which our algorithms differ from those of [8] and [6] is that we use bi-criteria approximations
for k-stroll. We say that an algorithm is an (α, β)-approximation to the k-stroll problem if, given a graph G,
vertices s, t ∈ V (G), and a target integer k, it finds a path which visits at least k/α vertices, and has length at
most β times the length of an optimal path that visits k vertices.

Lemmas 2.4 and 2.5 can be easily extended to show that an (α, β)-approximation to the k-stroll algorithm
for directed graphs gives an (αd2β − 1e)-approximation for the ORIENTEERING problem in directed graphs.
In Section 4, we use this fact, with a (O(log2 k), 3)-approximation for the k-stroll problem in directed graphs,
to get an O(log2 OPT)-approximation for directed ORIENTEERING.5 For undirected graphs, one might try to
use Lemmas 2.2 and 2.5 with a (1 + ε, 2)-approximation for the k-stroll problem, but this leads to a ((1 +
ε) × d2.5e) = (3 + ε) approximation for ORIENTEERING. To obtain the desired ratio of (2 + ε), we need a
refined analysis to take advantage of the particular bi-criteria algorithm that we develop for k-stroll; the details
are explained in Section 3.

3 A (2 + ε)-approximation for Undirected ORIENTEERING

In the k-stroll problem, given a metric graph G, with 2 specified vertices s and t, and a target integer k, we
wish to find an s-t path of minimum length that visits at least k vertices. Let L be the length of an optimal such
path, and D the shortest-path distance in G from s to t. In this section, we describe a bi-criteria approximation
algorithm for the k-stroll problem, as guaranteed by the following theorem:

Theorem 3.1 For any ε > 0, there is an algorithm with running time O(nO(1/ε2)) that, given a graph G, two
vertices s and t and a target integer k, finds an s-t walk of length at most max{1.5D, 2L−D} that visits at least

5When we use the k-stroll algorithm as a subroutine, we call it with k ≤ OPT, where OPT is the number of vertices visited by an
optimum ORIENTEERING solution.

8

(1− ε)k vertices, where L is the length of the optimal s-t path that visits k vertices and D is the shortest-path
distance from s to t.

We prove Theorem 3.1 in Section 3.2; first, in Section 3.1, we describe the desired (2 + ε)-approximation
for ORIENTEERING in undirected graphs, assuming Theorem 3.1.

3.1 From k-stroll to minimum-excess

We solve the minimum-excess problem using essentially the algorithm of [8]; as explained in Section 2.1, the
key difference is that instead of calling the k-stroll algorithm of [10] as a subroutine, we use the algorithm of
Theorem 3.1 that returns a bi-criteria approximation. In addition, the analysis is slightly different, making use
of the fact that our algorithm returns a path of length at most max{1.5D, 2L−D}. In the arguments below, we
fix an optimum path P , and chiefly follow the notation of [8].

Theorem 3.2 For any fixed ε > 0, there is a polynomial-time algorithm to find an s-t path visiting at least
(1− ε)k vertices, with excess at most twice that of an optimal path P visiting k vertices.

Proof: As described in Section 2, the algorithm uses dynamic programming similar to that in [8] with our
bi-criteria k-stroll algorithm of Theorem 3.1 in place of an approximate k-stroll algorithm. Let P ′ be the path
returned by our algorithm. Roughly speaking, P ′ will be at least as good as a path obtained by replacing the
segment of P in each of its intervals by a path that the algorithm finds in that interval. In type-1 intervals the
algorithm finds an optimum path because it is monotonic. In type-2 intervals we have a bi-criteria approximation
that gives a (1 − ε) approximation for the number of vertices visited. This implies that P ′ contains at least
(1− ε)k vertices. To bound the excess, we sum up the lengths of the replacement paths to obtain:

length(P ′) ≤
∑

i of type 1

`i +
∑

i of type 2

max{1.5di, 2`i − di}

≤
∑
i

`i +
∑

i of type 2

max{0.5`i, `i − di}

≤
∑
i

`i +
∑

i of type 2

ex(i)

≤ length(P) + excessP (t)
= d(t) + 2excessP (t)

where the second inequality comes from rearranging terms and the fact that di ≤ `i, and the third inequality
follows from Lemma 2.1. Therefore, the excess of P ′ is at most twice that of P , the optimal path. 2

For completeness, we restate Lemma 2.5, modified for a bi-criteria excess approximation: An (α, β)-
approximation to the min-excess problem gives an αdβe-approximation to the ORIENTEERING problem.

Proof of Theorem 1.1. For any constant ε > 0, to obtain a (2 + ε)-approximation for the undirected ORIEN-
TEERING problem, first find ε′ such that 2 + ε = 2

1−ε′ . Theorem 3.2 implies that there is a (1
1−ε′ , 2)-bi-criteria

approximation algorithm for the min-excess problem that runs in nO(1/ε2) time. Now, we use (the bi-criteria
version of) Lemma 2.5 to get a 2

1−ε′ = (2 + ε)-approximation for ORIENTEERING in undirected graphs. 2

It now remains only to prove Theorem 3.1, to which we devote the rest of this section.

3.2 Proof of Theorem 3.1

Given graph G, vertices s, t, and integer k, for any fixed ε > 0, we wish to find an s-t path that visits at least
(1 − O(ε))k vertices, and has total length at most max{1.5D, 2L − D}. Our starting point is the following

9

theorem on k-Stroll, proved by [10]:

Theorem 3.3 ([10]) Given a graph G,two vertices s and t and a target integer k, let L be the length of an
optimal path from s to t visiting k vertices. For any δ > 0, there is a polynomial-time algorithm to find a tree
of length at most (1 + δ)L and containing at least k vertices, including both s and t.

The algorithm of [10] guesses O(1/δ) vertices s = w1, w2, w3,
. . . , wm−1, wm = t such that an optimal path P visits the guessed vertices in this order, and for any i, the
distance from wi to wi+1 along P is ≤ δL. It then uses the k-MST algorithm of [3] with the given set of
guessed vertices to obtain a tree satisfying Theorem 3.3; this tree is also guaranteed to contain all the guessed
vertices. We can assume that all edges of the tree have length at most δL; longer edges can be subdivided
without adding more than O(1/δ) vertices.

Our bi-criteria approximation algorithm for k-stroll begins by setting δ = ε2, and using the algorithm of
Theorem 3.3 to obtain a k-vertex tree T containing s and t. We are guaranteed that length(T) ≤ (1 + δ)L
(recall that L is the length of a shortest s-t path P visiting k vertices). Let P Ts,t be the path in T from s to t; we
can double all edges of T not on P Ts,t to obtain a path PT from s to t that visits at least k vertices. The length of
the path PT is 2length(T)− length(P Ts,t) ≤ 2length(T)−D.

If either of the following conditions holds, the path PT visits k vertices and has length at most max{1.5D, 2L−
D}, which is the desired result:

• The total length of T is at most 5D/4. (In this case, PT has length at most 3D/2.)

• length(P Ts,t) ≥ D + 2δL. (In this case, PT has length at most 2(1 + δ)L− (D + 2δL) = 2L−D.)

We refer to these as the easy doubling conditions. Our aim will be to show that if neither of the easy
doubling conditions applies, we can use T to find a new tree T ′ containing s and t, with length at most L, and
with at least (1 − O(ε))k vertices. Then, by doubling the edges of T ′ that are not on the s-t path (in T ′), we
obtain a path of length at most 2L−D that visits at least (1−O(ε))k vertices.

In the next subsection, we describe the structure the tree T must have if neither of the easy doubling
conditions holds, and in Section 3.2.2, how to use this information to obtain the tree T ′.

3.2.1 Structure of the Tree

If neither of the easy doubling conditions holds, then since D is at most 4/5 of the length of T , and the length
of P Ts,t is less than D+ 2δL, the total length of the edges of T \P Ts,t is greater than (1/5−2δ)L. In this section,
we describe how to construct the desired tree T ′ by removing a small piece of T \ P Ts,t.

Say that a set of edges S in T \ P Ts,t is an isolated component if the total length of S is less than εL, and S
is a connected component of T \ P Ts,t.

Proposition 3.4 We can greedily decompose the edge set of T \ P Ts,t into Ω(1/ε) disjoint pieces such that:

• Each piece is either a connected subgraph of or the union of isolated components of T \ P Ts,t.

• Each piece has length in [εL, 3εL), unless it is the union of all isolated components of T \ P Ts,t and has
length less than εL.

Proof: Consider the following greedy algorithm: root T at s, and consider a deepest node v in T \P Ts,t such that
the total length of edges in the subtree rooted at v is at least εL. If the total length of all edges in the subtree is

10

s t

C

T2

T1

y

x

x

y

wa
wq

wa+1

wq−1
wa+2

wb−1 wp+1

Figure 2: To the left is the tree T ; a constant fraction of its length is not on P Ts,t. We break these parts into
pieces; the path-like piece C of degree 2, with fewer than 32εk vertices, is shown in the box with the dashed
lines. The right shows C in more detail, with vertices x and y at the head and foot of the spine, and guessed
vertices shown as diamonds.

at most 2εL, this forms a piece that is connected and has the desired size. Otherwise, (arbitrarily) select enough
children of v such that the total size of all their subtrees, together with their edges to v, is between εL and 2εL.
(Since the subtree rooted at each child has size < εL and each edge has length ≤ δL � εL, this is always
possible.) Again, this forms a piece that is connected and has the required size.

Now delete the edges of the piece just found from T , and recurse. When no more such pieces can be found,
we may be left with parts of length < εL hanging off the s-t path. For any such part that has a further piece
hanging off it, connect it to that piece, increasing its length to less than 3εL. The remaining parts are isolated
components, and unless their total size is less than εL, it is easy to combine them arbitrarily into groups with
total length in [εL, 3εL]. 2

Let T be the tree formed as follows: We have one vertex s′ for P Ts,t and one vertex for each of the pieces of
Proposition 3.4. (Thus, T has Ω(1/ε) vertices.) There is an edge between vertices v1, v2 ∈ V (T) corresponding
to edge sets S1, S2 iff S1 contains the parent edge in T of a minimum-depth edge in S2, or vice versa. (In the
special case that v1 = s′, and the minimum-depth edge in S2 is incident in T to s, we add the edge between
v1 = s′ and v2.) Note that any piece containing isolated components becomes a leaf of T adjacent to s′.

Proposition 3.5 The tree T contains a vertex of degree 1 or 2 that corresponds to a piece with length in
[εL, 3εL), and containing at most 32εk vertices of the original tree T that are not contained in other pieces.

Proof: The number of vertices in T (not including s′), is at least (1/5−2δ)L
3εL = 1

15ε −
2ε
3 ≥

1
16ε . At least one

more than half these vertices have degree 1 or 2, since T is a tree. If the union of all isolated components has
size less than εL, we discard the vertex corresponding to this piece; we are left with at least 1/(32ε) vertices of
degree 1 or 2. If each of them corresponds to a piece that has more than 32εk vertices not in other pieces, the
total number of vertices they contain is more than k, which is a contradiction. 2

If T has a leaf that corresponds to a piece with at most 32εk vertices, we delete this piece from T , giving
us a tree T ′ with length at most (1 + δ)L − εL < L, with at least (1 − 32ε)k vertices. Doubling the edges of
T ′ not on its s-t path, we obtain an s-t walk that visits (1− 32ε)k vertices and has length at most 2L−D, and
we are done.

11

segment i

segment i+ 1

vlowi vhighi

vlowi+1 vhighi+1

Figure 3: Two consecutive segments.

If there does not exist such a leaf, we can find a vertex of degree 2 in T , corresponding to a connected
subgraph/piece C of T \ P Ts,t, with length ` in [εL, 3εL), and at most 32εk vertices. Deleting C from T gives
us two trees T1 and T2; let T1 be the tree containing s and t. We can reconnect the trees using the shortest path
between them. If the length of this path is at most ` − δL, we have a new tree T ′ with length at most L, and
containing at least (1− 32ε)k vertices. In this case, as before, we are done.

Therefore, we now assume that the shortest path inG that connects T1 and T2 has length greater than `−δL,
and use this fact repeatedly. (Recall that the total length of piece C is `.) One consequence of this fact is that
the piece C is path-like. That is, if x and y are the two vertices of T −C with edges to C, the length of the path
in C from x to y is more than `− δL; we refer to this path from x to y as the spine of the piece. (See Figure 2.)
It follows that the total length of edges in C that are not on the spine is less than δL. We also refer to the vertex
x ∈ T1 adjacent to C as the head of the spine, and y ∈ T2 adjacent to C as the foot of the spine. Finally, we
say that for any vertices p, q ∈ C, the distance along the spine between vertices p and q is the length of those
edges on the path between p and q that lie on the spine.

We assume for the moment that T2 contains at least one vertex that was guessed by the algorithm of The-
orem 3.3. Consider the highest-numbered guessed vertex wp in T2; where is the next guessed vertex wp+1? It
is not in T2 by definition, nor in T1 because the shortest path from T2 to T1 has length at least ` − δL, and the
edge wpwp+1 has length ≤ δL. Therefore, it must be in C. Similarly, since δL� l − δL, the guessed vertices
wp+2, wp+3, . . . must be in C. (In fact, there must be at least `−δLδL = Ω(1/ε) such consecutive guessed vertices
in C.) Let wq be the highest-numbered of these consecutive guessed vertices in C.

By an identical argument, if wb is the lowest-numbered guessed vertex in T2, wb−1, wb−2, . . . must be in C.
Let wa be the lowest-numbered of these consecutive guessed vertices, so wa, wa+1, . . . wb−2, wb−1 are all in C.

Remark 3.6 If T2 does not contain any guessed vertices, the procedure above is to be modified by finding the
guessed vertex w nearest the foot of the spine. Remove from C the path from w to the foot, and those branches
off the spine adjacent to this path; add these edges to the tree T2. Now, T2 contains a guessed vertex and we
may continue; this does not change our proof in any significant detail.

We now break up the piece C into segments as follows: Starting from x, the head of the spine, we cut C
at distance 10δL along the spine from x. We repeat this process until the foot of the spine, obtaining at least
`−δL
10δL ≥

1
10ε −

1
10 segments. We discard the segment nearest x and the two segments nearest y, and number the

remaining segments from 1 to r consecutively from the head; we have at least 1
10ε −

1
10 − 3 ≥ 1

15ε segments
remaining. For each segment, we refer to the end nearer x (the head of the spine) as the top of the segment, and
the end nearer y as the bottom of the segment.

We now restrict our attention to guessed vertices in the range wa to wb−1 and wp+1 through wq. For each
segment i, define vlowi to be the lowest-numbered guessed vertex in segments i through r, and vhighi to be the
highest-numbered guessed vertex in segments i through r. (See Figure 3.)

12

Lemma 3.7 For each i:

1. vlowi occurs before vlowi+1 in the optimal path, and vhighi occurs after vhighi+1 in the optimal path.

2. the distance along the spine from the top of segment i to each of vlowi and vhighi is at most 2δL.

3. the distance between vlowi and vlowi+1, is at least 7δL; the distance between vhighi and vhighi+1 is at least 7δL.

Proof: We prove the statements for vlowi and vlowi+1; those for vhighi and vhighi+1 are symmetric. Our proofs
repeatedly use the fact (referred to earlier) that the shortest path from x to y does not save more than δL over `,
the length of C.

First, we claim that each segment contains some guessed vertex between wa and wb−1. Suppose some
segment i did not; let c be the first index greater than or equal to a such that wc is not above segment i in the
tree. (Since wa is above segment i, and wb below it, we can always find such an index c.) Therefore, wc−1

is above segment i, and wc below it. We can now delete segment i, and connect the tree up using the edge
between wc−1 and wc; this edge has length at most δL. But this gives us a path from x to y of length at most
`− 10δL+ δL, which is a contradiction.

Now, let vlowi be the guessed vertexwj ; we claim that it is in segment i. Consider the location of the guessed
vertex wj−1. By definition, it is not in segments i through r; it must then be in segments 1 through i− 1. If wj
were not in segment i, we could delete segment i (decreasing the length by 10δL) and connect x and y again
via the edge between wj and wj−1, which has length at most δL. Again, this gives us a path that is shorter by
at least 9δL, leading to a contradiction. Therefore, for all i, vlowi is in segment i.

Because the lowest-numbered guessed vertex in segments i through r is in segment i, it has a lower number
than the lowest-numbered guessed vertex in segments i + 1 through r. That is, vlowi occurs before vlowi+1 on the
optimal path, which is the first part of the lemma.

We next prove that for all i, the distance along the spine from vlowi to the top of segment i is at most 2δL. If
this is not true, we could delete the edges of the spine from vlowi to the top of segment i, and connect vlowi to the
previous guessed vertex, which must be in segment i−1. The deletion decreases the length by at least 2δL, and
the newly added edge costs at most δL, giving us a net saving of at least δL; as before, this is a contradiction.

The final part of the lemma now follows, because we can delete the edges of the spine from vlowi to the
bottom of the segment (decreasing our length by at least 8δL), and if the distance from vlowi to vlowi+1 were less
than 7δL, we would save at least δL, giving a contradiction. 2

Now, for each segment i, define gain(i) to be the sum of the reward collected by the optimal path between
vlowi and vlowi+1 and the reward collected by the optimal path between vhighi+1 and vhighi . Since these parts of the
path are disjoint,

∑
i gain(i) ≤ k, and there are at least 1

15ε such segments, there must exist some i such that
gain(i) ≤ 15εk. By enumerating over all possibilities, we can find such an i.

3.2.2 Contracting the Graph

We assume we have found a segment numbered i such that gain(i) ≤ 15εk. Consider the new graph H formed
fromG by contracting together the 4 vertices vlowi , vhighi , vlowi+1 and vhighi+1 ofG to form a new vertex v′; we prove
the following proposition.

Proposition 3.8 The graph H has a path of length at most L− 14δL that visits at least (1− 15ε)k vertices.

Proof: Consider the optimal path P in G, and modify it to find a path PH in H by shortcutting the portion of
the path between vlowi and vlowi+1, and the portion of the path between vhighi+1 and vhighi . Since gain(i) ≤ 15εk,

13

the new path PH visits at least (1− 15ε)k vertices. Further, since the shortest-path distance from vlowi to vlowi+1

and the shortest-path distance from vhighi to vhighi+1 are each ≥ 7δL, path PH has length at most L− 14δL. 2

Using the algorithm of [3], we can find a tree TH in H of total length at most L − 13δL with at least
(1− 15ε)k vertices. This tree TH may not correspond to a tree of G (if it uses the new vertex v′). However, we
claim that we can find a tree Ti in G of length at most 13δL, that includes each of vlowi , vhighi , vlowi+1, vhighi+1 . We
can combine the two trees TH and Ti to form a tree T ′ of G, with total length L.

Proposition 3.9 There is a tree Ti in G containing vlowi , vhighi , vlowi+1 and vhighi+1 , of total length at most 13δL.

Proof: We use all of segment i, and enough of segment i+ 1 to reach vlowi+1 and vhighi+1 . The edges of segment i
along the spine have length ≤ 10δL, vlowi+1 and vhighi+1 each have distance along the spine at most 2δL from the
top of segment i+ 1 (by Lemma 3.7). Finally, the total length of all the edges in the piece C not on the spine is
at most δL. Therefore, to connect all of vlowi , vhighi , vlowi+1 and vhighi+1 , we must use edges of total length at most
(10 + 2 + 1)δL = 13δL. 2

We can now complete the proof of Theorem 3.1:

Proof of Theorem 3.1. Set ε′ = ε/32 and run the algorithm of [10] with δ = ε′2 to obtain a k-vertex tree T of
length at most (1 + δ)L. If either of the easy doubling conditions holds, we can double all the edges of T not
on its s-t path to obtain a new s-t walk visiting k vertices, with length at most max{1.5D, 2L−D}.

If neither of the easy doubling conditions holds, use T to obtain T ′ containing s and t, with length at most
L and at least (1 − 32ε′)k vertices. Doubling edges of T ′ not on its s-t path, we find a new s-t path visiting
(1− 32ε′)k = (1− ε)k vertices, of length at most 2L−D. 2

4 ORIENTEERING in Directed Graphs

We give an algorithm for ORIENTEERING in directed graphs, based on a bi-criteria approximation for the
(rooted) k-TSP problem: Given a graph G, a start vertex s, and an integer k, find a cycle in G of minimum
length that contains s and visits k vertices. We assume that G always contains such a cycle; let OPT be the
length of a shortest such cycle. We assume knowledge of the value of OPT, and that G is complete, with the
arc lengths satisfying the asymmetric triangle inequality.

Our algorithm finds a cycle in G containing s that visits at least k/2 vertices, and has length at most
O(log2 k) · OPT. The algorithm gradually builds up a collection of strongly connected components. Each
vertex starts as a separate component, and subsequently components are merged to form larger components.
The main idea of the algorithm is to find low density cycles that visit multiple components, and use such cycles
to merge components. (The density of a cycle C is defined as its length divided by the number of vertices
that it visits; there is a polynomial-time algorithm to find a minimum-density cycle in directed graphs.) While
merging components, we keep the invariant that each component is strongly connected and Eulerian, that is,
each arc of the component can be visited exactly once by a single closed walk.

We note that this technique is similar to the algorithms of [16, 22] for ATSP; however, the difficulty is that
a k-TSP solution need not visit all vertices of G and the algorithm is unaware of the vertices to visit. We deal
with this using two tricks. First, we force progress by only merging components of similar size, hence ensuring
that each vertex only participates in a logarithmic number of merges — when merging two trees or lists, one
can charge the cost of merging to the smaller side, however when merging multiple components via a cycle,
there is no useful notion of a smaller side. Second, we are more careful about picking representatives for each
component; picking an arbitrary representative vertex from a component does not work. A variant that does
work is to contract each component to a single vertex, however, this loses an additional logarithmic factor in the

14

BUILDCOMPONENTS:
for (each i in {0, 1, . . . , blog2(k/4 log2 k)c}) do:

For each component in tier i
(Arbitrarily) assign each vertex a distinct color in {1, . . . , 2i+1 − 1}.

Let {Vi
j | j = 1, . . . , 2i+1 − 1} be the resulting color classes.

Let Hi
j be the subgraph of G induced by the vertex set Vi

j .
While (there is a cycle C of density at most α · 2i in some graph Hi

j)
Let v1, . . . , vl be the vertices of Hi

j visited by C
Let vp belong to component Cp, 1 ≤ p ≤ l
(Two vertices of Hi

j never share a component, so C1, . . . , Cl are distinct.)
Form a new component C by merging C1, . . . , Cl using C
(C must belong to a higher tier)
Remove all vertices of C from the graphs Hi

j′ for j′ ∈ {1, . . . , 2i+1 − 1}.

approximation ratio since an edge in a contracted vertex may have to be traversed a logarithmic number of times
in creating a cycle in the original graph. To avoid this, our algorithm ensures components are Eulerian. One
option is to pick a representative from a component randomly and one can view our coloring scheme described
below as a derandomization.

We begin by pre-processing the graph to remove any vertex v such that the sum of the distances from s to
v and v to s is greater than OPT; such a vertex v obviously cannot be in an optimum solution. Each remaining
vertex initially forms a component of size 1. As components combine, their sizes increase; we use |X| to
denote the size of a component X , i.e. the number of vertices in it. We assign the components into tiers by size;
components of size |X| will be assigned to tier blog2 |X|c. Thus, a tier i component has at least 2i and fewer
than 2i+1 vertices; initially, each vertex is a component of tier 0. For ease of notation, we use α to denote the
quantity 4 log k · OPT/k.

In the main phase of the algorithm, we will iteratively push components into higher tiers, until we have
enough vertices in large components, that is, components of size at least k/4 log k. The procedure BUILD-
COMPONENTS (above) implements this phase. Once we have amassed at least k/2 vertices belonging to large
components, we finish by attaching a number of these components to the root s via direct arcs. Before providing
the details of the final phase of the algorithm, we establish some properties of the algorithm BUILDCOMPO-
NENTS.

Lemma 4.1 Throughout the algorithm, all components are strongly connected and Eulerian. If any component
X was formed by combining components of tier i, the sum of the lengths of arcs in X is at most (i+ 1)α|X|.

Proof: Whenever a component is formed, the newly added arcs form a cycle in G. It follows immediately that
every component is strongly connected and Eulerian. We prove the bound on arc lengths by induction.

Let C be the low-density cycle found on vertices v1, v2, . . . vl that connects components of tier i to form
the new component X . Let C1, C2, . . . Cl be the components of tier i that are combined to form X . Because the
density of C is at most α2i, the total length of the arcs in C is at most α2il. However, each tier i component
has at least 2i vertices, and so |X| ≥ 2il. Therefore, the total length of arcs in C is at most α|X|.

Now, consider any component Ch of tier i; it was formed by combining components of tier at most i − 1,
and so, by the induction hypothesis, the total length of all arcs in component Ch is at most iα|Ch|. Therefore,
the total length of all arcs in all the components combined to form X is iα

∑l
h=1 |Ch| = iα|X|. Together with

the newly added arcs of C, which have weight at most α|X|, the total weight of all arcs in component X is at
most (i+ 1)α|X|. 2

Let O be a fixed optimum cycle, and let o1, . . . , ok be the vertices it visits.

15

Lemma 4.2 At the end of iteration i of BUILDCOMPONENTS, at most k
2 log k vertices of O remain in compo-

nents of tier i.

Proof: Suppose that more than k
2 log k vertices of O remain in tier i at the end of the ith iteration. We show a

low-density cycle in one of the graphs H i
j , contradicting the fact that the while loop terminated because it could

not find any low-density cycle: Consider the color classes V ij for j ∈ {1, . . . , 2i+1 − 1}. By the pigeonhole
principle, one of these classes has to contain more than k/(2 log k · 2i+1) vertices of O.6 We can “shortcut”
the cycle O by visiting only these vertices; this new cycle has cost at most OPT and visits at least two vertices.
Therefore, it has density less than (2i+2 · OPT log k)/k, which is 2i · α. Hence, the while loop would not have
terminated. 2

We call a component large, if it has at least k/4 log k vertices. Since we lose at most k
2 log k vertices of

O in each iteration, and there are fewer than log k iterations, we must have at least k/2 vertices of O in large
components after the final iteration.

Theorem 4.3 There is an O(n4)-time algorithm that, given a directed graph G and a vertex s, finds a cycle
with k/2 vertices rooted at s, of length O(log2 k)OPT, where OPT is the length of an optimum k-TSP tour
rooted at s.

Proof: Run the algorithm BUILDCOMPONENTS, and consider the large components; at least k/2 vertices are
contained in these components. Greedily select large components until their total size is at least k/2; we have
selected at most 2b(log k)c components. For each component, pick a representative vertex v arbitrarily, and
add arcs from s to v and v to s; because of our pre-processing step (deleting vertices far from s), the sum of the
lengths of newly added arcs for each representative is at most OPT. Therefore, the total length of newly added
arcs (over all components) is at most 2 log kOPT. The large components selected, together with the newly
added arcs, form a connected Eulerian component H , containing s. Let k′ ≥ k/2 be the number of vertices of
H . From Lemma 4.1, we know that the sum of the lengths of arcs in H (not counting the newly added arcs) is
at most (log k − 1)αk′. With the newly aded arcs, the total length of arcs of H is at most 4 log2 kOPT × k′/k.
Since H is Eulerian, there is a cycle of at most this length that visits each of the k′ vertices of H .

If, from this cycle, we pick a segment of k/2 consecutive vertices uniformly at random, the expected length
of this segment will be 2 log2 kOPT. Hence, the shortest segment containing k/2 vertices has length at most
2 log2 kOPT. Concatenate this with the arc from s to the first vertex of this segment (paying at most OPT), and
the arc (again of cost ≤ OPT) from the last vertex to s; this gives us a cycle that visits at least k/2 vertices, and
has cost less than 3 log2 k · OPT.

The running time of this algorithm is dominated by the time to find minimum-density cycles, each of which
takes O(nm) time [1], where n and m are the number of vertices and edges respectively. The algorithm makes
O(n) calls to the cycle-finding algorithm which implies the desired O(n4) bound. 2

By using the algorithm from Theorem 4.3 greedily log k times, we obtain the following corollary.

Corollary 4.4 There is an O(log3 k) approximation for the rooted k-TSP problem in directed graphs.

Theorem 4.5 There is anO(n4)-time algorithm that, given a directed graphG and nodes s, t, finds an s-t path
of length 3OPT containing Ω(k/ log2 k) vertices, where OPT is the length of an optimal k-stroll from s to t.

Proof: We pre-process the graph as before, deleting any vertex v if the sum of the distance from s to v and the
distance from v to t is greater than OPT. In the remaining graph, we consider two cases: If the distance from

6The largest value of i used is such that k/2 log k · 2i+1 ≥ 1, so there are always at least 2 vertices in this color class.

16

t to s is at most OPT, we leave the graph unmodified. Otherwise, we add a ‘dummy’ arc from t to s of length
OPT. Now, there is a cycle through s that visits at least k vertices, and has length at most 2OPT. We use the
previous theorem to find a cycle through s that visits k/2 vertices and has length less than 6 log2 kOPT. Now,
break this cycle up into consecutive segments, each containing bk/(12 log2 k)c vertices (except possibly the
last, which may contain more). One of these segments has length less than OPT; it follows that this part cannot
use the newly added dummy arc. We obtain a path from s to t by beginning at s and taking the shortest path to
the first vertex in this segment; this has length at most OPT. We then follow the cycle until the last vertex of
this segment (again paying at most OPT), and then take the shortest path from the last vertex of the segment to
t. The total length of this path is at most 3OPT, and it visits at least bk/(12 log2 k)c vertices. 2

We can now complete the proof of Theorem 1.2, showing that there is an O(log2 OPT) approximation for
ORIENTEERING in directed graphs.

Proof of Theorem 1.2. As mentioned in Section 2, Lemmas 2.4 and 2.5 can be extended to show that an (α, β)-
bi-criteria approximation to the directed k-stroll problem can be used to get an (α · d2β − 1e)-approximation
to the ORIENTEERING problem on directed graphs. Theorem 4.5 gives us a (O(log2 k, 3)-approximation to
the the directed k-stroll problem, which implies that there is a polynomial-time O(log2 OPT)-approximation
algorithm for the directed ORIENTEERING problem. 2

5 ORIENTEERING with Time Windows

Much of the prior work on ORIENT-TW, following [6], can be cast in the following general framework: Use
combinatorial methods to reduce the problem to a collection of sub-problems where the time-windows can be
ignored. Each sub-problem has a subset of vertices V ′, start and end vertices s′, t′ ∈ V ′, and a time-interval
I in which we must travel from s′ to t′, visiting as many vertices of V ′ within their time windows as possible.
However, the sub-problem is constructed such that the time-window for every vertex in V ′ entirely contains the
interval I . Therefore, the sub-problem is really an instance of ORIENTEERING (without time-windows). An
approximation algorithm for ORIENTEERING can be used to solve each sub-problem, and these solutions can
be pasted together using dynamic programming. The next subsection describes this framework in more detail.

We use the same general framework; as a consequence, our results apply to both directed and undirected
graphs; while solving a sub-problem we use either the algorithm for ORIENTEERING on directed graphs, or the
algorithm for undirected graphs. Better algorithms for either of these problems would immediately translate
into better algorithms for ORIENT-TW.

Subsequently, we use α to denote the approximation ratio for ORIENTEERING, and state our results in terms
of α; from the previous sections, α is O(1) for undirected graphs and O(log2 OPT) for directed graphs.

Recall that Lmax and Lmin are the lengths of the longest and shortest time time-windows respectively, and
L is the ratio Lmax

Lmin
. We first provide two algorithms with the following guarantees:

• O(α logLmax), if the release time and deadline of every vertex are integers.

• O(α log OPT), if L ≤ 2.

We note that the first algorithm is already an improvement over the O(logDmax)-approximation of [6],
and as mentioned in the introduction, our algorithm has the advantages that it can also be used in directed
graphs, and is for the point-to-point version of the problem. The second algorithm immediately leads to an
O(α · log OPT× logL)-approximation for the general time-window problem, which is already an improvement
onO(α log2 OPT) when the ratioL is small. However, we can combine the first and second algorithms to obtain
an O(αmax{log OPT, logL})-approximation for ORIENT-TW.

17

Throughout this section, we use R(v) and D(v) to denote (respectively) the release time and deadline of
a vertex v. We also use the word interval to denote a time window; I(v) denotes the interval [R(v), D(v)].
Typically, we use ‘time-window’ when we are interested in the start and end points of a window, and ‘interval’
when we think of a window as an interval along the ‘time axis’. For any instance X of ORIENT-TW, we let
OPT(X) denote the reward collected by an optimal solution for X . When the instance is clear from context,
we use OPT to denote this optimal reward.

5.1 The General Framework

As described at the beginning of this section, the general method to solve ORIENT-TW is to reduce the problem
to a set of sub-problems without time-windows. Given an instance of ORIENT-TW on a graphG(V,E), suppose
V1, V2, . . . Vm partition V , and we can associate times Ri and Di with each Vi such that each of the following
conditions holds:

• For each v ∈ Vi, R(v) ≤ Ri and D(v) ≥ Di.

• For 1 ≤ i < m, Di < Ri+1.

• An optimal solution visits any vertex in Vi during [Ri, Di].

Then, we can solve an instance of ORIENTEERING in each Vi separately, and combine the solutions using
dynamic programming. The approximation ratio for such “composite” solutions would be the same as the
approximation ratio for ORIENTEERING. We refer to an instance of ORIENT-TW in which we can construct
such a partition of the vertex set (and solve the sub-problems separately) as a modular instance. Subsection
5.1.1 describes a dynamic program that can solve modular instances.

Unfortunately, given an arbitrary instance of ORIENT-TW, it is unlikely to be a modular instance. There-
fore, we define restricted versions of a given instance:

Definition 5.1 Let A and B be instances of ORIENT-TW on the same underlying graph (with the same edge-
weights), and let IA(v) and IB(v) denote the intervals for vertex v in instances A and B respectively. We say
that B is a restricted version of A if, for every vertex v, IB(v) is a sub-interval of IA(v).

Clearly, a walk that gathers a certain reward in a restricted version of an instance will gather at least that
reward in the original instance. We attempt to solve ORIENT-TW by constructing a set of restricted versions
that are easier to work with. Typically, the construction is such that the reward of an optimal solution in at least
one of the restricted versions is a significant fraction of the reward of an optimal solution in the original instance.
Hence, an approximation to the optimal solution in the ‘best’ restricted version leads us to an approximation
for the original instance.

This idea leads us to the next proposition, the proof of which is straightforward, and hence omitted.

Proposition 5.2 Let A be an instance of ORIENT-TW on a graph G(V,E). If B1, B2, . . . Bβ are restricted
versions of A, and for all vertices v ∈ V , IA(v) =

⋃
1≤i≤β IBi(v), there is some Bj such that OPT(Bj) ≥

OPT(A)
β .

The restricted versions we construct will usually be modular instances of ORIENT-TW. Therefore, the
general algorithm for ORIENT-TW is:

1. Construct a set of β restricted versions of the given instance; each restricted version is a modular instance.

2. Pick the best restricted version (enumerate over all choices), find an appropriate partition, and use an
α-approximation for ORIENTEERING together with dynamic programming to solve that instance.

18

It follows from the previous discussion that this gives a (α × β)-approximation for ORIENT-TW. We next
describe how to solve modular instances of ORIENT-TW.

5.1.1 A dynamic program for modular instances

Recall that a modular instance is an instance of ORIENT-TW on a graph G(V,E) in which the vertex set V can
be partitioned into V1, V2, . . . Vm, such that an optimal solution visits vertices of Vi after timeRi and beforeDi.
For any vertex v ∈ Vi, R(v) ≤ Ri and D(v) ≥ Di. Further, vertices of Vi are visited before vertices of Vj , for
all j > i.

To solve a modular instance, for each Vi we could ‘guess’ the first and last vertex visited by an optimal
solution, and guess the times at which this solution visits the first and last vertex. If α is the approximation ratio
of an algorithm for orienteering, we find a path in each Vi that collects an α-fraction of the optimal reward, and
combine these solutions.

More formally, one could use the following dynamic program: For any u, v ∈ Vi, consider the graph
induced by Vi, and let OPT(u, v, t) denote the optimal reward collected by any walk from u to v of length
at most t (ignoring time-windows). Now, define Πi(v, T) for v ∈ Vi, Ri ≤ T ≤ Di as the optimal reward
collected by any walk in G that begins at s at time 0, and ends at v by time T . Given OPT(u, v, t), the
following recurrence allows us to easily compute Πi(v, T):

Πi(v, T) = max
u∈Vi,w∈Vi−1,t≤T−Ri

OPT(u, v, t) + Πi−1(w, T − t− d(w, u)).

Of course, we cannot exactly compute OPT(u, v, t); instead, we use an α-approximation algorithm for
orienteering to compute an approximation to OPT(u, v, t) for all u, v ∈ Vi, t ≤ Di − Ri. This gives an
α-approximation to Πi(v, T) using the recurrence above.

Unfortunately, the running time of this algorithm depends polynomially on T ; this leads to a pseudo-
polynomial algorithm. To obtain a polynomial-time algorithm, we use a standard technique of dynamic pro-
gramming based on reward instead of time (see [8, 12]). Using standard scaling tricks for maximization prob-
lems, one can reduce the problem with arbitrary rewards on the vertices to the problem where the reward on
each vertex is 1; the resulting loss in approximation can be made (1 + o(1)). Thus, the maximum reward is n.

To construct a dynamic program based on reward instead of time, we wish to find, for each u, v ∈ Vi and
each ki ∈ [0, |Vi|], an optimal (shortest) walk from u to v that collects reward at least ki. However, we cannot
do this exactly. One could try to find an approximately shortest u − v walk collecting reward ki, but this does
not lead to a good solution overall: taking slightly too much time early on can have bad consequences for
later groups Vj . Instead, we “guess” the length (using binary search over the maximum walk length in G) of
an optimal walk that obtains reward ki, and for each guess use the α-approximate ORIENTEERING algorithm.
This guarantees that if there is a u-v walk of length B that collects reward ki, then we find a u-v walk of length
at most B that collects reward at least ki/α. Finally, to obtain the desired approximation for the entire instance,
we stitch together the solutions from each Vi using a dynamic program very similar to the one described above
based on time.

5.2 The Algorithms

Using the framework described above, we now develop algorithms which achieve approximation ratios de-
pending on the lengths of the time-windows. We first consider instances where all time-windows have integral
end-points, and then instances for which the ratio L = Lmax

Lmin
is bounded. Finally, we combine these ideas to

obtain an O(αmax{log OPT, logL})-approximation for all instances of ORIENT-TW.

19

5.2.1 An O(α logLmax)-approximation

We now focus on instances of ORIENT-TW in which, for all vertices v, R(v) and D(v) are integers. Our
algorithm is based on the following simple lemma:

Lemma 5.3 Any interval of length M > 1 with integral endpoints can be partitioned into at most 2blogMc
disjoint sub-intervals, such that the length of any sub-interval is a power of 2, and any sub-interval of length 2i

begins at a multiple of 2i. Further, there are at most 2 sub-intervals of each length.

Proof: Use induction on the length of the interval. The lemma is clearly true for intervals of length 2 or 3.
Otherwise, use at most 2 sub-intervals of length 1 at the beginning and end of the given interval, so that the
residual interval (after the sub-intervals of size 1 are deleted) begins and ends at an even integer. To cover the
residual interval, divide all integers in the (residual) problem by 2, and apply the induction hypothesis; we use
at most 2+(2blogM/2c) ≤ 2blogMc sub-intervals in total. It is easy to see that we use at most 2 sub-intervals
of each length; intervals of length 2i are used at the (i+ 1)th level of recursion. 2

For ease of notation, we let ` denote blogLmaxc for the rest of this sub-section, and assume for ease of
exposition that Lmax ≥ 2. Given an instance of ORIENT-TW, for each vertex v with interval I(v), we use
Lemma 5.3 to partition I(v) into at most 2` sub-intervals. We label the sub-intervals of I(v) as follows: For
each 1 ≤ i ≤ `, the first sub-interval of length 2i is labeled I1

i (v) and the second sub-interval I2
i (v). (Note that

there may be no sub-intervals of length 2i.)
We now construct a set of at most 2` restricted versions of the given instance. We call these restricted

versions B1
1 , B

1
2 , . . . B

1
` and B2

1 , B
2
2 , . . . B

2
` , such that the interval for vertex v in Bb

i is Ibi (v). If Ibi (v) was not
an interval used in the partition of I(v), v is not present in the restricted version. (Equivalently, it has reward 0
or an empty time-window.)

Consider an arbitrary restricted instance Bb
i . All vertices in this instance of ORIENT-TW have intervals

of length 2i, and all time-windows begin at an integer that is a multiple of 2i. Hence, any 2 vertices either
have time-windows that are identical, or entirely disjoint. This means that Bb

i is a modular instance, so we
can break it into sub-problems, and use an α-approximation to orienteering in the sub-problems to obtain an
α-approximation for the restricted instance.

By Proposition 5.2, one of the restricted versions has an optimal solution that collects reward at least OPT
2` .

Using an α-approximation for this restricted version gives us an α × 2` = O(α logLmax)-approximation for
ORIENT-TW when all interval endpoints are integers.

5.2.2 An O(α log OPT)-approximation when L ≤ 2

For an instance of ORIENT-TW when L = Lmax
Lmin

≤ 2, we begin by scaling all release times, deadlines, and edge
lengths so that Lmin = 1 (and so Lmax ≤ 2). Note that even if all release times and deadlines were integral
prior to scaling, they may not be integral in the scaled version; after scaling, all interval lengths are in [1, 2].

For each vertex v, we partition I(v) = [R(v), D(v)] into 3 sub-intervals: I1(v) = [R(v), a], I2(v) = [a, b],
and I3(v) = [b,D(v)], where a = bR(v)+1c (that is, the next integer strictly greater than the release time) and
b = dD(v)−1e (the greatest integer strictly less than the deadline). The figure below illustrates the partitioning
of intervals. Note that I2(v) may be a point, and in this case, we ignore such a sub-interval.

We now construct 3 restricted versions of the given instance — B1, B2, and B3 — such that the interval
for any vertex v in Bi is simply Ii(v). By Proposition 5.2, one of these has an optimal solution that collects
at least a third of the reward collected by an optimal solution to the original instance. Suppose this is B2. All
time-windows have length exactly 1, and start and end-points are integers. Therefore, B2 is a modular instance,
and we can get an α-approximation to the optimal solution in B2; this gives a 3α-approximation to the original
instance.

20

0 1 2 3 4 5 6

I1(u) I2(u) I3(u) I1(v) I3(v)

Figure 4: We illustrate the partitioning of 2 intervals into sub-intervals. Note that on the right, I2(v) is empty.

Dealing with B1 and B3 is not nearly as easy; they are not quite modular. Every interval in B1 has length
at most 1, and ends at an integer; for B3, intervals have length at most 1 and start at an integer. We illustrate
how to approximate a solution for B3 within a factor of O(α log OPT); the algorithm for B1 is identical except
that release times and deadlines are to be interchanged.

ForB3, we can partition the vertex set into V1, V2, . . . Vm, such that all vertices in Vi have the same (integral)
release time, and any vertex in Vi is visited before any vertex in Vj for j > i. Figure 5 shows such a partition.
The deadlines for vertices in Vi may be all distinct. However, we can solve an instance of ORIENT-DEADLINE in
each Vi separately, and paste the solutions together using dynamic programming. The solution we obtain will
collect at least Ω(1/α log OPT) of the reward of an optimal solution for B3, since there is a O(log OPT)-
approximation for ORIENT-DEADLINE ([6]). Therefore, this gives us a 3 × O(α log OPT) = O(α log OPT)-
approximation to the original instance.

0 1 2 3 4 5

V1

V2
V3

Figure 5: In B3, all time-windows start at an integer and have length at most 1. Each set of vertices whose
windows have a common beginning corresponds to a sub-problem that is an instance of orienteering with
deadlines.

Similarly, we can obtain an O(α log OPT)-approximation for B1 using the O(log OPT)-approximation al-
gorithm for orienteering with release times. Therefore, when L ≤ 2, we have an O(α log OPT)-approximation
for ORIENT-TW.

5.2.3 Putting the pieces together

An arbitrary instance of ORIENT-TW may have L > 2, and interval end-points may not be integers. However,
we can combine the algorithms from the two preceding sections to deal with such instances. We begin by scaling
release times, deadlines, and edge lengths such that the shortest interval has length 1; the longest interval now
has length L = Lmax

Lmin
, where Lmax and Lmin are the lengths of the longest and shortest intervals in the original

instance.

We now construct 3 restricted versions of the scaled instance: B1, B2, and B3. For any vertex v with
interval [R(v), D(v)] in the scaled instance, we construct 3 sub-intervals. If the interval for v has length less
than 2, we set I1(v) = [R(v), D(v)], and I2(v) = I3(v) = ∅. Otherwise, I1(v) = [R(v), a], I2(v) = [a, b], and
I3(v) = [b,D(v)], where a = dR(v) + 1e and b = bD(v)− 1c. As before, the interval for v in the instance Bi

21

is Ii(v).

One of the restricted versions collects at least a third of the reward of the original instance. Suppose this
is B1 or B3. All intervals in B1 and B3 have length between 1 and 2 by our construction. Therefore, we can
use the O(α log OPT)-approximation algorithm from section 5.2.2 to collect at least Ω(1/α log OPT) of the
reward of an optimal solution to the original instance. It now remains only to consider the case that B2 collects
more than a third of the reward. In B2, the end-points of all time-windows are integral, and the longest interval
has length less than L. We can now use the algorithm of section 5.2.1 to obtain an O(α logL)-approximation.

Therefore, our combined algorithm is an O(αmax{log OPT, logL})-approximation for ORIENT-TW,
proving Theorem 1.4.

5.3 Towards a better approximation, and arbitrary endpoints

In the previous sub-section, we obtained an approximation ratio of O(αmax{log OPT, logL}); we would like
to improve this ratio to O(α log OPT). Unfortunately, it does not seem easy to do this directly. A natural
question, then, would be to obtain a ratio of O(α logL); this is equivalent to an O(α) approximation for the
case when L ≤ 2. However, this is is no easier than finding an O(α log OPT)-approximation for arbitrary
instances of ORIENT-TW, as we show in the next proposition.

Proposition 5.4 An O(α) approximation algorithm for ORIENT-TW with L ≤ 2 implies an O(α log OPT)-
approximation for general instances of ORIENT-TW.

Proof: We show that an O(α) approximation when L ≤ 2 implies an O(α) approximation for ORIENT-
DEADLINE. It follows from an algorithm of [6] that we can then obtain an O(α log OPT)-approximation for
ORIENT-TW.

Given an arbitrary instance of ORIENT-DEADLINE on graph G(V,E), we add a new start vertex s′ to
G. Connect s′ to s with an edge of length Dmax = maxvD(v). The release time of every vertex is 0, but
all deadlines are increased by Dmax. Observe that all vertices have time-windows of length between Dmax

and 2Dmax, so L ≤ 2. It is easy to see that given any walk beginning at s in the original instance, we can
find an equivalent walk beginning at s′ in the modified instance that visits a vertex in its time-window iff the
original walk visited a vertex before its deadline in the given instance, and vice versa. Therefore, an O(α)
approximation for the modified instance of ORIENT-TW gives an O(α) approximation for the original instance
of ORIENT-DEADLINE. 2

We can, however, obtain anO(α)-approximation for ORIENT-TW when L ≤ 2 if we remove the restriction
that the walk must start and end at s and t, the specified endpoints. The algorithm of [15] for the case of L = 1
can be adapted relatively easily to give an O(α) approximation for L ≤ 2. For completeness, we sketch the
algorithm here.

We construct 5 restricted versions B1, . . . B5, of a given instance A. For every vertex v, we create at most
5 sub-intervals of I(v) by breaking it at every multiple of 0.5. (For instance [3.7, 5.6] would be broken up into
[3.7, 4], [4, 4.5], [4.5, 5], [5, 5.5], [5.5, 5.6]. Note that some intervals may have fewer than 5 sub-intervals.) The
interval for v in B1(v) is the first sub-interval, and the interval in B5(v) is the last sub-interval, regardless of
whether I(v) has 5 sub-intervals. B2, B3, and B4 each use one of any remaining sub-intervals.

B2, B3, and B4 are modular instances, so if one of them is the best restricted version of A, we can use an
α-approximation for orienteering to get reward at least OPT(A)

5α . Exactly as in subsection 5.2.2, B1 and B5 are
not quite modular instances; in B1, all deadlines are half-integral but release times are arbitrary, and in B5, all
release times are half-integral, but deadlines are arbitrary.

Suppose that B1 is the best restricted version. The key insight is that if the optimal walk in B1 collects
a certain reward starting at s at time 0, there is a walk in B2 starting at s at time 0.5 that collects the same

22

reward. (This is the substance of Theorem 1 of [15].) Therefore, if B1 is the best restricted version, we find
an α-approximation to the best walk in B2 starting at s at time 0.5; we are guaranteed that this walk collects
reward at least OPT(A)

5α . Note that this walk may not reach the destination vertex t by the time limit, since we
start 0.5 time units late. Similarly, if B5 is the best restricted version, we can find a walk in B4 that collects
reward OPT(A)

5α while beginning at s at time −0.5. (To avoid negative times, we can begin the walk at s′ at time
0, where s′ is the first vertex visited by the original walk after time 0.) This walk is guaranteed to reach t by the
time limit, but does not necessarily begin at s.

Therefore, this algorithm is an O(α)-approximation when L ≤ 2, or an O(α logL)-approximation for gen-
eral instances of ORIENT-TW. We note that one cannot use this with Proposition 5.4 to get an O(α log OPT)-
approximation for the variant of ORIENT-TW where start/end vertices are not specified: The dynamic program
for modular instances crucially uses the fact that we can specify both endpoints for the sub-problems.

6 Conclusions

The algorithms presented in this paper can be combined with previously known techniques [8, 6, 11] to obtain
the following results:

• A (4 + ε) approximation for the following problem in undirected graphs: Find a tree rooted at a given
vertex s of total length at most B that maximizes the number of vertices in the tree. This improves the
6-approximation in [8, 6].

• A (3+ε) approximation for ORIENT-TW when there are a fixed number of time windows; this improves
a ratio of 4 from [11].

Finally, we list a few open problems:

1. Is there a 2-approximation for ORIENTEERING in undirected graphs? In addition to matching the known
ratios for k-MST and k-TSP [18], this may lead to a more efficient algorithm than the one presented in
this paper.

2. Is there an O(1) approximation for ORIENTEERING in directed graphs?

3. Is there a poly-logarithmic, or even an O(1), approximation for the k-stroll problem in directed graphs?
Currently there is only a bi-criteria algorithm.

4. Can one prove Conjecture 1.3 to obtain an O(log OPT)-approximation for ORIENT-TW, at least for
undirected graphs?

5. The current algorithms for ORIENT-TW use the orienteering algorithm in a black-box fashion. For
directed graphs the current ratio for ORIENTEERING is O(log2 OPT) and hence the ratio for ORIENT-
TW is worse by additional logarithmic factors. Can one avoid using ORIENTEERING as a black-box? We
note that the quasi-polynomial time algorithm of [12] has the same approximation ratio of O(log OPT)
for both the basic orienteering and time-window problems in directed graphs.

Acknowledgments: CC thanks Rajat Bhattacharjee for an earlier collaboration on the undirected Orienteering
problem, and also thanks Naveen Garg and Amit Kumar for useful discussions. We thank Viswanath Nagarajan
and R. Ravi for sending us a copy of [24]. We thank Pratik Worah for several discussions of algorithms and
hardness results for orienteering with time-windows and other variants. We thank the anonymous referees for
useful comments, particularly on clarifying Proposition 3.4 and the organization of Section 3.

23

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, Upper Saddle River, New Jersey, 1993.

[2] E.M. Arkin, J.S.B. Mitchell, and G. Narasimhan. Resource-constrained geometric network optimization.
In Symposium on Computational Geometry, pages 307–316, 1998.

[3] S. Arora and G. Karakostas. A 2 + ε approximation algorithm for the k-MST problem. Mathematical
Programming A, 107(3):491–504, 2006. Preliminary version in Proc. of ACM-SIAM SODA, 754–759,
2000.

[4] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen. SIAM J. Computing, 28(1):254–262, 1998. Preliminary
Version in Proc. of ACM STOC, 277–283, 1995.

[5] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

[6] N. Bansal, A. Blum., S. Chawla, and A. Meyerson. Approximation algorithms for deadline-TSP and
vehicle routing with time-windows. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 166–174. ACM New York, NY, USA, 2004.

[7] R. Bar-Yehuda, G. Even, and S. Shahar. On approximating a geometric prize-collecting traveling salesman
problem with time windows. Journal of Algorithms, 55(1):76–92, 2005. Preliminary version in Proc. of
ESA, 55–66, 2003.

[8] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation algorithms for
orienteering and discounted-reward TSP. SIAM Journal on Computing, 37(2):653–670, 2007. Preliminary
version in Proc. of IEEE FOCS, 46–55, 2003.

[9] A. Blum, R. Ravi, and S. Vempala. A Constant-Factor Approximation Algorithm for the k-MST Problem.
Journal of Computer and System Sciences, 58(1):101–108, 1999. Preliminary version in Proc. of ACM
STOC, 1996.

[10] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In 44th Annual
Symposium on Foundations of Computer Science, pages 36–45. IEEE Computer Society, 2003.

[11] C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and applications.
Proceedings of APPROX-RANDOM, pages 72–83, 2004.

[12] C. Chekuri and M. Pál. A recursive greedy algorithm for walks in directed graphs. In Proceedings of the
46th Annual Symposium on Foundations of Computer Science, pages 245–253. IEEE Computer Society,
2005.

[13] C. Chekuri and M. Pál. An O(log n) Approximation for the Asymmetric Traveling Salesman Path Prob-
lem. Theory of Computing, 3:197–209, 2007. Preliminary version in Proc. of APPROX, 95–103, 2005.

[14] K. Chen and S. Har-Peled. The orienteering problem in the plane revisited. SIAM J. on Computing,
38(1):385–397, 2008. Preliminary version in Proc. of ACM SoCG, 247–254, 2006.

[15] G.N. Frederickson and B. Wittman. Approximation algorithms for the traveling repairman and speeding
deliveryman problems with unit-time windows. Proceedings of APPROX-RANDOM,, LNCS 4627:119–
133, 2007.

24

[16] A.M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for the
asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.

[17] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pages 302–309. IEEE Computer Society, 1996.

[18] N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In Proceedings of the
37th Annual ACM Symposium on Theory of computing, pages 396–402. ACM, 2005.

[19] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems.
SIAM Journal on Computing, 24:296–317, 1995.

[20] B.L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics, 34(3):307–318,
1987.

[21] G. Gutin and A.P. Punnen, editors. The traveling salesman problem and its variations. Springer, Berlin,
2002.

[22] J. Kleinberg and D.P. Williamson. Unpublished Note, 1998.

[23] E.L. Lawler, A.H.G. Rinnooy Kan, J.K. Lenstra, and D.B. Shmoys, editors. The Traveling salesman
problem: a guided tour of combinatorial optimization. John Wiley & Sons Inc, 1985.

[24] V. Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms for directed vehicle routing prob-
lems. Proceedings of APPROX-RANDOM,, LNCS 4627:257–270, 2007.

[25] P. Toth and D. Vigo, editors. The vehicle routing problem. SIAM Monographs on Discrete Mathematics
and Applications. Society for Industrial Mathematics, Philadelphia PA, 2001.

[26] J.N. Tsitsiklis. Special cases of traveling salesman and repairman problems with time windows. Networks,
22(3):263–282, 1992.

25

