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Abstract
We consider the complexity ofminmax partitioning of graphs, hypergraphs and (sym-
metric) submodular functions. Our main result is an algorithm for the problem of
partitioning the ground set of a given symmetric submodular function f : 2V → R

into k non-empty parts V1, V2, . . . , Vk to minimize maxki=1 f (Vi ). Our algorithm runs

in nO(k2)T time, where n = |V | and T is the time to evaluate f on a given set; hence,
this yields a polynomial time algorithm for any fixed k in the evaluation oracle model.
As an immediate corollary, for any fixed k, there is a polynomial-time algorithm for
the problem of partitioning a given hypergraph H = (V , E) into k non-empty parts
to minimize the maximum capacity of the parts. The complexity of this problem,
termed Minmax- Hypergraph- k- Part, was raised by Lawler in 1973 (Networks
3:275–285, 1973). In contrast to our positive result, the reduction in Chekuri and Li
(Theory Comput 16(14):1–8, 2020) implies that when k is part of the input,Minmax-
Hypergraph- k- Part is hard to approximate to within an almost polynomial factor
under the Exponential Time Hypothesis (ETH).
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1 Introduction

Partitioning problems in graphs and hypergraphs are extensively studied for their
applications and theoretical value. In this work, we consider the minmax objective. A
hypergraphG = (V , E) consists of a finite vertex set V and a collection of hyperedges
where each hyperedge e ∈ E is a subset of vertices, that is, e ⊆ V . If |e| = 2 for
all e ∈ E , then the hypergraph is simply an undirected graph. The input to minmax
hypergraph k-partitioning is a hypergraph G = (V , E) with non-negative hyperedge
weights w : E → R+ and an integer k. The goal is to partition V into non-empty
sets V1, V2, . . . , Vk to minimize maxki=1 w(δ(Vi )); here δ(Vi ) is the set of hyperedges
crossing1 Vi and w(δ(Vi )) = ∑

e∈δ(Vi ) w(e) is the total weight of the hyperedges in
δ(Vi ). We refer to this problem as Minmax- Hypergraph- k- Part. We refer to the
special case when G is a graph asMinmax- Graph- k- Part. Closely related to these
problems are Graph- k- Cut, Hypergraph- k- Cut and Hypergraph- k- Part that
we will discuss later. The complexity of Minmax- Hypergraph- k- Part was raised
as early as 1973 in Lawler’s work on hypergraph mincut [20], and has remained open.
In this work, we show that Minmax- Hypergraph- k- Part has a polynomial-time
algorithm for any fixed constant k.

Theorem 1.1 Minmax- Hypergraph- k- Part has a polynomial-time algorithm for
any fixed k. In particular, there is an algorithm that runs in time nO(k2)m, where n is
the number of nodes and m is the number of hyperedges.

In contrast to the preceding positive result, when k is part of the input, one can easily
show that the reduction in [8] that proves conditional hardness of Hypergraph-
k- Cut also applies to Minmax- Hypergraph- k- Part; this was observed in [6].
Consequently, under the Exponential Time Hypothesis (ETH) there is no n1/(log log n)c

-approximation for Minmax- Hypergraph- k- Part for some absolute constant c.
Our algorithmic result in Theorem 1.1, of course, also applies to the special case of
Minmax- Graph- k- Part. We will later point out that an alternative algorithm for
Minmax- Graph- k- Part can be obtained from previous results on Graph- k- Cut
while it is not the case for hypergraphs.

Several results on graphs and hypergraphs rely on submodularity of their cut
function. We recall that a real-valued set function f : 2V → R is submodular if
f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) for all A, B ⊆ V and is symmetric if
f (A) = f (V \A) for all A ⊆ V . The cut function of a hypergraph is symmet-
ric and submodular when the hyperedge weights are non-negative. Our algorithm
for hypergraphs is a special case of our more general result on minmax partition-
ing of symmetric submodular functions. In this problem, the input is a finite ground
set V , a symmetric submodular function f (provided by an evaluation oracle2) and
an integer k. The goal is to partition V into k non-empty parts V1, . . . , Vk to mini-
mize maxki=1 f (Vi ). We refer to this problem asMinmax- SymSubmod- k- Part and
observe that Minmax- Hypergraph- k- Part is a special case.Minmax- Submod-
k- Part refers to the problem when f is submodular (but not necessarily symmetric).

1 A hyperedge e crosses S ⊆ V if e ∩ S �= ∅ and e ∩ (V \S) �= ∅.
2 An evaluation oracle for a set function f over a ground set V returns the value of f (S) given S ⊆ V .
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Minmax- Submod- k- Part is NP-Hard even for k = 2.3 However we show that
Minmax- SymSubmod- k- Part is polynomial-time solvable for any fixed k.

Theorem 1.2 Minmax- SymSubmod- k- Part has a polynomial-time algorithm for
any fixed k. In particular, there is an algorithm that runs in time nO(k2)T , where n is
the size of the ground set and T is the time to evaluate the input function f on a given
set.

We note that Theorem 1.2 does not require the input function to be non-negative.
This is not surprising since we can add a large positive constant to the function to
make it non-negative without violating submodularity and symmetry and an optimum
solution to the shifted function yields an optimum solution to the original function.

When k is part of the input,Minmax- SymSubmod- k- Part inherits the hardness
of approximation of Minmax- Hypergraph- k- Part that we already mentioned.
One can also easily obtain a 2k-approximation for Minmax- SymSubmod- k- Part
when f is non-negative.

1.1 Motivation and Related Problems

Given a real-valued set function f : 2V → R and a partition V1, . . . , Vk of V , one
can measure the quality of the partition in various natural ways. Two natural mea-
sures are maxki=1 f (Vi ) and

∑k
i=1 f (Vi ). Once a measure is defined, a corresponding

optimization problem arises where one seeks to find a partition that minimizes the
measure (we can also consider maximizing the measure but the focus of this paper is
on minimizing the measure).

Minmax objective is particularly useful in load-balancing scenarios. Consider the
classicalMultiprocessor Scheduling problem of assigning n jobs with given real-
valued processing times p1, . . . , pn to k machines to minimize the maximum load.
This can be easily cast as a special case of Minmax- Submod- k- Part where the
function f is the modular function p defined by p(S) = ∑

i∈S pi ; this special case
is NP-Hard even for k = 2 via a reduction from 2-Partition. Motivated by such
load balancing problems and considerations, several problems have been considered
in algorithms literature. Svitkina and Tardos [28] introduced the minmax version of
the multiway cut problem (Minmax- Multiway- Cut) motivated by applications
in networking: the input is an edge-weighted graph G = (V , E) and k terminals
{s1, s2, . . . , sk} ⊆ V , and the goal is to partition V into k parts V1, . . . , Vk such that
si ∈ Vi for all i ∈ [k] so as to minimize maxki=1 w(δ(Vi )). They showed that it is
NP-hard for k = 4 and gave a poly-logarithmic approximation for arbitrary k. This
was subsequently improved by Bansal, Feige, Krauthgamer, Makarychev, Nagarajan,
Naor, and Schwartz [1] who obtained an O(

√
log n log k) approximation. Bansal et

3 Minmax- Submod- k- Part for k = 2 is weakly NP-hard by reduction from 2-Partition It is also
strongly NP-hard: for matroid rank functions, the optimum value is strictly less than the rank of the ground
set if and only if there exist two disjoint cocircuits in the matroid; Bernáth and Király have shown that
verifying the existence of two disjoint cocircuits in a linear matroid specified by its matrix representation
is NP-complete [3]. However, it is an interesting exercise to the reader to see that Minmax- SymSubmod-
k- Part for k = 2 reduces to submodular function minimization and is hence, solvable in polynomial
time.
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al. also considered related problems where there are additional balance constraints on
the number of vertices in each part; we refer the reader to their paper for more details.
In addition, they showed a negative result that suggests that an approximation factor
better than k1−ε (without a dependence on n) is unlikely. We note that Minmax-
Graph- k- Part differs from Minmax- Multiway- Cut: no terminals are specified
in the former problem.

Svitkina and Fleischer [27] considered Submod- Load- Balancing which is the
restriction of Minmax- Submod- k- Part to monotone4 submodular functions—
monotonicity is natural in some applications. They showed that, when k is part of the
input, Submod- Load- Balancing is hard to approximate to within an o(

√
n/ log n)-

factor unless the algorithm makes exponential number of queries to the function
evaluation oracle. They also describe an O(

√
n log n) approximation. The approx-

imability of the problem when k is a fixed constant appears to be open.
The minmax objective for submodular functions has also been investigated among

other objectives in machine learning applications from an empirical perspective [30].
Minsum objective: The minmax objective has several important connections to the
minsum objective in terms of motivation, problems, and techniques. The minsum
objective in partition problems captures several well-known problems that we discuss
now. The Graph- k- Cut problem is the following: given an undirected graph G =
(V , E) with edge weights w : E → R+, remove a minimum weight subset of edges
so that the resulting graph has at least k connected components. One can also view
this equivalently as a minsum partition problem where the goal is to partition V into
k non-empty parts V1, . . . , Vk to minimize

∑k
i=1 w(δ(Vi )). There are two natural

generalizations of Graph- k- Cut to hypergraphs based on these two viewpoints: (1)
In the Hypergraph- k- Cut problem, one seeks to find a minimum weight subset
of hyperedges of a given hyperedge-weighted hypergraph whose deletion leads to at
least k non-empty connected components. (2) In the Hypergraph- k- Part problem,
one seeks to find a k-partition V1, . . . , Vk of the vertex set of a given hypergraph G =
(V , E)with hyperedge-weightsw : E → R+ tominimize

∑k
i=1 w(δ(Vi )). In contrast

to graphs, Hypergraph- k- Cut and Hypergraph- k- Part are not equivalent. One
can consider generalizations of minsum problems to submodular functions leading
to the Submod- k- Part problem: given a submodular function f : 2V → R over
a ground set V and an integer k, the goal is to partition V into k non-empty parts
V1, . . . , Vk to minimize

∑k
i=1 f (Vi ). Sym- Submod- k- Part is the special case of

Submod- k- Partwhen the input function f is symmetric submodular. One can easily
see that Hypergraph- k- Part is a special case of Sym- Submod- k- Part while it
takes a bit more work to see that Hypergraph- k- Cut is a special case of Submod-
k- Part [23].

Graph- k- Cut has been extensively studied. It generalizes the global mincut
problem and is non-trivial even when k = 3. Graph- k- Cut was shown to be
polynomial-time solvable for any fixed k by Goldschmidt and Hochbaum [12]. The
same work also showed NP-Hardness when k is part of the input. There have been sev-
eral other algorithms including the random contraction approach of Karger and Stein
[19], and the tree packing approach ofKarger [18] and Thorup [29].We refer the reader

4 A set function f : 2V → R is monotone if f (A) ≤ f (B) for all A ⊆ B ⊆ V .
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to [9, 14, 15] for several recent results and additional pointers on Graph- k- Cut. In
contrast, the complexity of Hypergraph- k- Cut was open until fairly recently. A
randomized polynomial-time algorithm for any fixed k, based on random contrac-
tion, was first described by Chandrasekaran, Xu, and Yu [5] which was subsequently
improved by Fox, Panigrahi, and Zhang [10]. A deterministic algorithm based on a
generalization of the Goldschmidt-Hochbaum approach was given very recently by
the authors of the current paper [4].When k is part of the input,Graph- k- Cut admits
a 2(1−1/k)-approximation [25], and moreover conditional hardness results show that
this is the best possible [21]. Chekuri and Li [8] show that Hypergraph- k- Cut is
hard to approximate to within almost polynomial-factor under ETH.

The complexity of Submod- k- Part and Sym- Submod- k- Partwhen k is fixed
are important open problems. Polynomial time algorithms are known for Submod-
k- Part for k ≤ 3 [23] and for Sym- Submod- k- Part for k ≤ 4 [13].

As far as we are aware, no prior results existed on the worst-case complexity of
the minmax partition problems that we study in this work. The minmax objective is
in general more complex to handle as shown by negative results and prior work.
Minmax from Minsum objective: There is a useful connection between the minsum
and the minmax objectives that we describe now: an α-approximation for Submod-
k- Part implies an αk approximation for Minmax- Submod- k- Part when the
underlying function f is non-negative. We sketch this argument: Suppose there is an
optimum k-partition for the minmax objective with value B. Then the sum-objective
value of the same partition is at most kB. Thus, an α-approximation for minsum
yields a partition whose sum-objective value is at most αkB and this partition has
max-objective value at most αkB (since f is non-negative).

The above-mentioned connection also leads to an nO(k2)-time algorithm for
Minmax- Graph- k- Part as follows: Suppose P is an optimum k-partition for
Minmax- Graph- k- Part on the given graph with optimum minmax objective value
being B. Then, the optimum minsum objective value is at least B. Moreover, P has
sum-objective value at most kB. Thus, if we can enumerate all k-approximate solu-
tions to the minsum objective, then one of them will have max-objective value at most
B. In graphs, we can indeed enumerate all β-approximate minsum k-partitions in time
nO(βk) [19]. So, we can get an optimum partition for Minmax- Graph- k- Part by
choosing the best among the k-approximate optimum solutions to Graph- k- Cut,
which would take nO(k2)-time. However, this approach does not extend to hyper-
graphs or general symmetric submodular functions since the problem of enumerating
k-approximate optimum solutions to the minsum objective is not known to be solvable
efficiently in these settings.
Gomory–Hu tree and symmetric submodular functions. An important structural prop-
erty of symmetric submodular functions is that they admit a Gomory–Hu tree and it
can be found efficiently [26]. A Gomory–Hu tree for a symmetric submodular func-
tion f : 2V → R is a tree T = (V , E) such that for every tree-edge st ∈ E , the
partition (A, V \ A) is a minimum (s, t)-terminal cut (with respect to f ), where A
is a component in T − st . In algorithmic applications, one often endows the tree T
with edge weights w : E → R given by w(st) = f (A), where st ∈ E and A is a
component in T −st . The existence of Gomory–Hu trees provide a unified explanation
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for efficient solvability/approximability of certain partitioning problems for symmet-
ric submodular functions (e.g., efficient solvability of T -odd cut, 2-approximation for
Sym- Submod- k- Part, etc.)—all these algorithms construct the Gomory–Hu tree
with edge weights and solve the problem of interest on the resulting edge-weighted
tree, which tends to be substantially simpler owing to the tree structure. However, we
note that Gomory–Hu trees may carry no information for Minmax- SymSubmod-
k- Part. E.g., consider Minmax- Graph- k- Part for the complete graph Kn on n
vertices: the optimal value is (n − k + 1)(k − 1). The natural approach of finding a
Gomory–Hu tree and solving the problem on the tree fails even for this example: the
star graph on n vertices with all edge weights being n − 1 is a Gomory–Hu tree for
Kn . The optimum value of Minmax- Graph- k- Part for this tree is (n − 1)(k − 1).

1.2 Technical Overview andMain Structural Result

Our algorithm forMinmax- SymSubmod- k- Part is inspired, at a high-level, by the
work ofGoldschmidt andHochbaumonGraph- k- Cut [12]. Their approach has been
subsequently refined and applied with additional ideas to several related problems [4,
11, 17, 22, 31] Our approach for Minmax- SymSubmod- k- Part also builds on the
ideas of Goldschmidt and Hochbaum, so we briefly recall their ideas.

A key algorithmic tool in the approach of [12], as well as our approach here, is
the use of terminal cuts. We need some notation. Let f : 2V → R be a symmetric
submodular function over the ground set V . For subsets A and B of the ground set V ,
we will use A − B to denote A \ B. For a subset U of the ground set V , we use U to
denote V −U . The value of a 2-partition (U ,U ) is f (U ). Let S, T be disjoint subsets
of the ground set V . A 2-partition (U ,U ) is an (S, T )-terminal cut if S ⊆ U ⊆ V −T .
Here, the set U is known as the source set and the set U is known as the sink set. A
minimum valued (S, T )-terminal cut is known as a minimum (S, T )-terminal cut.
Since there could be multiple minimum (S, T )-terminal cuts, we will be interested
in the source maximal minimum (S, T )-terminal cut. There exists a unique source
maximal minimum (S, T )-terminal cut and it can be found in polynomial-time if we
are given evaluation access to the submodular function (by relying on submodular
function minimization)—e.g., see [11].

The approach of Goldschmidt and Hochbaum [12] for Graph- k- Cut is the fol-
lowing (for unit-weights on the edges). For S ⊆ V , let δ(S) denote the set of edges
crossing S in the input graph. Suppose (V1, V2, . . . , Vk) is an optimum minsum k-
partition such that V1 is the cheapest part (that is, |δ(V1)| ≤ |δ(Vi )| for every i ∈ [k]),
and V1 is maximal subject to this condition. They show that one can identify V1 via
the following key structural theorem: either |V1| ≤ k − 1 or there exist disjoint vertex
subsets S, T ⊆ V with |S| ≤ k − 2, |T | = k − 1 so that the source maximal mini-
mum (S, T )-terminal cut is (V1, V1). Thus, one can guess/enumerate all pairs (S, T )

of small sizes to find an O(n2k)-sized collection of sets containing V1. This enables
a simple recursive algorithm: For each set in the collection, we assume it is V1 and
recurse to find a cheapest (k − 1)-partition in the graph G[V \ V1]. This leads to an
nO(k2)-time algorithm.
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The proof of the key structural theorem in [12] is non-trivial and relies heavily
on properties of the cut function of graphs. Queyranne [24] claimed that a natural
generalization of the preceding structural theorem holds in the more general setting of
symmetric submodular functions, namely for the problem of Sym- Submod- k- Part
which generalizes Graph- k- Cut. However, as reported in [13], the claimed proof
was incorrect and it was only proved for k = 3, 4. A starting point for our work here
is a proof of (a mild relaxation of) the claim of Queyranne for all k—see Theorem 4.1.
Theorem4.1 is not directly relevant to the presentwork, but it appears to be a promising
direction towards obtaining an efficient algorithm for Sym- Submod- k- Part, hence
we devote Sect. 4 to state and discuss its implications. Our proof of his claim relies only
on submodularity (and symmetry) and hence, it gives a conceptually clean proof of the
original algorithmic approach of [12] for Graph- k- Cut. Unfortunately, as noted in
[13], this structural theorem does not lead to an algorithm for Sym- Submod- k- Part
because one cannot recurse on V \V1; the function f restricted to V \V1 may no longer
be symmetric! However, the approach works for Graph- k- Cut fortuitously because
in graphs, we can afford to work with the cut function of the subgraph G[V \ V1] as
opposed to the original cut function restricted to V \ V1.

Recall that we are actually interested in the minmax objective and we wish to
handle the general setting of Minmax- SymSubmod- k- Part. For this objective we
prove a structural theorem that is similar in spirit to that of the minsum objective but
technically somewhat different. We state this structural theorem now.

We need some notation. We will denote a k-partition by an ordered tuple—it will
be important to view it as an ordered tuple rather than a collection of k disjoint sets
whose union is V . Given a k-partition (V1, V2, . . . , Vk) of V , we denote

cost f (V1, V2, . . . , Vk) := max{ f (Vi ) : i ∈ [k]}.

A k-partition is a minmax k-partition with respect to f if it has the least cost among
all possible k-partitions. We will drop the subscript f from the cost notation and avoid
repeating the phrase “with respect to f ” when the function f of interest is clear from
context (the subscript and the phrasing will be needed primarily in Sect. 3). We will
be interested in minmax k-partitions (V1, . . . , Vk) for which V1 is maximal: formally,
we define a minmax k-partition (V1, . . . , Vk) to be a V1-maximal minmax k-partition
if there is no other minmax k-partition (V ′

1, . . . , V
′
k) such that V1 is strictly contained

in V ′
1. The following is our main structural result.

Theorem 1.3 Let f : 2V → R be a symmetric submodular function and let k ≥ 2 be
an integer. Let (V1, . . . , Vk) be a V1-maximal minmax k-partition with respect to f .

Then, for every subset T ⊆ V1 such that T ∩Vj �= ∅ for every j ∈ {2, . . . , k}, there
exists a subset S ⊆ V1 of size at most k − 1 such that (V1, V1) is the source maximal
minimum (S, T )-terminal cut.

We emphasize a key feature of our structural result: it does not require V1 to be a
cheapest part among all parts of the optimum k-partition (in contrast to the structural
result of Goldschmidt-Hochbaum for the minsum objective in graphs). Informally
speaking, our structural result says that under maximality of V1, there exist disjoint
sets S, T ⊆ V with |S|, |T | ≤ k−1 such that (V1, V1) is the source-maximalminimum
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(S, T )-terminal cut. Thus, we can compute a collection of nO(k) candidate sets such
that the collection contains V1.

The key feature of our structural theorem immediately implies that the problem
can be solved in (nO(k2) + nO(k)T )-time if there exists a unique minmax k-partition,
say V1, . . . , Vk (i.e., if the only ordered tuple of minmax k-partitions are permutations
of the ordered tuple (V1, . . . , Vk)). For this, we note that the reordered k-partition
(A1 := Vi , A2 := V1, . . . , Ai := Vi−1, Ai+1 := Vi+1, . . . , Ak := Vk) is an A1-
maximal minmax k-partition due to uniqueness and hence, the theorem applies to this
reordered k-partition. As a consequence, our candidate collection of nO(k) sets not
only contains V1, but also contains V2, . . . , Vk . Hence, we can iterate over all possible
k-tuples of the sets in the collection to compute their cost (if they form a k-partition
of V ) and return the cheapest k-partition among all. We emphasize that this approach
fails if the optimum k-partition is not unique. Moreover, minmax objective tends to
have multiple optimum solutions in general. We next discuss the case in which the
input function has multiple optimum solutions.

It may now appear that once we have the structural theorem, we can remove V1 (by
trying all possible candidate sets) and recurse to find a minmax (k − 1)-partition of f
restricted to V \V1. As we remarked earlier, the function f when restricted to V \V1 is
not symmetric, so we will not be able to apply the structural theorem in the next step
already! Moreover, the minmax objective is not conducive to the removal of a part of
an optimum k-partition (e.g., consider what happens when f is the graph cut function
and we try to find V2 after removing V1 from the graph). We overcome these issues by
contracting V1 as opposed to removing it. Contracting V1 to a singleton allows us to
continue working with a symmetric submodular function. Now, our goal is to find a
second non-singleton part in the optimum k-partition to make progress. We show that
this is indeed possible. In order to do this we crucially rely on two aspects: (1) the fact
that we are working with the minmax objective, and (2) the key feature of our main
structural result that only relies on the maximality of V1. The same approach extends
inductively to enable us to find all parts of the optimum k-partition (see Sect. 3 for the
complete algorithm and details).

As we saw, minmax submodular k-partition is NP-Hard even for k = 2 for simple
asymmetric functions (e.g., modular functions). Symmetry of the submodular function
is a crucial ingredient in the proof of our structural result. Symmetric submodular
functions are also posi-modular, i.e., they satisfy

f (A) + f (B) ≥ f (A − B) + f (B − A) ∀ A, B ⊆ V .

Posimodularity allows for certain uncrossing properties that have been exploited in past
work [1, 7, 28] explicitly or implicitly. Another important ingredient in the proof of our
structural result is a strengthening of an uncrossing lemma underlying a containment
property from [23]—we use symmetry to strengthen their uncrossing lemma for the
minmax objective (see Lemma 2.1). Our proof of Lemma 2.1 gives an alternate simpler
proof of their uncrossing lemma for symmetric submodular functions.
Organization. We prove our main structural theorem in Sect. 2 and design the algo-
rithm in Sect. 3. We extend our main structural theorem to the minsum objective in
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Sect. 4 and conclude with some approaches for the minsum objective for symmetric
submodular functions in Sect. 5.

2 Main Structural Theorem

In this section, we prove Theorem 1.3. The proof consists of two high-level steps:

1. In the first step, we show that for every S ⊆ V1 and every T ⊆ V1 such that T
intersects Vj for every j ∈ {2, . . . , k}, a minimum (S, T ) terminal cut (U ,U )

satisfies the property that U ⊆ V1. This containment property is captured in
Lemma 2.1.

2. In the second step,we show that for everyT as above, there exists a small set S ⊆ V1
such that the source maximal minimum (S, T )-terminal cut will be (V1, V1). We
show that |S| ≤ k − 1 suffices. The proof of this relies on an uncrossing property
that is captured in Theorem 2.1.

2.1 Containment Property

We show the containment property in this section. The uncrossing underlying the
proof of the containment property is inspired by the one due to Okumoto, Fukunaga,
and Nagamochi for the minsum objective (Theorem 5 of [23]). Our proof exploits the
symmetry of the input function to apply their idea for the minmax objective.

Lemma 2.1 Let f : 2V → R be a symmetric submodular function, k ≥ 2 be an integer,
(V1, . . . , Vk) be a V1-maximal minmax k-partition with respect to f , and S ⊆ V1,
T ⊆ V1 such that T ∩Vj �= ∅ for every j ∈ {2, . . . , k}. Suppose (U ,U ) is a minimum
(S, T )-terminal cut. Then, U ⊆ V1.

Proof For the sake of contradiction, supposeU\V1 �= ∅. ConsiderW1 := V1 ∪U and
Wj := Vj −U for every j ∈ {2, . . . , k} (see Fig. 1).

Since W1 ⊇ S �= ∅ and Wj ⊇ T ∩ Vj �= ∅ for all j ∈ {2, . . . , k}, we have that
(W1, . . . ,Wk) is a k-partition. Claim 2.1 shows that the cost of this k-partition is at
most that of (V1, . . . , Vk). Hence, (W1, . . . ,Wk) is a minmax k-partition. Moreover,
W1 is a strict superset of V1 as U \ V1 �= ∅ and hence, (W1, . . . ,Wk) contradicts
V1-maximality of the minmax k-partition (V1, . . . , Vk). ��

Claim 2.1 For every i ∈ [k], we have f (Wi ) ≤ f (Vi ).

Proof We distinguish two cases. Suppose i = 1. Then, f (V1 ∩ U ) ≥ f (U ) since
(V1∩U , V1 ∩U ) is a (S, T )-terminal cut while (U ,U ) is a minimum (S, T )-terminal
cut. Hence, we have that

f (V1) + f (U ) ≥ f (V1 ∪U ) + f (V1 ∩U ) (by submodularity)

≥ f (V1 ∪U ) + f (U ).

Consequently, f (V1) ≥ f (V1 ∪U ) = f (W1).
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Fig. 1 Uncrossing in the proof of Lemma 2.1

Next, suppose i ∈ {2, . . . , k}. Then, f (U − Vi ) ≥ f (U ) since (U − Vi ,U − Vi )
is a (S, T )-terminal cut while (U ,U ) is a minimum (S, T )-terminal cut. Hence, we
have that

f (Vi ) + f (U ) ≥ f (Vi −U ) + f (U − Vi ) (by posimodularity)

≥ f (Vi −U ) + f (U ).

Consequently, f (Vi ) ≥ f (Vi −U ) = f (Wi ). ��

2.2 Uncrossing Theorem

Our next ingredient is an uncrossing theorem to obtain a cheap k-partition.

Theorem 2.1 Let f : 2V → R be a symmetric submodular function, k ≥ 2 be an
integer, and ∅ �= U � V . Let C = {u1, . . . , uk} ⊆ U. Let (Ai , Ai ) be a minimum
(C\{ui },U )-terminal cut for every i ∈ [k]. Suppose that ui ∈ Ai \ (∪ j∈[k]\{i}A j ) for
every i ∈ [k] and f (A1) ≤ f (A2) ≤ · · · ≤ f (Ak). Then, there exists a k-partition
(P1, . . . , Pk) of V such that

f (Pi ) ≤ f (Ai ) ∀ i ∈ [k].

In particular cost f (P1, . . . , Pk) ≤ max{ f (Ai ) : i ∈ [k]}.

Proof See Fig. 2 for an illustration of the sets that appear in the statement of the
theorem.

We begin with the following uncrossing claim showing that there exists a cheap
(k − 1)-partition of ∪k−1

i=1 Ai (cheap in the sense that the function value of every part is
small). Its proof relies on posimodularity and it has appeared implicitly (for the graph
cut function) in previous works [1, 28].

Claim 2.2 There exist subsets P1, . . . , Pk−1 of V such that

(i) Pi and Pj are disjoint for every distinct i, j ∈ [k − 1],
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Fig. 2 Illustration of the sets that appear in Theorem 2.1

Procedure

Initialize Pi ← Ai for every i ∈ [k − 1]
While there exist distinct i, j ∈ [k − 1] such that Pi ∩ Pj �= ∅

If f(Pi − Pj) ≤ f(Pi)
Pi ← Pi − Pj

Else

Pj ← Pj − Pi

Fig. 3 Procedure for the proof of Claim 2.2

(ii) ui ∈ Pi for every i ∈ [k − 1],
(iii) ∪k−1

i=1 Pi = ∪k−1
i=1 Ai ,

(iv) f (Pi ) ≤ f (Ai ) for every i ∈ [k − 1].

Proof We use the procedure given in Fig. 3 to obtain subsets P1, . . . , Pk−1 of V with
the desired properties.

The procedure terminates in finite number of iterations since the steps in the while
loop make progress towards ensuring that the sets P1, . . . , Pk−1 are mutually disjoint.
Property (i) is achieved due to the termination condition. Properties (ii) and (iii) are
maintained as invariants throughout the procedure (recall that ui ∈ Ai but ui /∈ A j for
all distinct i, j ∈ [k − 1]). Property (iv) is also maintained as an invariant throughout
the procedure by posi-modularity: recall that by posimodularity, for every two sets
X and Y we have that f (X − Y ) + f (Y − X) ≤ f (X) + f (Y ) and hence, either
f (X − Y ) ≤ f (X) or f (Y − X) ≤ f (Y ) should hold. ��
Let Pk := V −∪k−1

i=1 Pi . By property (i) of Claim 2.2, the sets Pi and Pj are disjoint
for every distinct i, j ∈ [k]. By properties (ii) and (iii) of Claim 2.2, we have that
ui ∈ Pi for every i ∈ [k]. Hence, (P1, . . . , Pk) form a k-partition of the ground set V .
By property (iv) of Claim 2.2, we have that f (Pi ) ≤ f (Ai ) for every i ∈ [k − 1]. It
remains to show that f (Pk) ≤ f (Ak).
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By property (iii) of Claim 2.2, we have that Pk = ∪k−1
i=1 Pi = ∪k−1

i=1 Ai = ∩k−1
i=1 Ai .

Let Bi := Ai for every i ∈ [k].
Claim 2.3 below shows that the function value of Pk is at most that of Ak by relying

on submodularity and the hypothesis that (Ai , Ai ) is aminimum (C\{ui },U )-terminal
cut for every i ∈ [k], thus completing the proof.

We note that Claim 2.3 has been used in previous works in different contexts [11].
��

Claim 2.3 We have that

f
(∩i∈[k−1]Bi

) ≤ f (Bk).

Proof Suppose not. Choose maximal J ⊆ [k − 1] such that f (∩ j∈J B j ) ≤ f (Bk).
We note that J �= ∅ since f (Bj ) ≤ f (Bk) for every j ∈ [k − 1]. By assumption,
J � [k − 1] (otherwise we are done). Let i ∈ [k − 1]\J and R := ∩ j∈J B j . We note
that f (R ∪ Bi ) ≥ f (Bi ) since (R ∪ Bi , R ∪ Bi ) is a (C \ {ui },U )-terminal cut while
(Bi , Bi ) is a minimum (C\{ui },U )-terminal cut. Then,

f (Bk) + f (Bi ) ≥ f (R) + f (Bi ) (By choice of J )

≥ f (R ∪ Bi ) + f (R ∩ Bi ) (By submodularity)

≥ f (Bi ) + f (R ∩ Bi ).

Therefore, f (R ∩ Bi ) ≤ f (Bk) and hence, the set J ∪ {i} contradicts the choice of J .
��

2.3 Proof of Theorem 1.3

We now restate and prove Theorem 1.3.

Theorem 1.3 Let f : 2V → R be a symmetric submodular function and let k ≥ 2 be
an integer. Let (V1, . . . , Vk) be a V1-maximal minmax k-partition with respect to f .

Then, for every subset T ⊆ V1 such that T ∩Vj �= ∅ for every j ∈ {2, . . . , k}, there
exists a subset S ⊆ V1 of size at most k − 1 such that (V1, V1) is the source maximal
minimum (S, T )-terminal cut.

Proof We emphasize that V1-maximality of the minmax k-partition (V1, . . . , Vk)with
respect to f will be used in this proof only to guarantee the applicability of Lemma
2.1. Suppose |V1| ≤ k−1. Then, we consider S = V1. We have that |S| ≤ k−1. Since
(V1, . . . , Vk) is a V1-maximal minmax k-partition with respect to f and S ⊆ V1, we
can apply Lemma 2.1. By this lemma,

we have that (V1, V1) is the source maximal minimum (S, T )-terminal cut for every
T ⊆ V1 such that T ∩ Vj �= ∅ for every j ∈ {2, . . . , k}, thus proving the theorem. We
consider the case of |V1| ≥ k in the rest of the proof.

For the sake of contradiction, suppose that the theorem is false for some subset
T ⊆ V1 such that T ∩ Vj �= ∅ for all j ∈ {2, . . . , k}. Our proof strategy is to
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obtain a cheaper k-partition than (V1, . . . , Vk), thereby contradicting the optimality
of (V1, . . . , Vk). Let OPTk denote the cost of (V1, . . . , Vk). For a subset X ⊆ V1, let
(VX , VX ) be the source maximal minimum (X , T )-terminal cut. By Lemma 2.1, we
have that VX ⊆ V1 for all X ⊆ V1.

Among all possible subsets of V1 of size k − 1, pick a subset S such that f (VS) is
maximum. Then, by Lemma 2.1 and assumption, we have that VS � V1. By source
maximality of the minimum (S, T )-terminal cut (VS, VS), we have that f (VS) <

f (V1). Let u1, . . . , uk−1 be the vertices in S. Since VS � V1, there exists a vertex
uk ∈ V1\VS . Let C := {u1, . . . , uk} = S∪{uk}. For i ∈ [k], let (Bi , Bi ) be the source
maximal minimum (C −{ui }, T )-terminal cut. We note that (Bk, Bk) = (VS, VS) and
the size of C − {ui } is k − 1 for every i ∈ [k]. By Lemma 2.1 and assumption, we
have that Bi � V1 for every i ∈ [k]. Hence, we have

f (Bi ) ≤ f (VS) < f (V1) and Bi � V1 for every i ∈ [k]. (1)

The next claim will set us up to apply Theorem 2.1.

Claim 2.4 For every i ∈ [k], we have that ui ∈ Bi .

Proof The claim holds for i = k by choice of uk . For the sake of contradiction,
suppose ui ∈ Bi for some i ∈ [k − 1]. Then, the 2-partition (VS ∩ Bi , VS ∩ Bi ) is a
(S, T )-terminal cut while (VS, VS) is a minimum (S, T )-terminal cut and hence

f (VS ∩ Bi ) ≥ f (VS).

We also have that

f (VS ∪ Bi ) ≥ f (VS)

since (VS ∪ Bi , VS ∪ Bi ) is a (S, T )-terminal cut while (VS, VS) is a minimum (S, T )-
terminal cut. Thus,

2 f (VS) ≥ f (VS) + f (Bi ) (By choice of S)

≥ f (VS ∪ Bi ) + f (VS ∩ Bi ) (By submodularity)

≥ 2 f (VS). (By the inequalities above)

Therefore, all inequalities above should be equations and hence, f (VS∪Bi ) = f (VS).
Consequently, the 2-partition (VS ∪ Bi , VS ∪ Bi ) is a minimum (S, T )-terminal cut.
However, this contradicts source maximality of the minimum (S, T )-terminal cut
(VS, VS) since uk ∈ Bi and uk /∈ VS . ��

We note that for every i ∈ [k], the 2-partition (Bi , Bi ) is a minimum (C−{ui }, V1)-
terminal cut since V1 ⊆ Bi .

Wewill now apply Theorem 2.1.We considerU := V1 andC = {u1, . . . , uk} ⊆ U .
Let (Ai , Ai ) := (Bi , Bi ) for every i ∈ [k]. The 2-partition (Ai , Ai ) is a minimum
(C \ {ui },U )-terminal cut for every i ∈ [k]. By Claim 2.4, we have that ui ∈ Ai for
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every i ∈ [k]. Since (Bj , Bj ) is a (C − {u j }, T )-terminal cut, we have that ui /∈ Bj

for every distinct i, j ∈ [k]. Thus, ui ∈ Ai\(∪ j∈[k]\{i}A j ) for every i ∈ [k]. We may
reindex the elements in C so that f (A1) ≤ f (A2) ≤ · · · ≤ f (Ak). Therefore, the sets
U , C , and the 2-partitions (Ai , Ai ) for i ∈ [k] satisfy the conditions of Theorem 2.1.
By Theorem 2.1 and statement (1), we obtain a k-partition (P1, . . . , Pk) of V such
that

cost(P1, . . . , Pk) ≤ max{ f (Ai ) : i ∈ [k]} = f (VS) < f (V1) ≤ OPTk .

Thus, we have obtained a k-partitionwhose cost is smaller than OPTk , a contradiction.
��

3 Algorithm

In this section, we design an algorithm to solve Minmax- SymSubmod- k- Part
based on Theorem 1.3. Using Theorem 1.3, it is possible to efficiently enumerate
n2k−2 candidate subsets such that one of them is V1, where (V1, . . . , Vk) is a V1-
maximal minmax k-partition with respect to the input symmetric submodular function
f : 2V → R. However, after finding V1, we cannot recurse on the function f restricted
to V1 to find a cheapest (k−1)-partition: the restricted function may not be symmetric.
Instead, we will work with the function obtained by contracting V1. We define the
contraction operation now.

Let f : 2V → R be a symmetric submodular function. Let U be a subset of
the ground set V . We define the contracted function f /U as follows: the ground
set is V ′ := V − U + {u}, where u denotes the contracted element. The function
f /U : 2V ′ → R is defined as:

( f /U )(A) :=
{
f (A ∪U ) if u ∈ A ⊆ V ′,
f (A) if u /∈ A ⊆ V ′.

We note that the function f /U is symmetric and submodular. The following observa-
tion is easy but we give a proof for the sake of completeness.

Observation 3.1 If (V1, . . . , Vk) is a minmax k-partition with respect to f , then
(V2, . . . , Vk, {v1}) is a minmax k-partition with respect to f /V1 where v1 is the con-
tracted element.

Proof For notational simplicity, let g denote the function f /V1. Say (P1, . . . , Pk) is
a minmax k-partition with respect to g. For the sake of contradiction, suppose

costg(P1, . . . , Pk) < costg(V2, . . . , Vk, {v1}).

We observe that

costg(V2, . . . , Vk, {v1}) = cost f (V1, . . . , Vk).
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Without loss of generality, let v1 ∈ P1. Consider the k-partition (P ′
1 := (P1\{v1}) ∪

V1, P2, . . . , Pk) of V . We have that

cost f (P
′
1, P2, . . . , Pk) = costg(P1, . . . , Pk).

Hence, we have a k-partition (P ′
1, P2, . . . , Pk) that is cheaper with respect to f than

(V1, . . . , Vk), thus contradicting optimality of (V1, . . . , Vk). ��

Next, we define a crucial tie-breaking rule which will help us find the next part V2
by working with the contracted function f /V1, where (V1, . . . , Vk) is a minmax k-
partition with respect to f . A minmax k-partition (V1, . . . , Vk) is a lexicographically
maximal minmax k-partition if there is no other minmax k-partition (U1, . . . ,Uk)

with an i ∈ [k − 1] such that U1 = V1, . . . ,Ui−1 = Vi−1, but Ui � Vi . We observe
that a lexicographically maximal minmax k-partition always exists. Furthermore, if
(V1, . . . , Vk) is a lexicographically maximal minmax k-partition, then it is also a
V1-maximal minmax k-partition. The following lemma shows that contraction of V1
preserves lexicographic maximality in a certain sense.

Lemma 3.1 Let f : 2V → R be a symmetric submodular function, k ≥ 2 be a
positive integer, and (V1, . . . , Vk) be a lexicographically maximal minmax k-partition
with respect to f . Let f /V1 be the contracted function with v1 being the contracted
element. Then, (V2, . . . , Vk, {v1}) is a lexicographically maximal minmax k-partition
with respect to the contracted function f /V1.

Proof For notational simplicity, let g denote the function f /V1. By Observation 3.1,
the k-partition (V2, . . . , Vk, {v1}) is a minmax k-partition with respect to g. We now
show that (V2, . . . , Vk, {v1}) is a lexicographically maximal minmax k-partition with
respect to g. Suppose not. Then, there exists a minmax k-partition (U1, . . . ,Uk) with
respect to g and an index i ∈ [k − 1] such that U1 = V2,U2 = V3, . . . ,Ui−1 = Vi ,
but Ui � Vi+1. Without loss of generality, let v1 ∈ Uj for some j ∈ {i, . . . , k}. We
distinguish two cases.

Case 1 Suppose Uj\{v1} �= ∅. Then, the partition

(V1 ∪ (Uj \ {v1}),U1, . . . ,Uj−1,Uj+1, . . . ,Uk)

is a minmax k-partition with respect to f that contradicts lexicographic maximality
of (V1, . . . , Vk) (in particular, it contradicts V1-maximality).

Case 2 Suppose Uj = {v1}. Since |Ui | ≥ |Vi+1| + 1 ≥ 2 while |Uj | = 1, it follows
that j �= i . We recall that j ≥ i and consequently, j ≥ i + 1. Then, the partition

(V1, V2 = U1, . . . , Vi = Ui−1,Ui ,Ui+1, . . . ,Uj−1,Uj+1, . . . ,Uk)

is a minmax k-partition with respect to f that contradicts lexicographic maximality
of (V1, . . . , Vk) (in particular, it contradicts Vi+1-maximality as Ui � Vi+1). ��
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Generate-Candidates (f : 2V → R, k,Q)
Input: A function f : 2V → R, an integer k ≥ 2, and a subset Q of V
Output: A collection R ⊆ 2V

Initialize R ← ∅
For every disjoint S, T ⊂ V with |S| ≤ k − 1, T ⊇ Q and |T | = k − 1

Compute the source maximal minimum (S, T )-terminal cut (U,U)
R ← R ∪ {U}

Return R

Fig. 4 Procedure to generate candidates for V1

Lemma 3.1 suggests that if we know the part V1 of a lexicographically maximal
minmax k-partition (V1, . . . , Vk) with respect to f , then using Theorem 1.3 for the
function f /V1, we can efficiently enumerate n2k−2 candidate subsets such that one of
them is V2. We will now use this idea inductively to recover all parts of a lexicograph-
ically maximal minmax k-partition.

We state a corollary of Lemma 3.1whichwill be helpful in the inductive algorithmic
approach. The corollary follows from Lemma 3.1 by induction on i and by the fact
that contraction operation preserves symmetry and submodularity.

Corollary 3.1 Let f : 2V → R be a symmetric submodular function, k ≥ 2 be a
positive integer, and (V1, . . . , Vk) be a lexicographically maximal minmax k-partition
with respect to f . For i ∈ [k], let g = f /V1/V2/ . . . /Vi−1 be the contracted function
with v j being the contracted element corresponding to Vj for all j ∈ [i − 1]. Then,
(Vi , . . . , Vk, {v1}, . . . , {vi−1}) is a lexicographicallymaximalminmax k-partitionwith
respect to the function g.

We begin with the procedure in Fig. 4 that returns a collection of candidate sets
such that one of them is V1, where (V1, . . . , Vk) is a V1-maximal minmax k-partition
with respect to f . We summarize the guarantees of this procedure in Corollary 3.2.
The corollary follows immediately from Theorem 1.3.

Corollary 3.2 Let f : 2V → R be a symmetric submodular function on a n-element
ground set V and let k ≥ 2 be an integer. Let (V1, . . . , Vk) be a V1-maximal minmax
k-partition with respect to f . Suppose Q ⊆ V \ V1 such that |Q ∩ Vj | ≤ 1 for every
j ∈ {2, . . . , k}. Then,
(i) V1 is in the collectionR returned by Generate-Candidates( f , k, Q), and
(ii) the size of the collection R that is returned by Generate-Candidates( f , k, Q) is

O(n2k−2).

Moreover, Generate-Candidates procedure can be implemented to run in time
n2k−2T (n), where T (n) is the time for computing source maximal minimum (S, T )-
terminal cuts for a symmetric submodular function on n elements.

Wenowdescribe our algorithm to find aminmax k-partition in Fig. 5 and summarize
its guarantees in Theorem 3.1.

Theorem 3.1 Let f : 2V → R be a symmetric submodular function on a n-element
ground set V and let k ≥ 2 be an integer. Then, Algorithm Partition( f , k) given in
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Algorithm Partition (f : 2V → R, k)
Input: Symmetric submodular function f : 2V → R, an integer k ≥ 2
Output: A minmax k-partition with respect to f
Initialize C1 ← Generate-Candidates (f, k,Q ← ∅)
For i = 2, . . . , k − 1

Ci ← ∅
For each (i − 1)-partition (P1, . . . , Pi−1) ∈ Ci−1

g ← f/P1/P2/ . . . /Pi−1 where p1, . . . , pi−1 are the contracted elements

Q ← {p1, . . . , pi−1}
Ri ← Generate-Candidates (g, k,Q)
Ci ← Ci ∪ {(P1, . . . , Pi−1, U) : U ∈ Ri}

Ck ← {(P1, . . . , Pk−1, V \ ∪k−1
i=1 Pi) : (P1, . . . , Pk−1) ∈ Ck−1}

Among all k-partitions in Ck, pick the one with minimum cost and return it

Fig. 5 Algorithm to compute minimum k-partition for a symmetric submodular function

Fig.5 returns a minmax k-partition with respect to f and it can be implemented to
run in nO(k2)T (n) time, where T (n) denotes the time complexity for computing the
source maximal minimum (S, T )-terminal cut for a submodular function defined over
a ground set of size n.

Proof We first prove the run-time bound. For every i ∈ [k − 1], we have that
|Ci | = |Ci−1||Ri | = ∏i

j=1 |Ri | = O(n2i(k−1)) and the time to compute Ci is

O(n2i(k−1))T (n) using Corollary 3.2. Hence, |Ck | = |Ck−1| = O(n2(k−1)2) and the
total run-time is O(n2(k−1)2)T (n).

Next, we prove correctness. Let (V1, . . . , Vk) be a lexicographically maximal min-
max k-partition.Wewill show that (V1, . . . , Vi ) ∈ Ci for every i ∈ [k−1] by induction
on i . The base case of i = 1 follows immediately fromCorollary 3.2. For the induction
step, let i ≥ 2. By induction hypothesis, we have that (V1, . . . , Vi−1) ∈ Ci−1. Con-
sider g = f /V1/V2/ . . . /Vi−1 where v1, . . . , vi−1 are the contracted elements. Let A
be the ground set of g. Contraction operation preserves symmetry and submodularity.
So, g is a symmetric submodular function. By Corollary 3.1, the k-partition given by

(A1 := Vi , A2 := Vi+1, . . . , Ak−i+1 := Vk, Ak−i+2 := {v1}, . . . , Ak := {vi−1})

is a lexicographically maximal minmax k-partition with respect to g. Thus,
(A1, . . . , Ak) is a A1-maximal minmax k-partition with respect to g. Moreover, the
set Q = {v1, . . . , vi−1} is a subset of A\A1 such that |Q ∩ A j | = 1 for every
j ∈ {2, . . . , k} for which Q ∩ A j �= ∅. Hence, by Corollary 3.2, the set A1 is in the
collection Ri . Thus, Vi ∈ Ri and consequently, (V1, . . . , Vi−1, Vi ) ∈ Ci . ��

We note that source maximal minimum (S, T )-terminal cut for a submodular func-
tion f : 2V → R can be computed in time nO(1)T , where n = |V | and T is the
time per evaluation (e.g., see [11]). Thus, Theorem 1.2 follows from Theorem 3.1.
Moreover, the evaluation oracle for the hypergraph cut function can be implemented
in T = m time, where m is the number of hyperedges in the input hypergraph. Thus,
Theorem 1.1 follows from Theorem 1.2.
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4 Minsum Symmetric Submodular k-Partition

The ideas underlying the proof of our main structural theorem—i.e., Theorem 1.3—
can also be adapted to obtain a similar structural theorem for the minsum objective,
namely Sym- Submod- k- Part. Such a structural theorem helps in reducing Sym-
Submod- k- Part to Submod- (k −1)- Part. We devote this section to discuss these
extensions.

We begin with some notation for the minsum objective. Given a k-partition
(V1, V2, . . . , Vk) of the ground set V of a symmetric submodular function f : 2V →
R, the sum-objective value is

∑k
i=1 f (Vi ). A k-partition is a minsum k-partition if it

has the least sum-objective value among all possible k-partitions.Wewill be interested
in minsum k-partitions (V1, . . . , Vk) for which V1 is maximal: formally, we define a
minsum k-partition (V1, . . . , Vk) to be a V1-maximal minsum k-partition if there is
no other minsum k-partition (V ′

1, . . . , V
′
k) such that V1 is strictly contained in V ′

1. We
emphasize that there always exists a V1-maximal minsum k-partition such that V1 is
the cheapest part (i.e., f (V1) ≤ f (Vi ) for every i ∈ [k]). With this notation, we have
the following result.

Theorem 4.1 Let f : 2V → R be a symmetric submodular function and let k ≥ 2
be an integer. Let (V1, V2, . . . , Vk) be a V1-maximal minsum k-partition such that V1
is the cheapest part. Then, for every subset T ⊆ V1 such that T ∩ Vj �= ∅ for every
j ∈ {2, . . . , k}, there exists a subset S ⊆ V1 of size at most k − 1 such that (V1, V1)
is the source maximal minimum (S, T )-terminal cut.

Our proof of Theorem 4.1 closely resembles the proof of Theorem 1.3 and is
included in the appendix. We emphasize that Theorem 4.1 does not allow us to solve
Sym- Submod- k- Part. We explain the bottleneck here. Suppose that the optimum
minsum k-partition is unique and let it be V1, . . . , Vk . Then, the theorem helps us find
the part Vi whose function value is the cheapest. Now, we have two options: either (i)
consider the contracted function f /Vi which is symmetric submodular and recurse
or (ii) consider the function f restricted to V \ Vi which is submodular but may not
be symmetric and solve Submod- (k − 1)- Part on this instance. We note that the
contract and recurse approach does not work: the theorem applied to the contracted
function f /Vi will only help in finding vi but none of the remaining parts of the
optimum k-partition. However, we can use the restriction approach to reduce Sym-
Submod- k- Part to Submod- (k − 1)- Part as shown in Corollary 4.1 below. It is
known that Submod- k- Part is polynomial time solvable for k ≤ 4 [16, 23]. Thus,
Corollary 4.1 implies that Sym- Submod- k- Part is polynomial time solvable for
k ≤ 5.

Corollary 4.1 If there exists an algorithm for Submod- (k−1)- Part that runs in time
R(n, k) for n element ground sets, then there exists an algorithm for Sym- Submod-
k- Part that runs in time n2k−2R(n, k)+n2k−2T (n) for n element ground sets, where
T (n) is the time for computing source maximal minimum (S, T )-terminal cut for a
submodular function defined over a ground set of size n.

Proof Let the symmetric submodular function f : 2V → R be the input instance of
Sym- Submod- k- Part. We describe the algorithm: For every pair of disjoint subsets
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S, T ⊆ V satisfying 1 ≤ |S|, |T | ≤ k − 1, compute a source maximal minimum
(S, T )-terminal cut (U ,U ) and addU to the collection of candidates C. Next, for each
setU ∈ C, solve Submod- (k−1)- Part on the input instance f : 2V−U → R, i.e., the
function f restricted to V−U , to obtain an optimum (k−1)-partition (PU

1 , . . . , PU
k−1).

Among all k-partitions (U , PU
1 , . . . , PU

k−1), return the one with the cheapest sum-
objective value. The running time of the algorithm is n2k−2R(n, k) + n2k−2T (n).

Next, we prove correctness. Consider a V1-maximal minsum k-partition (V1, V2,
. . . , Vk) such thatV1 is the cheapest part. ByTheorem4.1, there exist subsets S, T ⊆ V
of size atmost k−1 such that (V1, V1) is the sourcemaximalminimum (S, T )-terminal
cut. Hence, V1 ∈ C. Consequently, Submod- (k − 1)- Part on the input instance
f : 2V−V1 → R, i.e., the function f restricted to V − V1, will return an optimum
(k − 1)-partition (PV1

1 , . . . , PV1
k−1) of V − V1 with respect to the function f restricted

to V − V1.
We claim that the k-partition (V1, P

V1
1 , . . . , PV1

k−1) is indeed an optimum k-
partition of V for the function f . For the sake of contradiction, suppose that
∑k

i=1 f (Vi ) < f (V1) + ∑k−1
j=1 f (PV1

j ). Then,
∑k

i=2 f (Vi ) <
∑k−1

j=1 f (PV1
j ) and

moreover, V2, . . . , Vk is a partition of V − V1. Thus, V2, . . . , Vk contradict the opti-
mality of the (k−1)-partition (PV1

1 , . . . , PV1
k−1) of V −V1 with respect to the function

f restricted to V − V1. ��
We further note that a form of the restriction approach allows us to solveGraph- k-

Cut in nO(k2) time: we can enumerate a collection of n2k−2 candidate sets for V1 and
for each candidate set U in the collection, we recurse on G[V \ U ] to find a minsum
(k − 1)-partition, concatenate it with U to obtain a k-partition, and return the best of
all k-partitions.

5 Conclusion

Given the general sense that it is harder to design algorithms/approximations for the
minmax objective than the minsum objective, our result is somewhat surprising: we
designed a polynomial-time algorithm for Minmax- SymSubmod- k- Part for all
fixed k while such a result is not yet known for Sym- Submod- k- Part (or even for
the special case of Hypergraph- k- Part). As a special case, our algorithm resolves
the complexity of Minmax- Hypergraph- k- Part for fixed k which was posed by
Lawler in 1973. Our key technical contribution is a structural theorem (Theorem
1.3) that enables efficient recovery of each part of an optimum minmax k-partition
by solving minimum (S, T )-terminal cuts. We were able to adapt the ideas underly-
ing the proof of the structural theorem to prove a claim for symmetric submodular
functions under the minsum objective that helps solve Sym- Submod- k- Part for
k ≤ 5—see Theorem 4.1, Corollary 4.1, and [16, 23]. It would be interesting to see
if Theorem 4.1 can be generalized/adapted to obtain a polynomial-time algorithm for
Sym- Submod- k- Part for fixed k. Subsequent to the publication of this work, Beide-
man, Chandrasekaran, andWang [2] used the minimum (S, T )-terminal cuts approach
to also enumerate all subsets of hyperedges that cross an optimum partition for a given
instance of Minmax- Hypergraph- k- Part in polynomial time for fixed k.
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Appendix A: Proof of Theorem 4.1

Our proof strategy for Theorem 4.1 is similar to the proof of Theorem 1.3: The first
step shows a containment lemma similar to Lemma 2.1, but for the minsum objective.
The second step will use the uncrossing result from Theorem 2.1. We begin with the
containment lemma for the minsum objective.

Lemma A.1 Let f : 2V → R be a symmetric submodular function, k ≥ 2 be an
integer, (V1, . . . , Vk) be a V1-maximal minsum k-partition with respect to f , and
S ⊆ V1, T ⊆ V1 such that T ∩ Vj �= ∅ for every j ∈ {2, . . . , k}. Suppose (U ,U ) is a
minimum (S, T )-terminal cut. Then, U ⊆ V1.

Proof The proof strategy is identical to the proof of the containment lemma for the
minmax objective (i.e., Lemma 2.1). For the sake of contradiction, supposeU\V1 �= ∅.
Consider W1 := V1 ∪U and Wj := Vj −U for every j ∈ {2, . . . , k} (see Fig. 1).

Since W1 ⊇ S �= ∅ and Wj ⊇ T ∩ Vj �= ∅ for all j ∈ {2, . . . , k}, we have
that (W1, . . . ,Wk) is a k-partition. We note that Claim 2.1 is still applicable for the
minsum setting as well. As a consequence of this claim, the sum-objective value of
the k-partition (W1, . . . ,Wk) is at most that of (V1, . . . , Vk). Hence, (W1, . . . ,Wk) is
a minsum k-partition. Moreover,W1 is a strict superset of V1 asU \V1 �= ∅ and hence,
(W1, . . . ,Wk) contradicts V1-maximality of the minsum k-partition (V1, . . . , Vk). ��

We are now ready to prove Theorem 4.1.

Theorem 4.1 Let f : 2V → R be a symmetric submodular function and let k ≥ 2
be an integer. Let (V1, V2, . . . , Vk) be a V1-maximal minsum k-partition such that V1
is the cheapest part. Then, for every subset T ⊆ V1 such that T ∩ Vj �= ∅ for every
j ∈ {2, . . . , k}, there exists a subset S ⊆ V1 of size at most k − 1 such that (V1, V1)
is the source maximal minimum (S, T )-terminal cut.

Proof The proof is almost identical to the proof of Theorem 1.3 except for the last but
one sentence.

Suppose |V1| ≤ k − 1. Then, we consider S = V1. We have that |S| ≤ k − 1 and
moreover, using Lemma A.1, we have that (V1, V1) is the source maximal minimum
(S, T )-terminal cut for every T ⊆ V1 such that T ∩ Vj �= ∅ for every j ∈ {2, . . . , k},
thus proving the theorem. We consider the case of |V1| ≥ k in the rest of the proof.

For the sake of contradiction, suppose that the theorem is false for some subset
T ⊆ V1 such that T ∩ Vj �= ∅ for all j ∈ {2, . . . , k}. Our proof strategy is to
obtain a cheaper k-partition than (V1, . . . , Vk), thereby contradicting the optimality
of (V1, . . . , Vk). Let OPTk denote the sum-objective value of (V1, . . . , Vk). For a
subset X ⊆ V1, let (VX , VX ) be the source maximal minimum (X , T )-terminal cut.
By Lemma A.1, we have that VX ⊆ V1 for all X ⊆ V1.

Among all possible subsets of V1 of size k − 1, pick a subset S such that f (VS) is
maximum. Then, by Lemma A.1 and assumption, we have that VS � V1. By source
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maximality of the minimum (S, T )-terminal cut (VS, VS), we have that f (VS) <

f (V1). Let u1, . . . , uk−1 be the vertices in S. Since VS � V1, there exists a vertex
uk ∈ V1\VS . Let C := {u1, . . . , uk} = S∪{uk}. For i ∈ [k], let (Bi , Bi ) be the source
maximal minimum (C −{ui }, T )-terminal cut. We note that (Bk, Bk) = (VS, VS) and
the size of C − {ui } is k − 1 for every i ∈ [k]. By Lemma 2.1 and assumption, we
have that Bi � V1 for every i ∈ [k]. Hence, we have

f (Bi ) ≤ f (VS) < f (V1) and Bi � V1 for every i ∈ [k]. (2)

The next claim will set us up to apply Theorem 2.1.

Claim A.1 For every i ∈ [k], we have that ui ∈ Bi .

Proof The claim holds for i = k by choice of uk . For the sake of contradiction,
suppose ui ∈ Bi for some i ∈ [k − 1]. Then, the 2-partition (VS ∩ Bi , VS ∩ Bi ) is a
(S, T )-terminal cut while (VS, VS) is a minimum (S, T )-terminal cut and hence

f (VS ∩ Bi ) ≥ f (VS).

We also have that

f (VS ∪ Bi ) ≥ f (VS)

since (VS ∪ Bi , VS ∪ Bi ) is a (S, T )-terminal cut while (VS, VS) is a minimum (S, T )-
terminal cut. Thus,

2 f (VS) ≥ f (VS) + f (Bi ) (By choice of S)

≥ f (VS ∪ Bi ) + f (VS ∩ Bi ) (By submodularity)

≥ 2 f (VS). (By the inequalities above)

Therefore, all inequalities above should be equations and hence, f (VS∪Bi ) = f (VS).
Consequently, the 2-partition (VS ∪ Bi , VS ∪ Bi ) is a minimum (S, T )-terminal cut.
However, this contradicts source maximality of the minimum (S, T )-terminal cut
(VS, VS) since uk ∈ Bi and uk /∈ VS . ��

We note that for every i ∈ [k], the 2-partition (Bi , Bi ) is a minimum (C−{ui }, V1)-
terminal cut since V1 ⊆ Bi .

Wewill now apply Theorem 2.1.We considerU := V1 andC = {u1, . . . , uk} ⊆ U .
Let (Ai , Ai ) := (Bi , Bi ) for every i ∈ [k]. The 2-partition (Ai , Ai ) is a minimum
(C \ {ui },U )-terminal cut for every i ∈ [k]. By Claim A.1, we have that ui ∈ Ai for
every i ∈ [k]. Since (Bj , Bj ) is a (C − {u j }, T )-terminal cut, we have that ui /∈ Bj

for every distinct i, j ∈ [k]. Thus, ui ∈ Ai\(∪ j∈[k]\{i}A j ) for every i ∈ [k]. We may
reindex the elements in C so that f (A1) ≤ f (A2) ≤ . . . ≤ f (Ak). Therefore, the sets
U , C , and the 2-partitions (Ai , Ai ) for i ∈ [k] satisfy the conditions of Theorem 2.1.
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By Theorem 2.1 and statement (2), we obtain a k-partition (P1, . . . , Pk) of V such
that

k∑

i=1

f (Pi ) ≤ kmax{ f (Ai ) : i ∈ [k]} = k f (VS) < k f (V1) ≤
k∑

i=1

f (Vi ) = OPTk .

Thus, we have obtained a k-partition whose sum-objective value is strictly smaller
than OPTk , a contradiction. ��
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