# Pruning 2-Connected Graphs 

Chandra Chekuri • Nitish Korula

Received: 12 September 2008 / Accepted: 11 October 2010 / Published online: 11 November 2010 © Springer Science+Business Media, LLC 2010


#### Abstract

Given an undirected graph $G$ with edge costs and a specified set of terminals, let the density of any subgraph be the ratio of its cost to the number of terminals it contains. If $G$ is 2-connected, does it contain smaller 2-connected subgraphs of density comparable to that of $G$ ? We answer this question in the affirmative by giving an algorithm to prune $G$ and find such subgraphs of any desired size, incurring only a logarithmic factor increase in density (plus a small additive term).

We apply our pruning techniques to give algorithms for two NP-Hard problems on finding large 2-vertex-connected subgraphs of low cost; no previous approximation algorithm was known for either problem. In the $k-2 \mathrm{VC}$ problem, we are given an undirected graph $G$ with edge costs and an integer $k$; the goal is to find a minimumcost 2 -vertex-connected subgraph of $G$ containing at least $k$ vertices. In the Budget2VC problem, we are given a graph $G$ with edge costs, and a budget $B$; the goal is to find a 2-vertex-connected subgraph $H$ of $G$ with total edge cost at most $B$ that maximizes the number of vertices in $H$. We describe an $O(\log n \log k)$ approximation for the $k-2 \mathrm{VC}$ problem, and a bicriteria approximation for the Budget-2VC problem that gives an $O\left(\frac{1}{\epsilon} \log ^{2} n\right)$ approximation, while violating the budget by a factor of at most $2+\epsilon$.


[^0]Keywords 2-connected graphs • Approximation $\cdot k$-MST $\cdot$ Prize-collecting trees • Density

## 1 Introduction

Connectivity and network design problems play an important role in combinatorial optimization and algorithms, both for their theoretical appeal and their usefulness in real-world applications. Many of these problems, such as the well-known minimum cost Steiner Tree problem, are NP-hard and there has been a large and rich literature on approximation algorithms. A number of elegant and powerful techniques and results have been developed over the years (see [13, 29]); in particular, the primaldual method [1, 19] and iterated rounding [21] have led to some remarkable results. Interesting and useful variants of classical problems are sometimes introduced, partly motivated by their natural appeal and partly motivated by practical applications. One such problem is the $k$-MST problem introduced by Ravi et al. [26]: Given a graph $G$ with edge costs and an integer $k$, the goal is to find a minimum-cost connected subgraph of $G$ that contains at least $k$ vertices. It is not hard to see that the $k$-MST problem generalizes the STEINER TREE problem; in particular, an $\alpha$-approximation for the $k$-MST problem implies an $\alpha$-approximation for Steiner Tree. The $k$-MST problem has attracted considerable attention in the approximation algorithms literature and its study has led to several new algorithmic ideas and applications [3, 6, 7, $17,18]$. Closely related to $k$-MST is the Budgeted or Max-Prize Tree problem [6,22]; here we are given $G$ and a budget $B$, and the goal is to find a connected subgraph $H$ of $G$ with total cost no more than $B$, that maximizes the number of vertices (or terminals) in $H$. Interestingly, it is only recently that the rooted ${ }^{1}$ version of the Max-Prize Tree problem was shown to have an $O$ (1)-approximation [6], although an $O(1)$ approximation was known for the $k$-MST problem much earlier [5].

Recently, Lau et al. [24] considered the natural generalization of $k$-MST to higher connectivity. In particular they defined the $(k, \lambda)$-subgraph problem to be the following: Find a minimum-cost subgraph of the given graph $G$ that contains at least $k$ vertices and is $\lambda$-edge connected. We use the notation $k-\lambda \mathrm{EC}$ to refer to this problem. A poly-logarithmic approximation was derived for the $k-2 \mathrm{EC}$ problem in [24, 25]. In this paper, we consider the vertex-connectivity generalizations of the $k$-MST and Max-Prize Tree problems. We define the $k-\lambda$ VC problem as follows: Given an integer $k$ and a graph $G$ with edge costs, find the minimum-cost $\lambda$-vertex-connected subgraph of $G$ that contains at least $k$ vertices. In the BUDGET- $\lambda$ VC problem, given a budget $B$ and a graph $G$ with edge costs, the goal is to find a $\lambda$-vertex-connected subgraph of $G$ of cost at most $B$, that maximizes the number of vertices it contains.

Problems such as $k$-MST, $k-\lambda E C, k-\lambda V C$ are partly motivated by applications in network design and related areas where one may want to build low-cost networks including (or servicing) many clients, but there are constraints such as a budget on the network cost, or a minimum quota on the number of clients. Algorithms for these

[^1]problems also find other uses. For instance, a basic problem in vehicle routing applications is the $s-t$ ORIENTEERING problem, in which one seeks an $s-t$ path that maximizes the number of vertices in it subject to a budget $B$ on its length. Approximation algorithms for this problem $[4,6,10]$ have been derived through approximation algorithms for the $k$-MST and the related $k$-STROLL problems; in the latter, the goal is to find a minimum-cost path containing at least $k$ vertices.

The difficulty in problems such as $k-\lambda E C$ and $k-\lambda V C$ lies largely in the fact that we do not know which vertices should be included in the output subgraph. The special cases in which all vertices are to be included (that is, $k=|V|$ ) are wellknown and referred to as the min-cost $\lambda$-edge-connected subgraph and min-cost $\lambda$ -vertex-connected subgraph problems respectively. A 2-approximation is known for the min-cost $\lambda$-edge-connected subgraph problem [21] and an $O\left(\log ^{2} \lambda\right)$ approximation for the min-cost $\lambda$-vertex-connected subgraph problem [14] (for $\lambda=2$, a 2 approximation is known [16]). Still further improvements are possible for these problems when all edge costs are identical: In particular, there is a $1+1 / \lambda$-approximation for the min-cost $\lambda$-vertex-connected subgraph problem with identical edge costs [11]. We refer the reader to the survey of Kortsarz and Nutov [23] for pointers to additional results on these problems.

The $k-\lambda \mathrm{EC}$ problem reduces to the $k-\lambda \mathrm{VC}$ problem in an approximation preserving fashion (see Sect. 1.2); both these problems are NP-hard and also APX-hard for any $\lambda \geq 1$. Moreover, Lau et al. [24] show that when $\lambda$ is not fixed (and hence part of the input), the approximability of the $k-\lambda E C$ problem is related to that of the DENSE $k$-SUBGRAPH problem [15]; the DENSE $k$-SUBGRAPH problem currently admits only a polynomial factor approximation and improving the vast gaps between the known upper and lower bounds on its approximability is considered a difficult open problem. In this paper, we focus on $\lambda=2$ and develop approximation algorithms for both the $k-2 \mathrm{VC}$ and Budget-2VC problems.

How do we solve $k-2 \mathrm{VC}$ and BUDGET-2VC? The $k$-MST problem required several algorithmic innovations which eventally led to the current best approximation ratio of 2 [18]. The main technical tool which underlies $O$ (1) approximations for $k$-MST $[5,12,17,18]$ is a special property that holds for an LP relaxation of the Prize-Collecting Steiner Tree problem [19] which is a Lagrangian relaxation of the Steiner Tree problem. Unfortunately, it appears that one cannot use these ideas (at least directly) for more general problems such as $k-2 \mathrm{VC}$ (or the $k$-STEINER FOREST problem [20]) since the LP relaxation for the prize-collecting variant is not known to satisfy the above mentioned property. We therefore rely on alternative techniques that take a more basic approach.

Our algorithms for $k-2 \mathrm{VC}$ and Budget-2VC use the same high-level idea, relying on the notion of density:

Definition 1.1 Given a graph with edge costs, the density of a subgraph $H$, denoted $\operatorname{Density}(H)$, is the ratio of the total cost of edges of $H$ to the number of vertices in $H$. If a subset of vertices are marked as terminals, the density of $H$ is the ratio of the total cost of its edges to the number of terminals in $H .^{2}$

[^2]The algorithms greedily combine subgraphs of low density until the union of these subgraphs has the desired number of vertices or has cost equal to the budget. Combining such low-density subgraphs is guaranteed to yield a good solution unless one such subgraph $H$ has good density, but is far too large. One needs, then, a way to prune $H$ to find a smaller subgraph of comparable density. Our main structural result for pruning 2 -connected graphs is the following:

Theorem 1.2 Let $G$ be a 2-connected graph with edge costs. Let $\rho$ denote the density of $G$, and let $r \in V(G)$ be a designated vertex such that every vertex of $G$ has 2 vertex-disjoint paths to $r$ of total cost at most L. There is a polynomial-time algorithm that, given any integer $k \leq|V(G)|$, finds a 2-connected graph $H \subseteq G$ containing $r$ and at least $k$ other vertices, of total cost at most $O(\log k) \rho k+2 L$.

The algorithm of Theorem 1.2 finds a subgraph of any desired size, incurring only a logarithmic factor increase in density; it also allows us to add the constraint that the subgraph to be found contains a specified vertex $r$. Note that while one might wish to find a 2-connected subgraph on $k$ vertices with cost $f(k) \cdot \rho k$, an additive term proportional to $L$ is sometimes unavoidable: Suppose the graph $G$ is an $n$-vertex cycle, the cost of each edge is $\rho$, and $k \ll n$; for this instance, $L=\rho n$. The density of $G$ is $\rho$, but there does not exist a 2 -connected subgraph on at least $k$ vertices with total cost comparable to $\rho k$. Any feasible solution must include the entire cycle, for a cost of $\rho n=L$.

Remark 1.3 The algorithm of Theorem 1.2 also applies if we are given a terminal set $S$, and the output subgraph must contain $k$ terminals. In addition, it applies if the terminals have arbitrary weights, the density of a subgraph is defined to be the ratio of its cost to the sum of the weights of its terminals, and the goal is to find a 2-connected subgraph containing terminals of total weight at least $k$. All our algorithms apply to these weighted instances, but for simplicity of exposition, we discuss the more restricted unweighted versions.

We observe that pruning a tree (a 1-connected graph) is easy and one loses only a constant factor in the density; Theorem 1.2 above allows one to prune 2 -connected graphs. A technical ingredient that we develop is the following theorem.

Theorem 1.4 Let $G$ be a 2-vertex-connected graph with edge costs and let $S \subseteq V$ be a set of terminals. Then, there is a simple cycle $C$ containing at least 2 terminals (a non-trivial cycle) such that the density of $C$ is at most the density of $G$. Moreover, such a cycle can be found in polynomial time.

Theorems 1.2 and 1.4 imply that given a 2 -connected graph $G$, we can find cycles or 2-connected subgraphs of a desired size, with density comparable to that of $G$. However, optimal solutions to problems such as $k-2 \mathrm{VC}$ and BUDGET-2VC may have density much lower than that of the entire graph $G$. To address this, we study the rooted DENS-2VC problem: Given a graph $G$ with edge costs, a root vertex $r$, and a set of terminals, find a subgraph $H \subseteq G$ of minimum density in which all terminals of $H$ are 2-connected to the root.

Lemma 1.5 There is an $O(\log \ell)$-approximation algorithm for the rooted DENS2 VC problem, where $\ell$ is the number of terminals in the given instance.

Using Lemma 1.5 and Theorem 1.4, we obtain the following.
Corollary 1.6 Given a graph $G(V, E)$ with edge costs and a set of $\ell$ terminals $S \subseteq V$, there is an $O(\log \ell)$ approximation for the problem of finding a minimumdensity non-trivial cycle.

Note that Theorem 1.4 and Corollary 1.6 are of interest because we seek a cycle with at least two terminals. Our pruning algorithm relies on contracting cycles; a nontrivial cycle allows one to make progress since the number of terminals is reduced by at least one. A minimum-density cycle can be found by using the well-known minmean cycle algorithm in directed graphs [2], but such a cycle may contain only a single terminal. We are inclined to believe that the problem of finding a minimumdensity non-trivial cycle is NP-hard. Theorem 1.4 shows that the problem is equivalent to the unrooted version of the DENS-2VC problem. We discuss this connection further at the end of Sect. 3.1, formally stating the equivalence in Theorem 3.4.

Armed with these structural results, we give approximation algorithms for the $k$ 2 VC and BUDGET-2VC problems. (In fact, we use a slightly more general version of Theorem 1.2, which we state separately as Theorem 4.1, since the statement is more detailed.) As in Remark 1.3, our results hold for the more general versions of these problems where the input also specifies a subset $S \subseteq V$ of terminals and the goal is to find subgraphs with the desired number of terminals, or to maximize the number of terminals. ${ }^{3}$

Theorem 1.7 There is an $O(\log \ell \cdot \log k)$ approximation for the $k-2 \mathrm{VC}$ problem, where $\ell$ is the number of terminals.

Corollary 1.8 There is an $O(\log \ell \cdot \log k)$ approximation for the $k-2 \mathrm{EC}$ problem, where $\ell$ is the number of terminals.

Theorem 1.9 There is a polynomial time bicriteria approximation algorithm for BUDGET-2VC that, for any fixed $0<\epsilon \leq 1$, outputs a subgraph of edge-weight $(2+\epsilon) B$ containing $\Omega(\epsilon \cdot \mathrm{OPT} /(\log n \log \mathrm{OPT}))$ terminals, where OPT is the number of terminals in an optimum solution of cost $B$.

As mentioned before, the $k-2 \mathrm{EC}$ problem was introduced by Lau et al. and an $O\left(\log ^{3} k\right)$ approximation was claimed for this problem in [24]. However, the algorithm and proof in [24] are incorrect. More recently, and in independent work from ours, the authors obtained a different algorithm for $k-2 \mathrm{EC}$ that yields an $O(\log n \log k)$ approximation [25]; however, their algorithm does not generalize to

[^3]$k-2 \mathrm{VC}$. We give a more detailed comparison of the differences between their approach and ours in the next subsection.

### 1.1 Overview of Technical Ideas

Henceforth, we use 2-connected to mean 2-vertex-connected. For this section, we focus on the rooted version of $k-2 \mathrm{VC}$ : the goal is to find a min-cost subgraph that $2-$ connects at least $k$ terminals to a specified root vertex $r$. It is relatively straightforward to reduce $k-2 \mathrm{VC}$ to its rooted version (see Sect. 5 for details). We draw inspiration from algorithmic ideas that led to poly-logarithmic approximations for the $k$-MST problem.

Recall that for a subgraph $H$ in which all terminals in $H$ are 2-connected to $r$, the density of $H$ is simply the ratio of the cost of $H$ to the number of terminals it contains. As described above, our approach focuses on the idea of low-density subgraphs. In the (rooted) DENS-2VC problem, the goal is to find a minimum density subgraph in which all the terminals are 2-connected to a specified root. An $O(\log \ell)$ approximation for the DENS-2VC problem (where $\ell$ is the number of terminals) can be derived in a somewhat standard way by using a bucketing and scaling trick on a linear programming relaxation for the problem. We exploit the known upper bound of 2 on the integrality gap of a natural LP for the Survivable Network Design Problem with vertex connectivity requirements in $\{0,1,2\}$ [16]. The bucketing and scaling trick has seen several uses in the past, and has recently been highlighted in [8, 9].

Our algorithm for $k-2 \mathrm{VC}$ uses a greedy approach at the high level. We start with an empty subgraph $G^{\prime}$ and use the approximation algorithm for DENS-2VC in an iterative fashion to greedily add terminals to $G^{\prime}$ until at least $k^{\prime} \geq k$ terminals are in $G^{\prime}$. This approach would yield an $O(\log \ell \log k)$ approximation if $k^{\prime}$ is just larger than $k$. However, the last iteration of the DENS-2VC algorithm may add many more terminals than desired, with the result that $k^{\prime} \gg k$. In this case the cost of the solution obtained by the algorithm can be as large as $k^{\prime} / k \cdot$ OPT; this does not provide a good approximation when $k^{\prime} \gg k$. To overcome this problem, one can try to prune the subgraph $H$ added in the last iteration to only have the desired number of terminals. For the $k$-MST problem, $H$ is a tree and pruning is quite easy. ${ }^{4}$

Our main technical contribution is Theorem 1.2, to give a pruning step for the $k-2 \mathrm{VC}$ problem. To accomplish this, we use two algorithmic ideas. The first is encapsulated in the cycle finding algorithm of Theorem 1.4. Second, we use this cycle finding algorithm to repeatedly merge subgraphs until we get the desired number of terminals in one subgraph; this latter step requires care. The cycle merging scheme is inspired by a similar approach from the work of Lau et al. [24] on the $k-2 \mathrm{EC}$ problem and in our previous work [10] on the directed Orienteering problem. These ideas yield an $O\left(\log \ell \cdot \log ^{2} k\right)$ approximation. We give a modified cycle-merging algorithm with a more sophisticated and non-trivial analysis to obtain an improved $O(\log \ell \cdot \log k)$ approximation.

[^4]Some remarks are in order to compare our work to that of [24] on the $k-2 \mathrm{EC}$ problem. The combinatorial algorithm in [24] is based on finding a low-density cycle or a related structure called a bi-cycle. The algorithm in [24] to find such a structure is incorrect. Further, the cycles are contracted along the way which limits the approach to the $k-2 \mathrm{EC}$ problem (contracting a cycle in 2-node-connected graph may make the resulting graph not 2 -node-connected). In our algorithm we do not contract cycles and instead introduce dummy terminals with weights to capture the number of terminals in an already formed component. This requires us to address the minimumdensity non-trivial simple cycle problem which we do via Theorem 1.4 and Corollary 1.6. In independent work, Lau et al. [25] obtain a new and correct $O(\log n \log k)$ approximation for $k-2 \mathrm{EC}$. They also follow the same approach that we do in using the LP for finding dense subgraphs followed by the pruning step. However, in the pruning step they use a very different approach; they use the sophisticated idea of nowhere-zero 6-flows [28]. Although the use of this idea is elegant, the approach works only for the $k-2 \mathrm{EC}$ problem, while our approach is less complex and leads to an algorithm for the $k-2 \mathrm{VC}$ problem which is more general, as shown below.

### 1.2 Reducing $k-\lambda \mathrm{EC}$ to $k-\lambda \mathrm{VC}$

We briefly describe an approximation-preserving reduction from the $k-\lambda E C$ problem to the $k-\lambda \mathrm{VC}$ problem; this subsection can be skipped on first reading. Given an instance of $k-\lambda \mathrm{EC}$ consisting of a graph $G(V, E)$ and integer $k$, we use $d(v)$ to denote the degree in $G$ of vertex $v \in V$. Construct an instance of $k-\lambda \mathrm{VC}$ as follows: Create a new graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ that is initially empty. First, for each vertex $v \in V$ add $d(v)$ vertices to $V^{\prime}$; these vertices are referred to as the external copies of $v$, and there are $2 m$ such vertices in total, where $m=|E|$. For each edge $u v \in E$ with cost $c(u v)$, add an edge with the same cost to $E^{\prime}$ from one of the $d(u)$ external copies of $u$ in $G^{\prime}$ to one of the $d(v)$ external copies of $v$, such that each vertex of $V^{\prime}$ has degree 1 . (That is, the graph constructed so far is a matching.) Finally, add $2 m^{2}$ further vertices for each vertex $v \in V(G)$; these vertices are referred to as the internal copies of $v$. Finally, for each vertex $v \in V(G)$, add edges to $E^{\prime}$ to form a clique between all the $2 m^{2}+d(v)$ copies (both internal and external) of $v$; all these edges have cost 0 .

Having constructed the graph $G^{\prime}$, we ask for a $\lambda$-vertex connected subgraph of $G^{\prime}$ containing at least $2 \mathrm{~km}^{2}$ vertices. We claim that a solution of total cost $C$ corresponds to a $\lambda$-edge-connected subgraph of $G$ of cost $C$ and containing at least $k$ vertices, and vice versa; this completes the reduction. Given a subgraph $H^{\prime}$ of $G^{\prime}$ on at least $2 \mathrm{~km}^{2}$ vertices, construct a subgraph $H$ of $G$ by taking a vertex $v$ if some copy of $v$ is in $H^{\prime}$, and select an edge $u v$ if $H^{\prime}$ contains an edge between an external copy of $u$ and an external copy of $v$. Similarly, given a $\lambda$-edge-connected subgraph $H$ of $G$ on at least $k$ vertices, construct $H^{\prime} \subseteq G^{\prime}$ by taking all the copies of each vertex $v$ in $H$, and for each edge $u v$ in $H$, select the edge of $E^{\prime}$ between an external copy of $u$ and an external copy of $v$. The costs are obviously preserved, and it is easy to verify that $H$ is $\lambda$-edge-connected iff $H^{\prime}$ is $\lambda$-vertex-connected.

### 1.3 Organization

We begin in Sect. 2 by giving an $O(\log \ell)$-approximation for the rooted DENS-2VC problem: Given a graph, the goal is to find a minimum-density subgraph in which
all terminals are 2 -connected to a specified root. In the following two sections, we develop our structural tools. In Sect. 3, we prove Theorem 1.4 and Corollary 1.6 on finding good-density cycles; we first show the existence of such cycles, and then give an efficient algorithm to find them. In Sect. 4, we prove Theorem 1.2, our main technical result on pruning. Finally, in Sect. 5, we show how to combine the pruning algorithm of Theorem 1.2 with the algorithm for DENS-2VC to obtain good algorithms for $k-2 \mathrm{VC}$ and Budget-2VC.

## 2 An $O(\log \ell)$-Approximation for the DENS-2VC Problem

In this section, we prove Lemma 1.5, giving an $O(\log \ell)$ approximation for the rooted DENS-2VC problem. Recall that the was defined as follows: Given a graph $G(V, E)$ with edge-costs, a set $T \subseteq V \backslash\{r\}$ of terminals, and a root $r \in V(G)$, find a subgraph $H$ of minimum density, in which every terminal of $H$ is 2-connected to $r$. We describe an algorithm for DENS-2VC that gives an $O(\log \ell)$-approximation, where $\ell=|T|$ is the number of terminals. We use an LP based approach and a bucketing and scaling trick (see $[8,9]$ for applications of this idea), and a constant-factor bound on the integrality gap of an LP for SNDP with vertex-connectivity requirements in $\{0,1,2\}$ [16].

We define LP-dens as the following LP relaxation of DENS-2VC. For each terminal $t$, the variable $y_{t}$ indicates whether or not $t$ is chosen in the solution. (By normalizing $\sum_{t} y_{t}$ to 1 , and minimizing the sum of edge costs, we minimize the density.) $\mathcal{C}_{t}$ is the set of all simple cycles containing $t$ and the root $r$; for any $C \in \mathcal{C}_{t}, f_{C}$ indicates how much 'flow' is sent from $t$ to $r$ through $C$. (Note that a pair of vertex-disjoint paths is a cycle; the flow along a cycle is 1 if $t$ is 2-connected to $r$ using the edges of the cycle.) The variable $x_{e}$ indicates whether the edge $e$ is used by the solution.

$$
\begin{array}{ll}
\text { LP-dens } & \min \sum_{e \in E} c(e) x_{e} \\
& \sum_{t \in T} y_{t}=1 \\
& \sum_{C \in \mathcal{C}_{t}} f_{C} \geq y_{t} \quad(\forall t \in T) \\
& \sum_{C \in \mathcal{C}_{t} \mid e \in C} f_{C} \leq x_{e} \quad(\forall t \in T, e \in E) \\
& x_{e}, f_{c}, y_{t} \geq 0
\end{array}
$$

The linear program LP-dens has an exponential number of variables but a polynomial number of non-trivial constraints; it can, however, be solved in polynomial time by solving its dual using the ellipsoid method. Implementing the separation oracle for the dual simply requires finding a minimum-cost set of 2 vertex-disjoint paths from each terminal to the root; this can easily be done in polynomial time (for example, by using an algorithm for minimum-cost flow). It is not hard to see that an optimal solution to LP-dens has cost at most the density of an optimal solution to DENS-2VC:

Fix an optimal solution $H$ of the DENS-2VC instance; let $t(H)$ denote the number of terminals in $H$. The density of $H$ is $\sum_{e \in H} c(e) / t(H)$. Now, construct a feasible solution to LP-dens of this cost by setting $y_{t}=1 / t(H)$ for each terminal $t$ in $H$, and setting $x_{e}=1 / t(H)$ for each edge $e \in H$.

We show how to obtain an integral solution of density at most $O(\log \ell) \mathrm{OPT}_{L P}$, where $\mathrm{OPT}_{L P}$ is the cost of an optimal solution to LP-dens; it follows that this gives an $O(\log \ell)$ approximation for DENS-2VC. Fix an optimal fractional solution to LPdens of cost $\mathrm{OPT}_{L P}$, and for each edge $e$, let $x_{e}^{*}$ be the value of the variable $x_{e}$ in this optimal solution. For each $0 \leq i<2 \log \ell-1$ (for ease of notation, assume $\log \ell$ is an integer), let $Y_{i}$ be the set of terminals $t$ such that $2^{-(i+1)}<y_{t} \leq 2^{-i}$. For $i=2 \log \ell-1$, let $Y_{i}$ be the set of terminals $t$ such that $y_{t} \leq 2^{-i}$. Since $\sum_{t \in T} y_{t}=1$, there is some index $j$ such that $\sum_{t \in Y_{j}} y_{t} \geq \frac{1}{2 \log \ell}$. This index $j$ must be less than $2 \log \ell-1$, as each terminal $t \in Y_{2 \log \ell-1}$ has $y_{t} \leq \frac{2}{\ell^{2}}$, and even $\ell \cdot \frac{2}{\ell^{2}}<\frac{1}{2 \log \ell}$. Since every terminal $t \in Y_{j}$ has $y_{t} \leq 2^{-j}$, the number of terminals in $Y_{j}$ is at least $\frac{2^{j-1}}{\log \ell}$. We claim that there is a subgraph $H$ of $G$ with cost at most $2^{j+2} \mathrm{OPT}_{L P}$, in which every terminal of $Y_{j}$ is 2-connected to the root. If this is true, the density of $H$ is at most $O\left(\log \ell \cdot \mathrm{OPT}_{L P}\right)$, and hence we have an $O(\log \ell)$-approximation for the DENS-2VC problem.

It remains only to prove our claim about the cost of the subgraph $H$ in which every terminal of $Y_{j}$ is 2-connected to $r$. In [16], the authors describe the following linear program ${ }^{5} \mathbf{L P} 2$ to find a minimum-cost subgraph in which a given set of terminals $T^{\prime}$ is 2-connected to the root, and show that this linear program has an integrality gap of 2. This "setpair" LP relaxation is based on considering how many edges must be selected between specified pairs of disjoint vertex sets. In particular, we consider pairs ( $S_{1}, S_{2}$ ) where $S_{1}$ contains some terminal of $T^{\prime}$ and $S_{2}$ contains the root. We use the notation $\delta\left(S_{1}, S_{2}\right)$ to denote the set of edges between $S_{1}$ and $S_{2}$, and define $f\left(S_{1}, S_{2}\right)=2-\left|V \backslash\left(S_{1} \cup S_{2}\right)\right|$. The intuition is as follows: If $S_{1}$ contains a terminal of $T^{\prime}$ and $S_{2}$ contains the root, there must be at least 2 vertex-disjoint paths from $S_{1}$ to $S_{2}$. At most $\left|V \backslash\left(S_{1} \cup S_{2}\right)\right|$ of these paths can go through $V \backslash\left(S_{1} \cup S_{2}\right)$, and so a feasible solution must contain at least $f\left(S_{1}, S_{2}\right)$ edges from $\delta\left(S_{1}, S_{2}\right)$.
$\mathbf{L P 2} \min \sum_{e \in E} c(e) x_{e}$

$$
\begin{aligned}
& \sum_{e \in \delta\left(S_{1}, S_{2}\right)} x_{e} \geq f\left(S_{1}, S_{2}\right) \quad\left(\forall S_{1}, S_{2} \subseteq V: S_{1} \cap T^{\prime} \neq \emptyset, S_{2} \ni r\right) \\
& 0 \leq x_{e} \leq 1 \quad(\forall e \in E)
\end{aligned}
$$

We now describe a feasible fractional solution of cost $2^{j+1} \cdot \mathrm{OPT}_{L P}$ for the instance of LP2 in which the terminal set $Y_{j}$ is to be 2-connected to the root. As LP2 has an integrality gap of 2 and $\left|Y_{j}\right| \geq 2^{j-1} / \log \ell$, this suffices to show that the density of $H$ is at most $O(\log \ell) \mathrm{OPT}_{L P}$. To obtain this feasible fractional solution to LP2, we simply scale up the given optimal solution of LP-dens by a factor of $2^{j+1}$. That is, we

[^5]set $x_{e}=\min \left\{1,2^{j+1} \cdot x_{e}^{*}\right\}$. Clearly, the cost of this solution is at most $2^{j+1} \cdot \mathrm{OPT}_{L P}$, and it is straightforward to verify that this is a feasible solution: The intuition is that using the values $x^{*}$, each terminal could fractionally send $y_{t}>2^{-(j+1)}$ units of flow using cycles in $\mathcal{C}_{t}$; after scaling up, each terminal $t$ can send 1 unit of flow using cycles in $\mathcal{C}_{t}$, and hence $t$ is fractionally 2 -connected to $r$. We omit the details.

Therefore, the algorithm for DENS-2VC is:

1. Find an optimal fractional solution to LP-dens.
2. Find a set of terminals $Y_{i}$ such that $\sum_{t \in Y_{i}} y_{t} \geq \frac{1}{2 \log \ell}$.
3. Find a min-cost subgraph $H$ in which every terminal in $Y_{i}$ is 2-connected to $r$ using the algorithm of [16]. $H$ has density at most $O(\log \ell)$ times the optimal solution to DENS-2VC.

## 3 Finding Low-density Non-trivial Cycles

A cycle $C \subseteq G$ is non-trivial if it contains at least 2 terminals. We define the mindensity non-trivial cycle problem: Given a graph $G(V, E)$, with $S \subseteq V$ marked as terminals, edge costs, and (positive) terminal weights, find a minimum-density cycle that contains at least 2 terminals. Non-terminals have zero weight; we use weight $(H)$ to denote the total weight of terminals in any subgraph $H$. Note that if we remove the requirement that the cycle be non-trivial (that is, it contains at least 2 terminals), the problem reduces to the min-mean cycle problem in directed graphs, and can be solved exactly in polynomial time (see [2]). Algorithms for the min-density nontrivial cycle problem are a useful tool for solving the $k-2 \mathrm{VC}$ and $k-2 \mathrm{EC}$ problems. In this section, we give an $O(\log \ell)$-approximation algorithm for the minimum-density non-trivial cycle problem.

First, we prove Theorem 1.4, that a 2 -connected graph with edge costs and terminal weights contains a simple non-trivial cycle with density no more than the average density of the graph. We give two algorithms to find such a cycle; the first, described in Sect. 3.1, is simpler, but the running time is not polynomial. A more technical proof that leads to a strongly polynomial-time algorithm is described in Sect. 3.2; we recommend this proof be skipped on a first reading.

### 3.1 An Algorithm to Find Cycles of Average Density

To find a non-trivial cycle of density at most that of the 2-connected input graph $G$, we will start with an arbitrary non-trivial cycle, and successively find cycles of better density until we obtain a cycle with density at most Density $(G)$. We decrease the density of cycles using ears: An ear of a cycle $C$ is a path with both its endpoints belonging to the cycle, but no edges or other vertices in common with the cycle. The following lemma shows that if a cycle $C$ has an ear with density less than Density $(C)$, we can use this ear to find a cycle of lower density.

Lemma 3.1 Let $C$ be a non-trivial cycle, and $H$ be an ear incident to $C$ at $u$ and $v$, such that $\frac{\operatorname{cost}(H)}{\operatorname{weight}(H-\{u, v\})}<\operatorname{Density}(C)$. Let $S_{1}$ and $S_{2}$ be the two internally disjoint paths between $u$ and $v$ in $C$. Then $H \cup S_{1}$ and $H \cup S_{2}$ are both simple cycles and one of them is non-trivial and has density less than Density $(C)$.

Proof $C$ has at least 2 terminals, so it has finite density; $H-\{u, v\}$ must then have at least 1 terminal. Let $c_{1}, c_{2}$ and $c_{H}$ be, respectively, the sum of the costs of the edges in $S_{1}, S_{2}$ and $H$, and let $w_{1}, w_{2}$ and $w_{H}$ be the sum of the weights of the terminals in $S_{1}, S_{2}$ and $H$. Note that if $u$ and/or $v$ are terminals, their weights are counted in all of $w_{1}, w_{2}, w_{H}$; we use $w_{u v}$ to denote the sum of the weights of $u$ and $v$.

Assume w.l.o.g. that $c_{1}\left(w_{2}-w_{u v}\right) \leq c_{2}\left(w_{1}-w_{u v}\right)$; this can be guaranteed by renaming $S_{1}, S_{2} .{ }^{6}$ We claim that $H \cup S_{1}$ is a simple non-trivial cycle; if $S_{1}$ contains a terminal, this is immediate. If not, $w_{1}$ and $w_{u v}$ are both 0 . By assumption, $w_{2}$ must also then be 0 , but this implies that there are no terminals in $C$, which is a contradiction.

Thus, it remains only to argue that $\operatorname{Density}\left(H \cup S_{1}\right)<\operatorname{Density}(C)$; this is equivalent to $\left(c_{H}+c_{1}\right)\left(w_{1}+w_{2}-w_{u v}\right)<\left(c_{1}+c_{2}\right)\left(w_{H}+w_{1}-w_{u v}\right)$.

$$
\begin{aligned}
\left(c_{H}+c_{1}\right)\left(w_{1}+w_{2}-w_{u v}\right) & =c_{1} w_{1}+c_{1} w_{2}-c_{1} w_{u v}+c_{H}\left(w_{1}+w_{2}-w_{u v}\right) \\
& \leq c_{1} w_{1}+c_{2}\left(w_{1}-w_{u v}\right)+c_{H}\left(w_{1}+w_{2}-w_{u v}\right) \\
& <c_{1} w_{1}+c_{2}\left(w_{1}-w_{u v}\right)+\left(c_{1}+c_{2}\right)\left(w_{H}-w_{u v}\right) \\
& =\left(c_{1}+c_{2}\right)\left(w_{1}+w_{H}-w_{u v}\right)-c_{2} w_{u v} \\
& \leq\left(c_{1}+c_{2}\right)\left(w_{1}+w_{H}-w_{u v}\right)
\end{aligned}
$$

where the first inequality follows from the assumption $c_{1}\left(w_{2}-w_{u v}\right) \leq c_{2}\left(w_{1}-w_{u v}\right)$, and the second (strict) inequality from the fact that $\frac{\operatorname{cost}(H)}{\operatorname{weight}(H-\{u, v\})}<\operatorname{Density}(C)$.

Therefore, $H \cup S_{1}$ is a simple cycle containing at least 2 terminals of density less than Density $(C)$.

Lemma 3.2 Given a cycle $C$ in a 2-connected graph $G$, let $G^{\prime}$ be the graph formed from $G$ by contracting $C$ to a single vertex $v$. If $H$ is a connected component of $G^{\prime}-v$, then $H^{\prime}=H \cup\{v\}$ is 2-connected in $G^{\prime}$.

Proof To prove that $H^{\prime}$ is 2-connected, we first observe that $v$ is 2-connected to any vertex $x \in H$. (Any set that separates $x$ from $v$ in $H^{\prime}$ separates $x$ from the cycle $C$ in $G$.)

It now follows that for all vertices $x, y \in V(H), x$ and $y$ are 2-connected in $H^{\prime}$. Suppose deleting some vertex $u$ separates $x$ from $y$. The vertex $u$ cannot be $v$, since $H$ is a connected component of $G^{\prime}-v$. But if $u \neq v, v$ and $x$ are in the same component of $H^{\prime}-u$, since $v$ is 2-connected to $x$ in $H^{\prime}$. Similarly, $v$ and $y$ are in the same component of $H^{\prime}-u$, and so deleting $u$ does not separate $x$ from $y$.

We now show that given any 2-connected graph $G$, we can find a non-trivial cycle of density no more than that of $G$.

Theorem 3.3 Let $G$ be a 2 -connected graph with at least 2 terminals. $G$ contains a simple non-trivial cycle $X$ such that Density $(X) \leq \operatorname{Density}(G)$.

[^6]Proof We prove this statement by using induction on the number of terminals. In the base case, if $G$ has exactly 2 terminals, any simple non-trivial cycle has density at most Density $(G)$.

For the inductive step, suppose by way of contradiction that $G$ does not contain a simple non-trivial cycle $X$ such that $\operatorname{Density}(X) \leq \operatorname{Density}(G)$. Let $C$ be a simple non-trivial cycle of $G$ with minimum density. (As $G$ contains a finite number of cycles, the set of minimum density non-trivial cycles is well-defined; the set is also non-empty as $G$ is 2 -connected and has at least 2 terminals. The cycle $C$ can be chosen arbitrarily from this set.) By assumption, Density $(C)>\operatorname{Density}(G)$. We show the existence of a new non-trivial cycle $C^{\prime}$ such that Density $\left(C^{\prime}\right)<\operatorname{Density}(C)$; this yields the desired contradiction.

Let $G^{\prime}$ be the graph formed by contracting the given cycle $C$ to a single vertex $v$. In $G^{\prime}, v$ is not a terminal, and so has weight 0 . Consider the 2-connected components of $G^{\prime}$ (from Lemma 3.2, each such component is formed by adding $v$ to a connected component of $G^{\prime}-v$ ), and pick a component $H$ of minimum density. By a simple averaging argument, Density $(H)<\operatorname{Density}(G)$.
$H$ contains at least 1 terminal, but has fewer terminals than $G$ as terminals of $C$ have been removed. First, suppose that $H$ contains 2 or more terminals. By the induction hypothesis, $H$ contains a simple non-trivial cycle $C^{\prime}$ such that Density $\left(C^{\prime}\right) \leq$ Density $(H)<\operatorname{Density}(C)$. If this cycle $C^{\prime}$ exists in the original graph $G$, it has the desired properties, and we are done. Otherwise, $C^{\prime}$ does not exist in the original graph $C$; in this case, $C^{\prime}$ contains $v$, and the edges of $C^{\prime}$ form an ear of $C$ in the graph $G$. The density of this ear is at most Density $(H)<\operatorname{Density}(C)$, so we can apply Lemma 3.1 to obtain a non-trivial cycle in $G$ that has density less than Density $(C)$.

Finally, suppose that $H$ contains exactly 1 terminal $u$. Find any 2 vertex-disjoint paths using edges of $H$ from $u$ to distinct vertices in the cycle $C$. (Since $G$ is 2-connected, there always exist such paths.) The cost of these paths is at most $\operatorname{cost}(H)$, and concatenating these 2 paths corresponds to an ear of $C$ in $G$. The density of this ear is at most $\operatorname{Density}(H)<\operatorname{Density}(C)$; again, we use Lemma 3.1 to obtain a cycle in $G$ with the desired properties.

We remark that the proof of Theorem 3.3 is algorithmic. Given any simple nontrivial cycle with density larger than Density $(G)$, we find a cycle of lower density; as the number of cycles in $G$ is finite, this process is guaranteed to terminate with a cycle of density at most Density $(G)$. However, this is not necessarily a polynomial-time algorithm, even if all edge costs and terminal weights are polynomially bounded. In Sect. 3.2, we describe a strongly polynomial-time algorithm that, given a graph $G$, finds a non-trivial cycle of density at most that of $G$. Note that neither of these algorithms may directly give a good approximation to the min-density non-trivial cycle problem, because the optimal non-trivial cycle may have density much less than that of $G$. However, we can use Theorem 3.3 to prove the following theorem:

Theorem 3.4 There is an $\alpha$-approximation to the (unrooted) DENS-2VC problem if and only if there is an $\alpha$-approximation to the problem of finding a minimum-density non-trivial cycle.

Proof Assume we have a $\gamma(\ell)$-approximation for the DENS-2VC problem; we use it to find a low-density non-trivial cycle. Solve the DENS-2VC problem on the given graph; since the optimal cycle is a 2-connected graph, our solution $H$ to the DENS2VC problem has density at most $\gamma(\ell)$ times the density of this cycle. Find a nontrivial cycle in $H$ of density at most that of $H$; it has density at most $\gamma(\ell)$ times that of an optimal non-trivial cycle.

Note that any instance of the (unrooted) DENS-2VC problem has an optimal solution that is a non-trivial cycle. (Consider any optimal solution $H$ of density $\rho$; by Theorem 1.4, $H$ contains a non-trivial cycle of density at most $\rho$. This cycle is a valid solution to the DENS-2VC problem.) Therefore, a $\beta(\ell)$-approximation for the mindensity non-trivial cycle problem gives a $\beta(\ell)$-approximation for the DENS-2VC problem.

Theorem 3.4 and Lemma 1.5 imply an $O(\log \ell)$-approximation for the minimumdensity non-trivial cycle problem; this proves Corollary 1.6.

We say that a graph $G(V, E)$ is minimally 2-connected on its terminals if for every edge $e \in E$, some pair of terminals is not 2-connected in the graph $G-e$. Section 3.2 shows that in any graph which is minimally 2-connected on its terminals, every cycle is non-trivial. Therefore, the problem of finding a minimum-density non-trivial cycle in such graphs is just that of finding a minimum-density cycle, which can be solved exactly in polynomial time. However, as we explain at the end of the section, this does not directly lead to an efficient algorithm for arbitrary graphs.

### 3.2 A Strongly Polynomial-Time Algorithm to Find Cycles of Average Density

In this section, we describe a strongly polynomial-time algorithm which, given a 2 connected graph $G(V, E)$ with edge costs and terminal weights, finds a non-trivial cycle of density at most that of $G$.

We begin with several definitions: Let $C$ be a cycle in a graph $G$, and $G^{\prime}$ be the graph formed by deleting $C$ from $G$. Let $H_{1}, H_{2}, \ldots, H_{m}$ be the connected components of $G^{\prime}$; we refer to these as earrings of $C .{ }^{7}$ For each $H_{i}$, let the vertices of $C$ incident to it be called its clasps. From the definition of an earring, for any pair of clasps of $H_{i}$, there is a path between them whose internal vertices are all in $H_{i}$.

We say that a vertex of $C$ is an anchor if it is the clasp of some earring. (An anchor may be a clasp of multiple earrings.) A segment $S$ of $C$ is a path contained in $C$, such that the endpoints of $S$ are both anchors, and no internal vertex of $S$ is an anchor. (Note that the endpoints of $S$ might be clasps of the same earring, or of distinct earrings.) It is easy to see that the segments partition the edge set of $C$. By deleting a segment, we refer to deleting its edges and internal vertices. Observe that if $S$ is deleted from $G$, the only vertices of $G-S$ that lose an edge are the endpoints of $S$. A segment is safe if the graph $G-S$ is 2-connected.

Arbitrarily pick a vertex $o$ of $C$ as the origin, and consecutively number the vertices of $C$ clockwise around the cycle as $o=c_{0}, c_{1}, c_{2}, \ldots, c_{r}=o$. The first clasp of an earring $H$ is its lowest numbered clasp, and the last clasp is its highest numbered

[^7]Fig. $1 H$ is an earring of $G$, with clasps $c_{4}, c_{6}, c_{9} ; c_{4}$ is its first clasp, and $c_{9}$ its last clasp. The arrow indicates the arc of $H$

clasp. (If the origin is a clasp of $H$, it is considered the first clasp, not the last.) The arc of an earring is the subgraph of $C$ found by traversing clockwise from its first clasp $c_{p}$ to its last clasp $c_{q}$; the length of this arc is $q-p$. (That is, the length of an arc is the number of edges it contains.) Note that if an arc contains the origin, it must be the first vertex of the arc. Figure 1 illustrates several of these definitions.

Theorem 3.5 Let $H$ be an earring of minimum arc length. Every segment contained in the arc of $H$ is safe.

Proof Let $\mathcal{H}$ be the set of earrings with arc identical to that of $H$. Since they have the same arc, we refer to this as the arc of $\mathcal{H}$, or the critical arc. Let the first clasp of every earring in $\mathcal{H}$ be $c_{a}$, and the last clasp of each earring in $\mathcal{H}$ be $c_{b}$. Because the earrings in $\mathcal{H}$ have arcs of minimum length, any earring $H^{\prime} \notin \mathcal{H}$ has a clasp $c_{x}$ that is not in the critical arc. (That is, $c_{x}<c_{a}$ or $c_{x}>c_{b}$.)

We must show that every segment contained in the critical arc is safe; recall that a segment $S$ is safe if the graph $G-S$ is 2-connected. Given an arbitrary segment $S$ in the critical arc, let $c_{p}$ and $c_{q}(p<q)$ be the anchors that are its endpoints. We prove that there are always 2 internally vertex-disjoint paths between $c_{p}$ and $c_{q}$ in $G-S$; this suffices to show 2 -connectivity.

We consider several cases, depending on the earrings that contain $c_{p}$ and $c_{q}$. Figure 2 illustrates these cases. If $c_{p}$ and $c_{q}$ are contained in the same earring $H^{\prime}$, it is easy to find two vertex-disjoint paths between them in $G-S$. The first path is clockwise from $q$ to $p$ in the cycle $C$. The second path is entirely contained in the earring $H^{\prime}$ (an earring is connected in $G-C$, so we can always find such a path).

Otherwise, $c_{p}$ and $c_{q}$ are clasps of distinct earrings. We consider three cases: Both $c_{p}$ and $c_{q}$ are clasps of earrings in $\mathcal{H}$, one is (but not both), or neither is.

1. We first consider that both $c_{p}$ and $c_{q}$ are clasps of earrings in $\mathcal{H}$. Let $c_{p}$ be a clasp of $H_{1}$, and $c_{q}$ a clasp of $H_{2}$. The first path is from $c_{q}$ to $c_{a}$ through $H_{2}$, and then clockwise along the critical arc from $c_{a}$ to $c_{p}$. The second path is from $c_{q}$ to $c_{b}$ clockwise along the critical path, and then $c_{b}$ to $c_{p}$ through $H_{1}$. It is easy to see that these paths are internally vertex-disjoint.
2. Now, suppose neither $c_{p}$ nor $c_{q}$ is a clasp of an earring in $\mathcal{H}$. Let $c_{p}$ be a clasp of $H_{1}$, and $c_{q}$ be a clasp of $H_{2}$. The first path we find follows the critical arc clockwise from $c_{q}$ to $c_{b}$ (the last clasp of the critical arc), from $c_{b}$ to $c_{a}$ through $H \in \mathcal{H}$, and again clockwise through the critical arc from $c_{a}$ to $c_{p}$. Internal vertices of this path are all in $H$ or on the critical arc. Let $c_{p^{\prime}}$ be a clasp of $H_{1}$ not on the critical arc, and $c_{q^{\prime}}$ be a last clasp of $H_{2}$ not on the critical arc. The second path goes from


Fig. 2 The various cases of Theorem 3.5 are illustrated in the order presented. In each case, one of the 2 vertex-disjoint paths from $c_{p}$ to $c_{q}$ is indicated with dashed lines, and the other with dotted lines
$c_{p}$ to $c_{p^{\prime}}$ through $H_{1}$, from $p^{\prime}$ to $q^{\prime}$ through the cycle $C$ outside the critical arc, and from $c_{q^{\prime}}$ to $c_{q}$ through $H_{2}$. Internal vertices of this path are in $H_{1}, H_{2}$, or in $C$, but not part of the critical arc (since each of $c_{p^{\prime}}$ and $c_{q^{\prime}}$ are outside the critical arc). Therefore, we have 2 vertex-disjoint paths from $c_{p}$ to $c_{q}$.
3. Finally, we consider the case that exactly one of $c_{p}, c_{q}$ is a clasp of an earring in $\mathcal{H}$. Suppose $c_{p}$ is a clasp of $H_{1} \in \mathcal{H}$, and $c_{q}$ is a clasp of $H_{2} \notin \mathcal{H}$; the other case (where $H_{1} \notin \mathcal{H}$ and $H_{2} \in \mathcal{H}$ is symmetric, and omitted, though Fig. 2 illustrates the paths). Let $q^{\prime}$ be the index of a clasp of $H_{2}$ outside the critical arc. The first path is from $c_{q}$ to $c_{b}$ through the critical arc, and then from $c_{b}$ to $c_{p}$ through $H_{1}$. The second path is from $c_{q}$ to $c_{q^{\prime}}$ through $H_{2}$, and from $c_{q^{\prime}}$ to $c_{p}$ clockwise through $C$. Note that the last part of this path enters the critical arc at $c_{a}$, and continues through the arc until $c_{p}$. Internal vertices of the first path that are in $C$ are on the critical arc, but have index greater than $q$. Internal vertices of the second path that belong to $C$ are either not in the critical arc, or have index between $c_{a}$ and $c_{p}$. Therefore, the two paths are internally vertex-disjoint.

We now describe our algorithm to find a non-trivial cycle of good density, proving Theorem 1.4: Let $G$ be a 2-connected graph with edge-costs and terminal weights, and at least 2 terminals. There is a polynomial-time algorithm to find a non-trivial cycle $X$ in $G$ such that Density $(X) \leq \operatorname{Density}(G)$.

Proof of Theorem 1.4 Let $G$ be a graph with $\ell$ terminals and density $\rho$; we describe a polynomial-time algorithm that either finds a cycle in $G$ of density less than $\rho$, or a proper subgraph $G^{\prime}$ of $G$ that contains all $\ell$ terminals. In the latter case, we can recurse on $G^{\prime}$ until we eventually find a cycle of density at most $\rho$.

We first find, in $O\left(n^{3}\right)$ time, a minimum-density cycle $C$ in $G$. By Theorem 3.3, $C$ has density at most $\rho$, because the minimum-density non-trivial cycle has at most this density. If $C$ contains at least 2 terminals, we are done. Otherwise, $C$ contains exactly one terminal $v$. Since $G$ contains at least 2 terminals, there must exist at least one earring of $C$.

Let $v$ be the origin of this cycle $C$, and $H$ an earring of minimum arc length. By Theorem 3.5, every segment in the arc of $H$ is safe. Let $S$ be such a segment; since $v$ was selected as the origin, $v$ is not an internal vertex of $S$. As $v$ is the only terminal of $C, S$ contains no terminals, and therefore, the graph $G^{\prime}=G-S$ is 2-connected, and contains all $\ell$ terminals of $G$.

The proof above also shows that if $G$ is minimally 2 -connected on its terminals (that is, $G$ has no 2-connected proper subgraph containing all its terminals), every cycle of $G$ is non-trivial. (If a cycle contains 0 or 1 terminals, it has a safe segment containing no terminals, which can be deleted; this gives a contradiction.) Therefore, given a graph that is minimally 2 -connected on its terminals, finding a minimumdensity non-trivial cycle is equivalent to finding a minimum-density cycle, and so can be solved exactly in polynomial time. This suggests a natural algorithm for the problem: Given a graph that is not minimally 2 -connected on its terminals, delete edges and vertices until the graph is minimally 2 -connected on the terminals, and then find a minimum-density cycle. As shown above, this gives a cycle of density no more than that of the input graph, but this may not be the minimum-density cycle of the original graph. For instance, there exist instances where the minimum-density cycle uses edges of a safe segment $S$ that might be deleted by this algorithm.

## 4 Pruning 2-Connected Graphs of Good Density

In this section, we prove Theorem 4.1. Theorem 1.2, stated in the introduction, is simply the special case of this theorem with $H=G$, and in which every vertex is a terminal.

Theorem 4.1 Let $G$ be a 2-connected graph with edge costs and a designated vertex $r \in V(G)$ such that every vertex of $G$ has 2 vertex-disjoint paths to $r$ of total cost at most L. Let $H \subseteq G$ be a 2 -connected subgraph of $G$, with a given set $S \subseteq|S| \backslash\{r\}$ of terminals; let $\rho=\operatorname{cost}(H) /|S|$ be the density of $H$. There is a polynomial-time algorithm that, given any integer $k \leq|V(H)|$, finds a 2-connected subgraph $H^{\prime}$ of $G$ containing $r$ and at least $k$ terminals, of total cost at most $O(\log k) \rho k+2 L$.

Let $\ell=|S|$ be the number of terminals in $H$, and $\operatorname{cost}(H)$ its total $\operatorname{cost} ; \rho=$ $\frac{\operatorname{cost}(H)}{\ell}$ is the density of $H$. We describe an algorithm that finds a subgraph $H^{\prime}$ of $G$ containing at least $k$ terminals, each of which is 2-connected to the root, and of total edge cost $O(\log k) \rho k+2 L$. (Note that $H^{\prime}$ may not be a subgraph of $H$, as we are not even guaranteed that the root is in $H$.)

We can assume $\ell>(8 \log k) \cdot k$, or the following trivial solution suffices: Take the entire graph $H$, pick two distinct vertices $u, v \in V(H)$, and connect each of $u$ and $v$
to the root using 2 disjoint paths. The main phase of our algorithm proceeds by maintaining a set of 2-connected subgraphs that we call clusters, and repeatedly finding low-density cycles that merge clusters of similar weight to form larger clusters. (The weight of a cluster $X$, denoted by $w_{X}$, is (roughly) the number of terminals it contains.) Clusters are grouped into tiers by weight; tier $i$ contains clusters with weight at least $2^{i}$ and less than $2^{i+1}$. Initially, each terminal is a separate cluster in tier 0 . We say a cluster is large if it has weight at least $k$, and small otherwise. The algorithm stops when most terminals are in large clusters.

We describe the algorithm MergeClusters below. To simplify notation, let $\alpha$ be the quantity $2\lceil\log k\rceil \rho$. We say that a cycle is good if it has density at most $\alpha$; that is, good cycles have density at most $O(\log k)$ times the density of the input graph $H$.

```
Mergeclusters:
For (each \(i\) in \(\left.\left\{0,1, \ldots,\left(\left\lceil\log _{2} k\right\rceil-1\right)\right\}\right)\) do:
    If \((i=0)\) :
        Every terminal has weight 1
    Else:
        Mark all vertices as non-terminals
        For (each small 2-connected cluster \(X\) in tier \(i\) ) do:
            Add a (dummy) terminal \(v_{X}\) to \(G\) of weight \(w_{X}\)
            Add (dummy) edges of cost 0 from \(v_{X}\) to two (arbitrary) distinct vertices of \(X\)
    While ( \(H\) has a non-trivial cycle \(C\) of density at most \(\alpha\) ):
        Let \(X_{1}, X_{2}, \ldots, X_{q}\) be the small clusters that contain a terminal or an edge of \(C\).
        (Note that the terminals in \(C\) belong to a subset of \(\left\{X_{1}, \ldots, X_{q}\right\}\).)
        Form a new cluster \(Y\) (of tier greater than \(i\) ) by merging the clusters \(X_{1}, \ldots, X_{q}\)
        \(w_{Y} \leftarrow \sum_{j=1}^{q} w_{X_{j}}\)
        If \((i=0)\) :
        Mark all terminals in \(Y\) as non-terminals
        Else:
            Delete all (dummy) terminals in \(Y\) and the associated (dummy) edges.
```

We briefly remark on some salient features of this algorithm and our analysis before presenting the details of the proofs.

1. In iteration $i$, the terminals correspond to tier $i$ clusters. Clusters are 2-connected subgraphs of $G$, and by using cycles to merge clusters, we preserve 2-connectivity as the clusters become larger.
2. When a cycle $C$ is used to merge clusters, all small clusters that contain an edge of $C$ (regardless of their tier) are merged to form the new cluster. Therefore, at any stage of the algorithm, all currently small clusters are edge-disjoint. Large clusters, on the other hand, are frozen; even if they intersect a good cycle $C$, they are not merged with other clusters on $C$. Thus, at any time, an edge may be in multiple large clusters and up to one small cluster.
3. In iteration $i$ of Mergeclusters, the density of a cycle $C$ is only determined by its cost and the weight of terminals in $C$ corresponding to tier $i$ clusters. Though small clusters of other (lower or higher) tiers might be merged using $C$, we do not use their weight to pay for the edges of $C$.
4. The $i$ th iteration terminates when no good cycles can be found using the remaining tier $i$ clusters. At this point, there may be some terminals remaining that correspond to clusters which are not merged to form clusters of higher tiers. However, our choice of $\alpha$ (which defines the density of good cycles) is such that we can bound the number of terminals that are "left behind" in this fashion. Therefore, when the algorithm terminates, most terminals are in large clusters.

By bounding the density of large clusters, we can find a solution to the rooted $k-2 \mathrm{VC}$ problem of bounded density. Because we always use cycles of low density to merge clusters, an analysis similar to that of [24] and [10] shows that every large cluster has density at most $O\left(\log ^{2} k\right) \rho$. We first present this analysis, though it does not suffice to prove Theorem 4.1. A more careful analysis shows that there is at least one large cluster of density at most $O(\log k) \rho$; this allows us to prove the desired theorem.

We now formally prove that MergeClusters has the desired behavior. First, we present a series of claims which, together, show that when the algorithm terminates, most terminals are in large clusters, and all clusters are 2-connected.

Claim 4.2 Throughout the algorithm, the graph H is always 2-connected. The weight of a cluster is at most the number of terminals it contains.

Proof The only structural changes to $G$ are when new vertices are added as terminals; they are added with edges to two distinct vertices of $H$. This preserves 2-connectivity, as does deleting these terminals with the associated edges.

To see that the second claim is true, observe that if a terminal contributes weight to a cluster, it is contained in that cluster. A terminal can be in multiple clusters, but it contributes to the weight of exactly one cluster. This is because the weights of clusters are updated during merges; when the weight of a new cluster $Y$ is computed, any smaller cluster $X_{j}$ containing terminals which contribute to the weight of $Y$ is absorbed into $Y$.

We use the following simple proposition in proofs of 2-connectivity; the proof is straightforward, and hence omitted.

Proposition 4.3 Let $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ be 2-connected subgraphs of a graph $G(V, E)$ such that $\left|V_{1} \cap V_{2}\right| \geq 2$. Then the graph $H_{1} \cup H_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup\right.$ $E_{2}$ ) is 2-connected.

Lemma 4.4 The clusters formed by MERGECLUSTERS are all 2-connected.
Proof Let $Y$ be a cluster formed by using a cycle $C$ to merge clusters $X_{1}, X_{2}, \ldots, X_{q}$. The edges of the cycle $C$ form a 2-connected subgraph of $H$, and we assume that each $X_{j}$ is 2-connected by induction. Further, $C$ contains at least 2 vertices of each $X_{j}$ : if C contains an edge of $X_{j}$, this follows immediately, and if it contains a (dummy) terminal, it must contain at least the two edges of $X_{j}$ incident to this terminal. ${ }^{8}$ There-

[^8]fore, we can use induction and Proposition 4.3 above: We assume $C \cup\left\{X_{l}\right\}_{l=1}^{j}$ is 2-connected by induction, and $C$ contains 2 vertices of $X_{j+1}$, so $C \cup\left\{X_{l}\right\}_{l=1}^{j+1}$ is 2connected.

Note that we have shown $Y=C \cup\left\{X_{j}\right\}_{j=1}^{q}$ is 2-connected, but $C$ (and hence $Y$ ) might contain dummy terminals and the corresponding dummy edges. However, each such terminal with the 2 associated edges is an ear of $Y$; deleting them leaves $Y$ 2connected. More formally, if $u, v$ are the other endpoints of the edges incident to the dummy terminal in $X_{j}$, there are at least 2 disjoint paths remaining between $u$ and $v$ even after deleting the dummy edges, as $X_{j}$ was 2-connected prior to the introduction of the dummy terminal.

Lemma 4.5 The total weight of small clusters in tier $i$ that are not merged to form clusters of higher tiers is at most $\frac{\ell}{2\lceil\log k\rceil}$.

Proof Assume this were not true; this means that MergeClusters could find no more cycles of density at most $\alpha$ using the remaining small tier $i$ clusters. But the total cost of all the edges is at most $\operatorname{cost}(H)$, and the sum of terminal weights is at least $\frac{\ell}{2\lceil\log k\rceil}$; this implies that the density of the graph (using the remaining terminals) is at most $2\lceil\log k\rceil \cdot \frac{\cos t(H)}{\ell}=\alpha$. But by Theorem 3.3, the graph must then contain a good non-trivial cycle, and so the while loop would not have terminated.

Corollary 4.6 When the algorithm MERGEClusters terminates, the total weight of large clusters is at least $\ell / 2>(4 \log k) \cdot k$.

Proof Each terminal not in a large cluster contributes to the weight of a cluster that was not merged with others to form a cluster of a higher tier. The previous lemma shows that the total weight of such clusters in any tier is at most $\frac{\ell}{2\lceil\log k\rceil}$; since there are $\lceil\log k\rceil$ tiers, the total number of terminals not in large clusters is less than $\lceil\log k\rceil$. $\frac{\ell}{2\lceil\log k\rceil}=\ell / 2$.

So far, we have shown that most terminals reach large clusters, all of which are 2 -connected, but we have not argued about the density of these clusters. The next lemma says that if we can find a large cluster of good density, we can find a solution to the $k-2 \mathrm{VC}$ problem of good density.

Lemma 4.7 Let $Y$ be a large cluster formed by MERGECLUSTERS. If $Y$ has density at most $\delta$, we can find a graph $Y^{\prime}$ with at least $k$ terminals, each of which is 2connected to $r$, of total cost at most $2 \delta k+2 L$.

Proof Let $X_{1}, X_{2}, \ldots, X_{q}$ be the clusters merged to form $Y$ in order around the cycle $C$ that merged them; each $X_{j}$ was a small cluster, of weight at most $k$. A simple averaging argument shows that there is a consecutive segment of $X_{j} \mathrm{~s}$ with total weight between $k$ and $2 k$, such that the cost of the edges of $C$ connecting these clusters, together with the costs of the clusters themselves, is at most $2 \delta k$. Let $X_{a}$ be the "first" cluster of this segment, and $X_{b}$ the "last". Let $v$ and $w$ be arbitrary terminals of $X_{a}$ and $X_{b}$ respectively. Connect each of $v$ and $w$ to the root $r$ using 2 vertex-disjoint
paths; the cost of this step is at most $2 L$. (We assumed that every terminal could be 2 connected to $r$ using disjoint paths of cost at most $L$.) The graph $Y^{\prime}$ thus constructed has at least $k$ terminals, and total cost at most $2 \delta k+2 L$.

We show that every vertex $z$ of $Y^{\prime}$ is 2-connected to $r$; this completes our proof. Let $z$ be an arbitrary vertex of $Y^{\prime}$; suppose there is a cut-vertex $x$ which, when deleted, separates $z$ from $r$. Both $v$ and $w$ are 2-connected to $r$, and therefore neither is in the same component as $z$ in $Y^{\prime}-x$. However, we describe 2 vertex-disjoint paths $P_{v}$ and $P_{w}$ in $Y^{\prime}$ from $z$ to $v$ and $w$ respectively; deleting $x$ cannot separate $z$ from both $v$ and $w$, which gives a contradiction. The paths $P_{v}$ and $P_{w}$ are easy to find; let $X_{j}$ be the cluster containing $z$. The cycle $C$ contains a path from vertex $z_{1} \in X_{j}$ to $v^{\prime} \in X_{a}$, and another (vertex-disjoint) path from $z_{2} \in X_{j}$ to $w^{\prime} \in X_{b}$. Concatenating these paths with paths from $v^{\prime}$ to $v$ in $X_{a}$ and $w^{\prime}$ to $w$ in $X_{b}$ gives us vertexdisjoint paths $P_{1}$ from $z_{1}$ to $v$ and $P_{2}$ from $z_{2}$ to $w$. Since $X_{j}$ is 2-connected, we can find vertex-disjoint paths from $z$ to $z_{1}$ and $z_{2}$, which gives us the desired paths $P_{v}$ and $P_{w} .{ }^{9}$

We now present the two analyses of the density of large clusters referred to earlier: First, we present a simpler but weaker analysis that shows that every large cluster has density at most $O\left(\log ^{2} k \rho\right)$. This does not suffice to prove Theorem 4.1; we subsequently refine the analysis to show that there exists a large cluster of density at most $O(\log k) \rho$, allowing us to complete the proof of Theorem 4.1. The key difference between the weaker and tighter analysis is in the way we bound edge costs. In the former, each large cluster pays for its edges separately, using the fact that all cycles used have density at most $\alpha=O(\log k) \rho$. In the latter, we crucially use the fact that small clusters which share edges are merged. Roughly speaking, because small clusters are edge-disjoint, the average density of small clusters must be comparable to the density of the input graph $H$. Once an edge is in a large cluster, we can no longer use the edge-disjointness argument. We must pay for these edges separately, but we can bound this cost.

First, the following lemma allows us to show that every large cluster has density at most $O\left(\log ^{2} k\right) \rho$.

Lemma 4.8 For any cluster $Y$ formed by MERGEClusters during iteration $i$, the total cost of edges in $Y$ is at most $(i+1) \cdot \alpha w_{Y}$.

Proof We prove this lemma by induction on the number of vertices in a cluster. Let $\mathcal{S}$ be the set of clusters merged using a cycle $C$ to form $Y$. Let $\mathcal{S}_{1}$ be the set of clusters in $\mathcal{S}$ of tier $i$, and $\mathcal{S}_{2}$ be $\mathcal{S}-\mathcal{S}_{1}$. ( $\mathcal{S}_{2}$ contains clusters of tiers less or greater than $i$ that contained an edge of $C$.)

The cost of edges in $Y$ is at most the sum of: the cost of $C$, the cost of $\mathcal{S}_{1}$, and the cost of $\mathcal{S}_{2}$. Since all clusters in $\mathcal{S}_{2}$ have been formed during iteration $i$ or earlier, and are smaller than $Y$, we can use induction to show that the cost of edges in $\mathcal{S}_{2}$ is at most $(i+1) \alpha \sum_{X \in \mathcal{S}_{2}} w_{X}$. All clusters in $\mathcal{S}_{1}$ are of tier $i$, and so must have been

[^9]formed before iteration $i$ (any cluster formed during iteration $i$ is of a strictly greater tier), so we use induction to bound the cost of edges in $\mathcal{S}_{1}$ by $i \alpha \sum_{X \in \mathcal{S}_{1}} w_{X}$.

Finally, because $C$ was a good-density cycle, and only clusters of tier $i$ contribute to calculating the density of $C$, the cost of $C$ is at most $\alpha \sum_{X \in \mathcal{S}_{1}} w_{X}$. Therefore, the total cost of edges in $Y$ is at most $(i+1) \alpha \sum_{X \in \mathcal{S}} w_{X}=(i+1) \alpha w_{Y}$.

Let $Y$ be an arbitrary large cluster; since we have only $\lceil\log k\rceil$ tiers, the previous lemma implies that the cost of $Y$ is at most $\lceil\log k\rceil \cdot \alpha w_{Y}=O\left(\log ^{2} k\right) \rho w_{Y}$. That is, the density of $Y$ is at most $O\left(\log ^{2} k\right) \rho$, and we can use this fact together with Lemma 4.7 to find a solution to the rooted $k-2 \mathrm{VC}$ problem of cost at most $O\left(\log ^{2} k\right) \rho k+2 L$. This completes the 'weaker' analysis, but this does not suffice to prove Theorem 4.1; to prove the theorem, we would need to use a large cluster $Y$ of density $O(\log k) \rho$, instead of $O\left(\log ^{2} k\right) \rho$.

For the purpose of the more careful analysis, implicitly construct a forest $\mathcal{F}$ on the clusters formed by MergeClusters. Initially, the vertex set of $\mathcal{F}$ is just $S$, the set of terminals, and $\mathcal{F}$ has no edges. Every time a cluster $Y$ is formed by merging $X_{1}, X_{2}, \ldots, X_{q}$, we add a corresponding vertex $Y$ to the forest $\mathcal{F}$, and add edges from $Y$ to each of $X_{1}, \ldots, X_{q} ; Y$ is the parent of $X_{1}, \ldots, X_{q}$. We also associate a cost with each vertex in $\mathcal{F}$; the cost of the vertex $Y$ is the cost of the cycle used to form $Y$ from $X_{1}, \ldots, X_{q}$. We thus build up trees as the algorithm proceeds; the root of any tree corresponds to a cluster that has not yet become part of a bigger cluster. The leaves of the trees correspond to vertices of $H$; they all have cost 0 . Also, any large cluster $Y$ formed by the algorithm is at the root of its tree; we refer to this tree as $T_{Y}$.

For each large cluster $Y$ after MergeClusters terminates, say that $Y$ is of type $i$ if $Y$ was formed during iteration $i$ of MergeClusters. We now define the final-stage clusters of $Y$ : They are the clusters formed during iteration $i$ that became part of $Y$. (We include $Y$ itself in the list of final-stage clusters; even though $Y$ was formed in iteration $i$ of Mergeclusters, it may contain other final-stage clusters. For instance, during iteration $i$, we may merge several tier $i$ clusters to form a cluster $X$ of tier $j>i$. Then, if we find a good-density cycle $C$ that contains an edge of $X$, $X$ will merge with the other clusters of $C$.) The penultimate clusters of $Y$ are those clusters that exist just before the beginning of iteration $i$ and become a part of $Y$. Equivalently, the penultimate clusters are those formed before iteration $i$ that are the immediate children in $T_{Y}$ of final-stage clusters. Figure 3 illustrates the definitions of final-stage and penultimate clusters. Such a tree could be formed if, in iteration $i-1,4$ clusters of this tier merged to form $E$, a cluster of tier $i+1$. Subsequently, in iteration $i$, clusters $L$ and $M$ merge to form $J$. We next find a good cycle containing $F$ and $K ; J$ contains an edge of this cycle, so these three clusters are merged to form $B$. Note that the cost of this cycle is paid for the by the weights of $F$ and $K$ only; $J$ is a tier $i+1$ cluster, and so its weight is not included in the density calculation. Finally, we find a good cycle paid for by $A$ and $D$; since $B$ and $E$ share edges with this cycle, they all merge to form the large cluster $Y$.

An edge of a large cluster $Y$ is said to be a final edge if it is used in a cycle $C$ that produces a final-stage cluster of $Y$. All other edges of $Y$ are called penultimate edges; note that any penultimate edge is in some penultimate cluster of $Y$. We define


Fig. 3 A part of the Tree $T_{Y}$ corresponding to $Y$, a large cluster of type $i$. The number in each vertex indicates the tier of the corresponding cluster. Only final-stage and penultimate clusters are shown: final-stage clusters are indicated with a double circle; all other clusters are penultimate
the final cost of $Y$ to be the sum of the costs of its final edges, and its penultimate cost to be the sum of the costs of its penultimate edges; clearly, the cost of $Y$ is the sum of its final and penultimate costs. We bound the final costs and penultimate costs separately.

Recall that an edge is a final edge of a large cluster $Y$ if it is used by MERGEClusTERS to form a cycle $C$ in the final iteration during which $Y$ is formed. The reason we can bound the cost of final edges is that the cost of any such cycle is at most $\alpha$ times the weight of clusters contained in the cycle, and a cluster does not contribute to the weight of more than one cycle in an iteration. (This is also the essence of Lemma 4.8.) We formalize this intuition in the next lemma.

Lemma 4.9 The final cost of any large cluster $Y$ is at most $\alpha w_{Y}$, where $w_{Y}$ is the weight of $Y$.

Proof Let $Y$ be an arbitrary large cluster. In the construction of the tree $T_{Y}$, we associated with each vertex of $T_{Y}$ the cost of the cycle used to form the corresponding cluster. To bound the total final cost of $Y$, we must bound the sum of the costs of vertices of $T_{Y}$ associated with final-stage clusters. The weight of $Y, w_{Y}$ is at least the sum of the weights of the penultimate tier $i$ clusters that become a part of $Y$. Therefore, it suffices to show that the sum of the costs of vertices of $T_{Y}$ associated with final-stage clusters is at most $\alpha$ times the sum of the weights of $Y$ 's penultimate tier $i$ clusters. (Note that a tier $i$ cluster must have been formed prior to iteration $i$, and hence it cannot itself be a final-stage cluster.)

A cycle was used to construct a final-stage cluster $X$ only if its cost was at most $\alpha$ times the sum of weights of the penultimate tier $i$ clusters that become a part of $X$. (Larger clusters may become a part of $X$, but they do not contribute weight to the density calculation.) Therefore, if $X$ is a vertex of $T_{Y}$ corresponding to a final-stage cluster, the cost of $X$ is at most $\alpha$ times the sum of the weights of its tier $i$ immediate children in $T_{Y}$. But $T_{Y}$ is a tree, and so no vertex corresponding to an penultimate tier
$i$ cluster has more than one parent. That is, the weight of a penultimate cluster pays for only one final-stage cluster. Therefore, the sum of the costs of vertices associated with final-stage clusters is at most $\alpha$ times the sum of the weights of $Y$ 's penultimate tier $i$ clusters, and so the final cost of $Y$ is at most $\alpha w_{Y}$.

Lemma 4.10 If $Y_{1}$ and $Y_{2}$ are distinct large clusters of the same type (that is, formed during the same iteration of MERGECLUSTERS), no edge is a penultimate edge of both $Y_{1}$ and $Y_{2}$.

Proof Suppose, by way of contradiction, that some edge $e$ is a penultimate edge of both $Y_{1}$ and $Y_{2}$, which are large clusters of type $i$. Let $X_{1}$ (respectively $X_{2}$ ) be a penultimate cluster of $Y_{1}$ (resp. $Y_{2}$ ) containing $e$. As penultimate clusters, both $X_{1}$ and $X_{2}$ are formed before iteration $i$. But until iteration $i$, neither is part of a large cluster, and two small clusters cannot share an edge without being merged. Therefore, $X_{1}$ and $X_{2}$ must have been merged, so they cannot belong to distinct large clusters, giving the desired contradiction.

Theorem 4.11 After Mergeclusters terminates, at least one large cluster has density at most $O(\log k) \rho$.

Proof We define the penultimate density of a large cluster to be the ratio of its penultimate cost to its weight.

Consider the total penultimate costs of all large clusters: For any $i$, each edge $e \in E(H)$ can be a penultimate edge of at most 1 large cluster of type $i$. This implies that each edge can be a penultimate edge of at most $\lceil\log k\rceil$ clusters. Therefore, the sum of penultimate costs of all large clusters is at most $\lceil\log k\rceil \operatorname{cost}(H)$. Further, the total weight of all large clusters is at least $\ell / 2$. Therefore, the (weighted) average penultimate density of large clusters is at most $2\lceil\log k\rceil \frac{\operatorname{cost}(H)}{\ell}=2\lceil\log k\rceil \rho$, and hence there exists a large cluster $Y$ of penultimate density at most $2\lceil\log k\rceil \rho$.

The penultimate cost of $Y$ is, therefore, at most $2\lceil\log k\rceil \rho w_{Y}$, and from Lemma 4.9, the final cost of $Y$ is at most $\alpha w_{Y}$. Therefore, the density of $Y$ is at most $\alpha+2\lceil\log k\rceil \rho=O(\log k) \rho$.

Theorem 4.11 and Lemma 4.7 together imply that we can find a solution to the rooted $k-2 \mathrm{VC}$ problem of cost at most $O(\log k) \rho k+2 L$. This completes our proof of Theorem 4.1.

## 5 The Algorithms for the $\boldsymbol{k}-2 \mathrm{VC}$ and Budget-2VC Problems

Recall that the goal of the $k-2 \mathrm{VC}$ problem is to find a minimum-cost 2-connected subgraph with at least $k$ terminals. In the rooted $k-2 \mathrm{VC}$ problem, we wish to find a min-cost subgraph with at least $k$ terminals in which every terminal is 2 -connected to the specified root $r$. We solve the rooted $k-2 \mathrm{VC}$ problem; the lemma below shows that this also suffices to solve the unrooted version.

Lemma 5.1 If there is an algorithm with approximation ratio $\alpha$ for the rooted $k-2 \mathrm{VC}$ problem, there is an algorithm with approximation ratio $\alpha$ for the unrooted $k-2 \mathrm{VC}$ problem.

Proof Given an instance of the unrooted $k-2 \mathrm{VC}$ problem, let OPT denote the cost of an optimal solution. Guess 2 vertices $u, v$ that are adjacent in a fixed optimal solution, and let $u v$ be the edge (which must be in the optimal solution) connecting them. Create an instance of the rooted $k-2 \mathrm{VC}$ problem by subdividing the edge $u v$ : Insert a new root vertex $r$ along $u v$, and set the total cost of the two edges $u r$ and $r v$ to be equal to the cost of the original edge $u v$. It is straightforward to see that the optimal solution to the original unrooted $k-2 \mathrm{VC}$ instance corresponds to a solution to the rooted $k-2 \mathrm{VC}$ instance of cost OPT.

Now, use the $\alpha$-approximation algorithm for rooted $k-2 \mathrm{VC}$ to find a subgraph $H$ in which at least $k$ terminals are 2-connected to $r$, and of cost at most $\alpha$ OPT. To convert this into a solution to the original unrooted $k-2 \mathrm{VC}$ instance, simply undo the subdivision of $u v$ : replace $u r$ and $r v$ with the original edge $u v$. The cost of this solution is at most $\alpha \mathrm{OPT}$; it remains only to verify that all terminals are 2 -connected. To see this, note that there are 2 disjoint paths from each terminal $t$ that end at $u$ and $v$ respectively (as $t$ is 2-connected to $r$ ) and $u$ and $v$ are 2-connected in the final solution, as they are connected in $H \backslash\{r\}$ and hence 2-connected once we reinsert edge $u v$.

Similarly, one can reduce Budget-2VC to its rooted version. Note that $k-2 \mathrm{VC}$ and BUDGET-2VC are equivalent from the viewpoint of exact optimization, but this is not true from an approximation perspective. Still, we solve them both via the DENS2 VC problem, using the algorithm of Lemma 1.5 described in Sect. 2.

We first describe our algorithm for the $k-2 \mathrm{VC}$ problem. Let OPT be the cost of an optimal solution to the $k-2 \mathrm{VC}$ instance. We assume knowledge of OPT; this can be dispensed with using standard methods. We pre-process the graph by deleting any terminal that does not have 2 vertex-disjoint paths to the root $r$ of total cost at most OPT. We use $t(H)$ to denote the number of terminals in a graph $H$. Given a partial solution $G^{\prime}$ (in which fewer than $k$ terminals are connected to the root), we use $k^{\prime}=k-t\left(G^{\prime}\right)$ to denote the remaining number of terminals that must be connected. The high-level description of the algorithm for the rooted $k-2 \mathrm{VC}$ problem is given below.
$k-2 \mathrm{VC}$ (Graph $G$, root $r$, integer $k$ ):
$k^{\prime} \leftarrow k, G^{\prime} \leftarrow$ the empty graph.
While ( $k^{\prime}>0$ ):
Find a low-density subgraph $H \subseteq G$, using the algorithm of Lemma 1.5 for DENS-2VC.
If ( $t(H) \leq k^{\prime}$ ):
$G^{\prime} \leftarrow G^{\prime} \cup H, k^{\prime} \leftarrow k^{\prime}-t(H)$.
Mark all terminals in $H$ as non-terminals of $G$.
Else:
Prune $H$ to obtain $H^{\prime}$ containing $k^{\prime}$ terminals, using the algorithm of Theorem 4.1. $G^{\prime}=G^{\prime} \cup H^{\prime}, k^{\prime} \leftarrow 0$.
Output $G^{\prime}$.

At the beginning of any iteration of the while loop, the graph contains a solution to the DENS-2VC problem of density at most $\frac{\mathrm{OPT}}{k^{\prime}}$. Therefore, the graph $H$ returned always has density at most $O(\log \ell) \frac{\mathrm{OPT}}{k^{\prime}}$. If $t(H) \leq k^{\prime}$, we add $H$ to $G^{\prime}$ and decrement $k^{\prime}$; we refer to this as the augmentation step. Otherwise, we have a graph $H$ of good density, but with too many terminals. In this case, we prune $H$ to find a graph with the required number of terminals; this is the pruning step. A simple set-cover type argument shows the following lemma:

Lemma 5.2 If, at every augmentation step, we add a graph of density at most $O(\log \ell) \frac{\mathrm{OPT}}{k^{\prime}}$ (where $k^{\prime}$ is the number of additional terminals that must be selected), the total cost of all the augmentation steps is at most $O(\log \ell \cdot \log k) \mathrm{OPT}$.

Proof Suppose the graph added in each step has density at most $\gamma \log \ell \frac{\text { OPT }}{k^{\prime}}$, for some constant $\gamma$; we prove that the total cost of augmentation steps is bounded by $\gamma J_{k} \log \ell$. OPT, where $J_{k}$ denotes the $k$ th Harmonic number. We use induction on the number of augmentation steps.

For the base case, suppose there is a single step. The low-density subgraph $H$ which is added has at most $k$ terminals (if not, we would be in the pruning step); thus, the total cost of $H$ is less than $\gamma \log \ell$. OPT, which is at most $\gamma J_{k} \log \ell$. OPT. For the inductive step, we initially have $k^{\prime}=k$. Let $H$ be the low-density graph found; it has $t(H)<k$ terminals. The total cost of edges in $H$ is at most $\gamma \log \ell \frac{\mathrm{OPT}}{k} \cdot t(H)$. We then decrement $k^{\prime}$ by $t(H)$, mark terminals of $H$ as non-terminals, and (implicitly) recurse on the graph that remains. This remaining graph has a solution of cost at most OPT, and by the induction hypothesis, the cost of the remaining augmentation steps is $\gamma J_{k-t(H)} \log \ell$ OPT. Thus, the total cost of all augmentation steps is at most $\gamma \log \ell\left(\frac{t(H)}{k}+J_{k-t(H)}\right) \cdot$ OPT, which is at most $\gamma J_{k} \log \ell \cdot$ OPT.

Therefore, it remains only to bound the cost of the graph $H^{\prime}$ added in the pruning step, and Theorem 4.1, proved in Sect. 4, is precisely what is needed. We can now prove our main result for the $k-2 \mathrm{VC}$ problem, Theorem 1.7.

Proof of Theorem 1.7 Let OPT be the cost of an optimal solution to the (rooted) $k-2 \mathrm{VC}$ problem. By Lemma 5.2, the total cost of the augmentation steps of our greedy algorithm is $O(\log \ell \cdot \log k)$ OPT. To bound the cost of the pruning step, let $k^{\prime}$ be the number of additional terminals that must be covered just prior to this step. The algorithm for the DENS-2VC problem returns a graph $H$ with $t(H)>k^{\prime}$ terminals, and density at most $O(\log \ell) \frac{\mathrm{OPT}}{k^{\prime}}$. As a result of our pre-processing step, every vertex has 2 vertex-disjoint paths to $r$ of total cost at most OPT. Now, we use Theorem 4.1 to prune $H$ and find a graph $H^{\prime}$ with $k^{\prime}$ terminals and cost at most $O(\log k) D e n s i t y(H) k^{\prime}+2 \mathrm{OPT} \leq O(\log \ell \cdot \log k) \mathrm{OPT}+2 \mathrm{OPT}$. Therefore, the total cost of our solution is $O(\log \ell \cdot \log k)$ OPT.

We now describe the similar algorithm for the Budget-2VC problem. Given budget $B$, pre-process the graph as before by deleting vertices that do not have 2 vertexdisjoint paths to $r$ of total cost at most $B$. Let OPT denote the number of vertices in the optimal solution, and $k=\mathrm{OPT} / c \log \ell \log \mathrm{OPT}$, for some constant $c=O(1 / \epsilon)$.

We run the same greedy algorithm, using the $O(\log \ell)$-approximation for the DENS2 VC problem. Note that at each stage, the graph contains a solution to DENS-2VC of density at most $B /(\mathrm{OPT}-k)<2 B / \mathrm{OPT}$. Therefore, we have the following lemma:

Lemma 5.3 If, at every augmentation step of the algorithm for BUDGET-2VC, we add a graph of density at most $O(\log \ell)(2 B / \mathrm{OPT})$, the total cost of all augmentation steps is at most $O(B / \log \mathrm{OPT}) \leq \epsilon B$.

Again, to prove Theorem 1.9, giving a bicriteria approximation for BUDGET-2VC, we only have to bound the cost of the pruning step.

Proof of Theorem 1.9 From the previous lemma, the total cost of the augmentation steps is at most $\epsilon B$. The graph $H$ returned by the DENS-2VC algorithm has density at most $O(\log \ell \cdot B / \mathrm{OPT})$, and $t(H)>k^{\prime}$ terminals. Now, from Theorem 4.1, we can prune $H$ to find a graph $H^{\prime}$ containing $k^{\prime}$ terminals and cost at most $O\left(\log k^{\prime} \log \ell\right.$. $B / \mathrm{OPT}) \cdot k^{\prime}+2 B$. As $k^{\prime} \leq k=\mathrm{OPT} /(c \log \ell \log \mathrm{OPT})$, a suitable choice of $c$ ensures that the total cost of the pruning step is at most $\epsilon B+2 B$.

## 6 Open Problems

We describe several open problems:

- Can the approximation ratio for the $k-2 \mathrm{VC}$ problem (or the $k-2 \mathrm{EC}$ problem) be improved from the current $O(\log \ell \log k)$ to $O(\log n)$ or better? Removing the dependence on $\ell$ to obtain even $O\left(\log ^{2} k\right)$ is also interesting.
- Can we obtain approximation algorithms for the $k-\lambda V C$ or $k-\lambda E C$ problems for $\lambda>2$ ? If the graph is complete and edge-costs satisfy triangle inequality, a constant factor approximation for $k-\lambda \mathrm{EC}$ is given in [27].
- Given a 2-connected graph of density $\rho$ with some vertices marked as terminals, we show that it contains a non-trivial cycle with density at most $\rho$, and give an algorithm to find such a cycle. We have also found an $O(\log \ell)$-approximation for the problem of finding a minimum-density non-trivial cycle. Is there a constantfactor approximation for this problem? We do not know whether the problem is NP-Hard.

Acknowledgements We thank Mohammad Salavatipour for helpful discussions on $k$-2EC and related problems. We thank Erin Wolf Chambers for useful suggestions on notation. We thank the anonymous referees for their careful reading of our manuscript and the numerous suggestions they made to improve the exposition.

## References

1. Agrawal, A., Klein, P.N., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput. 24(3), 440-456 (1995). Preliminary version in Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing (STOC), pp. 134-144 (1991)
2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New York (1993)
3. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: Improved approximation guarantees for minimumweight $k$-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254-262 (1998). Preliminary version in Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC), pp. 277-283 (1995)
4. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 166-174. ACM, New York (2004)
5. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the $k$-MST problem. J. Comput. Syst. Sci. 58(1), 101-108 (1999). Preliminary version in Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 442-448 (1996)
6. Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput. 37(2), 653-670 (2007). Preliminary version in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 46-55 (2003)
7. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 36-45. IEEE Computer Society, Los Alamitos (2003)
8. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undirected graphs and the directed Steiner network problem. ACM Trans. Algorithms (to appear). Preliminary version in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 532541 (2008)
9. Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximation algorithms for nonuniform buy-at-bulk network design. SIAM J. Comput. 39(5), 1772-1798 (2010). Preliminary versions in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 677-686 (2006) and Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1265-1274 (2007)
10. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algorithms (to appear). Preliminary version in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 661-670 (2008)
11. Cheriyan, J., Thurimella, R.: Approximating minimum-size $k$-connected spanning subgraphs via matching. SIAM J. Comput. 30(2), 528-560 (2001). Preliminary version in Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 292-301 (1996)
12. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation. Math. Program. 100(2), 411-421 (2004). Preliminary version in Proceedings of the 8th International Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 60-70 (2001)
13. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1996)
14. Fakcharoenphol, J., Laekhanukit, B.: An $O\left(\log ^{2} k\right)$-approximation algorithm for the $k$-vertex connected spanning subgraph problem. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 153-158. ACM, New York (2008)
15. Feige, U., Peleg, D., Kortsarz, G.: The dense $k$-subgraph problem. Algorithmica 29(3), 410-421 (2001). Preliminary version in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 692-701 (1993)
16. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algorithms for minimumcost vertex connectivity problems. J. Comput. Syst. Sci. 72(5), 838-867 (2006). Preliminary versions in Proceedings of the 8th International Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 115-129 (2001) and Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 339-347 (2001)
17. Garg, N.: A 3-approximation for the minimum tree spanning $k$ vertices. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pp. 302-309 (1996)
18. Garg, N.: Saving an epsilon: a 2-approximation for the $k$-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 396-402 (2005)
19. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1996)
20. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 631-640 (2006)
21. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39-60 (2001). Preliminary version in Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 448-457 (1998)
22. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem: theory and practice. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 760-769 (2000)
23. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. CRC Press, Boca Raton (2007)
24. Lau, L.C., Naor, J.S., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 651-660 (2007)
25. Lau, L.C., Naor, J.S., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. Comput. 39(3), 1062-1087 (2009)
26. Ravi, R., Sundaram, R., Marathe, M., Rosenkrantz, D., Ravi, S.: Spanning trees: short or small. SIAM J. Discrete Math. 9(2), 178-200 (1996). Preliminary version in Proceedings of the 5th Annual ACMSIAM Symposium on Discrete Algorithms (SODA), pp. 546-555 (1994)
27. Safari, M.A., Salavatipour, M.: A constant factor approximation for minimum $\lambda$-edge-connected $k$ subgraph with metric costs. In: Proceedings of the 11th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pp. 233-246 (2008)
28. Seymour, P.D.: Nowhere-zero 6-flows. J. Comb. Theory, Ser. B 30(2), 130-135 (1981)
29. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

[^0]:    A preliminary version of this paper appeared in the Proceedings of the 28th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2008. C. Chekuri was partially supported by NSF grants CCF 0728782 and CNS-0721899, and a US-Israeli BSF grant 2002276.
    When this work was done, N. Korula was at the Department of Computer Science at the University of Illinios, and was partially supported by NSF grant CCF 0728782.
    C. Chekuri

    Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA
    e-mail: chekuri@cs.illinois.edu
    N. Korula ( $\boxtimes$ )

    Google Research, 76 Ninth Ave, 4th Floor, New York, NY 10011, USA
    e-mail: nitish.korula@gmail.com

[^1]:    ${ }^{1}$ In the rooted version of MAX-PrIzE Tree, the output subgraph $H$ is required to contain a specified root vertex.

[^2]:    ${ }^{2}$ We use both definitions subsequently; the context will clarify the relevant one.

[^3]:    ${ }^{3}$ For $k-2 \mathrm{EC}$ and $k-\lambda \mathrm{EC}$, the problem with specified terminal set $S$ can be reduced to the problem where every vertex in $V$ is a terminal. Such a reduction does not seem possible for the $k-2 \mathrm{VC}$ and $k-\lambda \mathrm{VC}$, so we work directly with the terminal version.

[^4]:    ${ }^{4}$ We remark that this approach yields a rather straightforward $O(\log n \log k)$ approximation for $k$-MST and could have been discovered much before a more clever analysis given in [3].

[^5]:    ${ }^{5}$ The LP and algorithm of [16] are more general; we omit details here.

[^6]:    ${ }^{6}$ This roughly corresponds to Density $\left(S_{1}\right) \leq \operatorname{Density}\left(S_{2}\right)$; there is an adjustment so that the weights of $u$ and $v$ are not included in the calculation.

[^7]:    ${ }^{7}$ If $H_{i}$ were simply a path, it would be an ear of $C$, but $H_{i}$ may be more complex.

[^8]:    ${ }^{8}$ A cluster $X_{j}$ may be a singleton vertex (for instance, if we are in tier 0 ), but such a vertex does not affect 2-connectivity.

[^9]:    ${ }^{9}$ The vertex $z$ may not be in any cluster $X_{j}$. In this case, $P_{v}$ is formed by using edges of $C$ from $z$ to $v^{\prime} \in X_{a}$, and then a path from $v^{\prime}$ to $v ; P_{w}$ is formed similarly.

