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Abstract Given an undirected graph G with edge costs and a specified set of termi-
nals, let the density of any subgraph be the ratio of its cost to the number of terminals
it contains. If G is 2-connected, does it contain smaller 2-connected subgraphs of
density comparable to that of G? We answer this question in the affirmative by giv-
ing an algorithm to prune G and find such subgraphs of any desired size, incurring
only a logarithmic factor increase in density (plus a small additive term).

We apply our pruning techniques to give algorithms for two NP-Hard problems on
finding large 2-vertex-connected subgraphs of low cost; no previous approximation
algorithm was known for either problem. In the k-2VC problem, we are given an
undirected graph G with edge costs and an integer k; the goal is to find a minimum-
cost 2-vertex-connected subgraph of G containing at least k vertices. In the Budget-
2VC problem, we are given a graph G with edge costs, and a budget B; the goal
is to find a 2-vertex-connected subgraph H of G with total edge cost at most B that
maximizes the number of vertices in H . We describe an O(logn logk) approximation
for the k-2VC problem, and a bicriteria approximation for the Budget-2VC problem
that gives an O( 1

ε
log2 n) approximation, while violating the budget by a factor of at

most 2 + ε.
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1 Introduction

Connectivity and network design problems play an important role in combinatorial
optimization and algorithms, both for their theoretical appeal and their usefulness in
real-world applications. Many of these problems, such as the well-known minimum
cost STEINER TREE problem, are NP-hard and there has been a large and rich litera-
ture on approximation algorithms. A number of elegant and powerful techniques and
results have been developed over the years (see [13, 29]); in particular, the primal-
dual method [1, 19] and iterated rounding [21] have led to some remarkable results.
Interesting and useful variants of classical problems are sometimes introduced, partly
motivated by their natural appeal and partly motivated by practical applications. One
such problem is the k-MST problem introduced by Ravi et al. [26]: Given a graph
G with edge costs and an integer k, the goal is to find a minimum-cost connected
subgraph of G that contains at least k vertices. It is not hard to see that the k-MST
problem generalizes the STEINER TREE problem; in particular, an α-approximation
for the k-MST problem implies an α-approximation for STEINER TREE. The k-MST
problem has attracted considerable attention in the approximation algorithms litera-
ture and its study has led to several new algorithmic ideas and applications [3, 6, 7,
17, 18]. Closely related to k-MST is the BUDGETED or MAX-PRIZE TREE problem
[6, 22]; here we are given G and a budget B , and the goal is to find a connected sub-
graph H of G with total cost no more than B , that maximizes the number of vertices
(or terminals) in H . Interestingly, it is only recently that the rooted1 version of the
MAX-PRIZE TREE problem was shown to have an O(1)-approximation [6], although
an O(1) approximation was known for the k-MST problem much earlier [5].

Recently, Lau et al. [24] considered the natural generalization of k-MST to higher
connectivity. In particular they defined the (k, λ)-subgraph problem to be the follow-
ing: Find a minimum-cost subgraph of the given graph G that contains at least k

vertices and is λ-edge connected. We use the notation k-λEC to refer to this problem.
A poly-logarithmic approximation was derived for the k-2EC problem in [24, 25].
In this paper, we consider the vertex-connectivity generalizations of the k-MST and
MAX-PRIZE TREE problems. We define the k-λVC problem as follows: Given an
integer k and a graph G with edge costs, find the minimum-cost λ-vertex-connected
subgraph of G that contains at least k vertices. In the BUDGET-λVC problem, given
a budget B and a graph G with edge costs, the goal is to find a λ-vertex-connected
subgraph of G of cost at most B , that maximizes the number of vertices it contains.

Problems such as k-MST, k-λEC, k-λVC are partly motivated by applications in
network design and related areas where one may want to build low-cost networks
including (or servicing) many clients, but there are constraints such as a budget on
the network cost, or a minimum quota on the number of clients. Algorithms for these

1In the rooted version of MAX-PRIZE TREE, the output subgraph H is required to contain a specified root
vertex.
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problems also find other uses. For instance, a basic problem in vehicle routing appli-
cations is the s–t ORIENTEERING problem, in which one seeks an s–t path that max-
imizes the number of vertices in it subject to a budget B on its length. Approximation
algorithms for this problem [4, 6, 10] have been derived through approximation algo-
rithms for the k-MST and the related k-STROLL problems; in the latter, the goal is to
find a minimum-cost path containing at least k vertices.

The difficulty in problems such as k-λEC and k-λVC lies largely in the fact that
we do not know which vertices should be included in the output subgraph. The
special cases in which all vertices are to be included (that is, k = |V |) are well-
known and referred to as the min-cost λ-edge-connected subgraph and min-cost λ-
vertex-connected subgraph problems respectively. A 2-approximation is known for
the min-cost λ-edge-connected subgraph problem [21] and an O(log2 λ) approxi-
mation for the min-cost λ-vertex-connected subgraph problem [14] (for λ = 2, a 2-
approximation is known [16]). Still further improvements are possible for these prob-
lems when all edge costs are identical: In particular, there is a 1+1/λ-approximation
for the min-cost λ-vertex-connected subgraph problem with identical edge costs [11].
We refer the reader to the survey of Kortsarz and Nutov [23] for pointers to additional
results on these problems.

The k-λEC problem reduces to the k-λVC problem in an approximation preserv-
ing fashion (see Sect. 1.2); both these problems are NP-hard and also APX-hard for
any λ ≥ 1. Moreover, Lau et al. [24] show that when λ is not fixed (and hence part
of the input), the approximability of the k-λEC problem is related to that of the
DENSE k-SUBGRAPH problem [15]; the DENSE k-SUBGRAPH problem currently
admits only a polynomial factor approximation and improving the vast gaps between
the known upper and lower bounds on its approximability is considered a difficult
open problem. In this paper, we focus on λ = 2 and develop approximation algo-
rithms for both the k-2VC and BUDGET-2VC problems.

How do we solve k-2VC and BUDGET-2VC? The k-MST problem required sev-
eral algorithmic innovations which eventally led to the current best approximation
ratio of 2 [18]. The main technical tool which underlies O(1) approximations for
k-MST [5, 12, 17, 18] is a special property that holds for an LP relaxation of the
PRIZE-COLLECTING STEINER TREE problem [19] which is a Lagrangian relaxation
of the STEINER TREE problem. Unfortunately, it appears that one cannot use these
ideas (at least directly) for more general problems such as k-2VC (or the k-STEINER

FOREST problem [20]) since the LP relaxation for the prize-collecting variant is not
known to satisfy the above mentioned property. We therefore rely on alternative tech-
niques that take a more basic approach.

Our algorithms for k-2VC and BUDGET-2VC use the same high-level idea, rely-
ing on the notion of density:

Definition 1.1 Given a graph with edge costs, the density of a subgraph H , denoted
Density(H), is the ratio of the total cost of edges of H to the number of vertices in H .
If a subset of vertices are marked as terminals, the density of H is the ratio of the total
cost of its edges to the number of terminals in H .2

2We use both definitions subsequently; the context will clarify the relevant one.
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The algorithms greedily combine subgraphs of low density until the union of these
subgraphs has the desired number of vertices or has cost equal to the budget. Com-
bining such low-density subgraphs is guaranteed to yield a good solution unless one
such subgraph H has good density, but is far too large. One needs, then, a way to
prune H to find a smaller subgraph of comparable density. Our main structural result
for pruning 2-connected graphs is the following:

Theorem 1.2 Let G be a 2-connected graph with edge costs. Let ρ denote the density
of G, and let r ∈ V (G) be a designated vertex such that every vertex of G has 2
vertex-disjoint paths to r of total cost at most L. There is a polynomial-time algorithm
that, given any integer k ≤ |V (G)|, finds a 2-connected graph H ⊆ G containing r

and at least k other vertices, of total cost at most O(log k)ρk + 2L.

The algorithm of Theorem 1.2 finds a subgraph of any desired size, incurring only
a logarithmic factor increase in density; it also allows us to add the constraint that the
subgraph to be found contains a specified vertex r . Note that while one might wish
to find a 2-connected subgraph on k vertices with cost f (k) · ρk, an additive term
proportional to L is sometimes unavoidable: Suppose the graph G is an n-vertex
cycle, the cost of each edge is ρ, and k � n; for this instance, L = ρn. The density
of G is ρ, but there does not exist a 2-connected subgraph on at least k vertices with
total cost comparable to ρk. Any feasible solution must include the entire cycle, for
a cost of ρn = L.

Remark 1.3 The algorithm of Theorem 1.2 also applies if we are given a terminal
set S, and the output subgraph must contain k terminals. In addition, it applies if the
terminals have arbitrary weights, the density of a subgraph is defined to be the ratio of
its cost to the sum of the weights of its terminals, and the goal is to find a 2-connected
subgraph containing terminals of total weight at least k. All our algorithms apply
to these weighted instances, but for simplicity of exposition, we discuss the more
restricted unweighted versions.

We observe that pruning a tree (a 1-connected graph) is easy and one loses only
a constant factor in the density; Theorem 1.2 above allows one to prune 2-connected
graphs. A technical ingredient that we develop is the following theorem.

Theorem 1.4 Let G be a 2-vertex-connected graph with edge costs and let S ⊆ V

be a set of terminals. Then, there is a simple cycle C containing at least 2 terminals
(a non-trivial cycle) such that the density of C is at most the density of G. Moreover,
such a cycle can be found in polynomial time.

Theorems 1.2 and 1.4 imply that given a 2-connected graph G, we can find cycles
or 2-connected subgraphs of a desired size, with density comparable to that of G.
However, optimal solutions to problems such as k-2VC and BUDGET-2VC may have
density much lower than that of the entire graph G. To address this, we study the
rooted DENS-2VC problem: Given a graph G with edge costs, a root vertex r , and a
set of terminals, find a subgraph H ⊆ G of minimum density in which all terminals
of H are 2-connected to the root.
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Lemma 1.5 There is an O(log�)-approximation algorithm for the rooted DENS-
2VC problem, where � is the number of terminals in the given instance.

Using Lemma 1.5 and Theorem 1.4, we obtain the following.

Corollary 1.6 Given a graph G(V,E) with edge costs and a set of � terminals
S ⊆ V , there is an O(log�) approximation for the problem of finding a minimum-
density non-trivial cycle.

Note that Theorem 1.4 and Corollary 1.6 are of interest because we seek a cycle
with at least two terminals. Our pruning algorithm relies on contracting cycles; a non-
trivial cycle allows one to make progress since the number of terminals is reduced by
at least one. A minimum-density cycle can be found by using the well-known min-
mean cycle algorithm in directed graphs [2], but such a cycle may contain only a
single terminal. We are inclined to believe that the problem of finding a minimum-
density non-trivial cycle is NP-hard. Theorem 1.4 shows that the problem is equiva-
lent to the unrooted version of the DENS-2VC problem. We discuss this connection
further at the end of Sect. 3.1, formally stating the equivalence in Theorem 3.4.

Armed with these structural results, we give approximation algorithms for the k-
2VC and BUDGET-2VC problems. (In fact, we use a slightly more general version of
Theorem 1.2, which we state separately as Theorem 4.1, since the statement is more
detailed.) As in Remark 1.3, our results hold for the more general versions of these
problems where the input also specifies a subset S ⊆ V of terminals and the goal is
to find subgraphs with the desired number of terminals, or to maximize the number
of terminals.3

Theorem 1.7 There is an O(log� · logk) approximation for the k-2VC problem,
where � is the number of terminals.

Corollary 1.8 There is an O(log� · logk) approximation for the k-2EC problem,
where � is the number of terminals.

Theorem 1.9 There is a polynomial time bicriteria approximation algorithm for
BUDGET-2VC that, for any fixed 0 < ε ≤ 1, outputs a subgraph of edge-weight
(2 + ε)B containing �(ε · OPT/(logn log OPT)) terminals, where OPT is the num-
ber of terminals in an optimum solution of cost B .

As mentioned before, the k-2EC problem was introduced by Lau et al. and an
O(log3 k) approximation was claimed for this problem in [24]. However, the al-
gorithm and proof in [24] are incorrect. More recently, and in independent work
from ours, the authors obtained a different algorithm for k-2EC that yields an
O(logn logk) approximation [25]; however, their algorithm does not generalize to

3For k-2EC and k-λEC, the problem with specified terminal set S can be reduced to the problem where
every vertex in V is a terminal. Such a reduction does not seem possible for the k-2VC and k-λVC, so we
work directly with the terminal version.
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k-2VC. We give a more detailed comparison of the differences between their ap-
proach and ours in the next subsection.

1.1 Overview of Technical Ideas

Henceforth, we use 2-connected to mean 2-vertex-connected. For this section, we
focus on the rooted version of k-2VC: the goal is to find a min-cost subgraph that 2-
connects at least k terminals to a specified root vertex r . It is relatively straightforward
to reduce k-2VC to its rooted version (see Sect. 5 for details). We draw inspiration
from algorithmic ideas that led to poly-logarithmic approximations for the k-MST
problem.

Recall that for a subgraph H in which all terminals in H are 2-connected to r ,
the density of H is simply the ratio of the cost of H to the number of terminals
it contains. As described above, our approach focuses on the idea of low-density
subgraphs. In the (rooted) DENS-2VC problem, the goal is to find a minimum density
subgraph in which all the terminals are 2-connected to a specified root. An O(log�)

approximation for the DENS-2VC problem (where � is the number of terminals) can
be derived in a somewhat standard way by using a bucketing and scaling trick on a
linear programming relaxation for the problem. We exploit the known upper bound of
2 on the integrality gap of a natural LP for the Survivable Network Design Problem
with vertex connectivity requirements in {0,1,2} [16]. The bucketing and scaling
trick has seen several uses in the past, and has recently been highlighted in [8, 9].

Our algorithm for k-2VC uses a greedy approach at the high level. We start with
an empty subgraph G′ and use the approximation algorithm for DENS-2VC in an
iterative fashion to greedily add terminals to G′ until at least k′ ≥ k terminals are
in G′. This approach would yield an O(log� logk) approximation if k′ is just larger
than k. However, the last iteration of the DENS-2VC algorithm may add many more
terminals than desired, with the result that k′ � k. In this case the cost of the solution
obtained by the algorithm can be as large as k′/k · OPT; this does not provide a good
approximation when k′ � k. To overcome this problem, one can try to prune the
subgraph H added in the last iteration to only have the desired number of terminals.
For the k-MST problem, H is a tree and pruning is quite easy.4

Our main technical contribution is Theorem 1.2, to give a pruning step for the
k-2VC problem. To accomplish this, we use two algorithmic ideas. The first is en-
capsulated in the cycle finding algorithm of Theorem 1.4. Second, we use this cycle
finding algorithm to repeatedly merge subgraphs until we get the desired number of
terminals in one subgraph; this latter step requires care. The cycle merging scheme is
inspired by a similar approach from the work of Lau et al. [24] on the k-2EC prob-
lem and in our previous work [10] on the directed ORIENTEERING problem. These
ideas yield an O(log� · log2 k) approximation. We give a modified cycle-merging
algorithm with a more sophisticated and non-trivial analysis to obtain an improved
O(log� · logk) approximation.

4We remark that this approach yields a rather straightforward O(logn log k) approximation for k-MST
and could have been discovered much before a more clever analysis given in [3].
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Some remarks are in order to compare our work to that of [24] on the k-2EC
problem. The combinatorial algorithm in [24] is based on finding a low-density cycle
or a related structure called a bi-cycle. The algorithm in [24] to find such a struc-
ture is incorrect. Further, the cycles are contracted along the way which limits the
approach to the k-2EC problem (contracting a cycle in 2-node-connected graph may
make the resulting graph not 2-node-connected). In our algorithm we do not contract
cycles and instead introduce dummy terminals with weights to capture the number of
terminals in an already formed component. This requires us to address the minimum-
density non-trivial simple cycle problem which we do via Theorem 1.4 and Corol-
lary 1.6. In independent work, Lau et al. [25] obtain a new and correct O(logn logk)-
approximation for k-2EC. They also follow the same approach that we do in using
the LP for finding dense subgraphs followed by the pruning step. However, in the
pruning step they use a very different approach; they use the sophisticated idea of
nowhere-zero 6-flows [28]. Although the use of this idea is elegant, the approach
works only for the k-2EC problem, while our approach is less complex and leads to
an algorithm for the k-2VC problem which is more general, as shown below.

1.2 Reducing k-λEC to k-λVC

We briefly describe an approximation-preserving reduction from the k-λEC problem
to the k-λVC problem; this subsection can be skipped on first reading. Given an
instance of k-λEC consisting of a graph G(V,E) and integer k, we use d(v) to denote
the degree in G of vertex v ∈ V . Construct an instance of k-λVC as follows: Create
a new graph G′(V ′,E′) that is initially empty. First, for each vertex v ∈ V add d(v)

vertices to V ′; these vertices are referred to as the external copies of v, and there are
2m such vertices in total, where m = |E|. For each edge uv ∈ E with cost c(uv),
add an edge with the same cost to E′ from one of the d(u) external copies of u in
G′ to one of the d(v) external copies of v, such that each vertex of V ′ has degree 1.
(That is, the graph constructed so far is a matching.) Finally, add 2m2 further vertices
for each vertex v ∈ V (G); these vertices are referred to as the internal copies of v.
Finally, for each vertex v ∈ V (G), add edges to E′ to form a clique between all the
2m2 + d(v) copies (both internal and external) of v; all these edges have cost 0.

Having constructed the graph G′, we ask for a λ-vertex connected subgraph of G′
containing at least 2km2 vertices. We claim that a solution of total cost C corresponds
to a λ-edge-connected subgraph of G of cost C and containing at least k vertices, and
vice versa; this completes the reduction. Given a subgraph H ′ of G′ on at least 2km2

vertices, construct a subgraph H of G by taking a vertex v if some copy of v is in
H ′, and select an edge uv if H ′ contains an edge between an external copy of u and
an external copy of v. Similarly, given a λ-edge-connected subgraph H of G on at
least k vertices, construct H ′ ⊆ G′ by taking all the copies of each vertex v in H , and
for each edge uv in H , select the edge of E′ between an external copy of u and an
external copy of v. The costs are obviously preserved, and it is easy to verify that H

is λ-edge-connected iff H ′ is λ-vertex-connected.

1.3 Organization

We begin in Sect. 2 by giving an O(log�)-approximation for the rooted DENS-2VC
problem: Given a graph, the goal is to find a minimum-density subgraph in which
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all terminals are 2-connected to a specified root. In the following two sections, we
develop our structural tools. In Sect. 3, we prove Theorem 1.4 and Corollary 1.6
on finding good-density cycles; we first show the existence of such cycles, and then
give an efficient algorithm to find them. In Sect. 4, we prove Theorem 1.2, our main
technical result on pruning. Finally, in Sect. 5, we show how to combine the pruning
algorithm of Theorem 1.2 with the algorithm for DENS-2VC to obtain good algo-
rithms for k-2VC and BUDGET-2VC.

2 An O(log�)-Approximation for the DENS-2VC Problem

In this section, we prove Lemma 1.5, giving an O(log�) approximation for the rooted
DENS-2VC problem. Recall that the was defined as follows: Given a graph G(V,E)

with edge-costs, a set T ⊆ V \ {r} of terminals, and a root r ∈ V (G), find a subgraph
H of minimum density, in which every terminal of H is 2-connected to r . We describe
an algorithm for DENS-2VC that gives an O(log�)-approximation, where � = |T | is
the number of terminals. We use an LP based approach and a bucketing and scaling
trick (see [8, 9] for applications of this idea), and a constant-factor bound on the
integrality gap of an LP for SNDP with vertex-connectivity requirements in {0,1,2}
[16].

We define LP-dens as the following LP relaxation of DENS-2VC. For each termi-
nal t , the variable yt indicates whether or not t is chosen in the solution. (By normal-
izing

∑
t yt to 1, and minimizing the sum of edge costs, we minimize the density.) Ct

is the set of all simple cycles containing t and the root r ; for any C ∈ Ct , fC indicates
how much ‘flow’ is sent from t to r through C. (Note that a pair of vertex-disjoint
paths is a cycle; the flow along a cycle is 1 if t is 2-connected to r using the edges of
the cycle.) The variable xe indicates whether the edge e is used by the solution.

LP-dens min
∑

e∈E

c(e)xe

∑

t∈T

yt = 1

∑

C∈Ct

fC ≥ yt (∀t ∈ T )

∑

C∈Ct |e∈C

fC ≤ xe (∀t ∈ T , e ∈ E)

xe, fc, yt ≥ 0

The linear program LP-dens has an exponential number of variables but a polyno-
mial number of non-trivial constraints; it can, however, be solved in polynomial time
by solving its dual using the ellipsoid method. Implementing the separation oracle for
the dual simply requires finding a minimum-cost set of 2 vertex-disjoint paths from
each terminal to the root; this can easily be done in polynomial time (for example, by
using an algorithm for minimum-cost flow). It is not hard to see that an optimal so-
lution to LP-dens has cost at most the density of an optimal solution to DENS-2VC:
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Fix an optimal solution H of the DENS-2VC instance; let t (H) denote the number
of terminals in H . The density of H is

∑
e∈H c(e)/t (H). Now, construct a feasible

solution to LP-dens of this cost by setting yt = 1/t (H) for each terminal t in H , and
setting xe = 1/t (H) for each edge e ∈ H .

We show how to obtain an integral solution of density at most O(log�)OPTLP,
where OPTLP is the cost of an optimal solution to LP-dens; it follows that this gives
an O(log�) approximation for DENS-2VC. Fix an optimal fractional solution to LP-
dens of cost OPTLP, and for each edge e, let x∗

e be the value of the variable xe

in this optimal solution. For each 0 ≤ i < 2 log� − 1 (for ease of notation, assume
log� is an integer), let Yi be the set of terminals t such that 2−(i+1) < yt ≤ 2−i . For
i = 2 log� − 1, let Yi be the set of terminals t such that yt ≤ 2−i . Since

∑
t∈T yt = 1,

there is some index j such that
∑

t∈Yj
yt ≥ 1

2 log �
. This index j must be less than

2 log� − 1, as each terminal t ∈ Y2 log �−1 has yt ≤ 2
�2 , and even � · 2

�2 < 1
2 log �

. Since

every terminal t ∈ Yj has yt ≤ 2−j , the number of terminals in Yj is at least 2j−1

log�
. We

claim that there is a subgraph H of G with cost at most 2j+2OPTLP, in which every
terminal of Yj is 2-connected to the root. If this is true, the density of H is at most
O(log� · OPTLP), and hence we have an O(log�)-approximation for the DENS-2VC
problem.

It remains only to prove our claim about the cost of the subgraph H in which every
terminal of Yj is 2-connected to r . In [16], the authors describe the following linear
program5 LP2 to find a minimum-cost subgraph in which a given set of terminals
T ′ is 2-connected to the root, and show that this linear program has an integrality
gap of 2. This “setpair” LP relaxation is based on considering how many edges must
be selected between specified pairs of disjoint vertex sets. In particular, we consider
pairs (S1, S2) where S1 contains some terminal of T ′ and S2 contains the root. We
use the notation δ(S1, S2) to denote the set of edges between S1 and S2, and define
f (S1, S2) = 2 − |V \ (S1 ∪ S2)|. The intuition is as follows: If S1 contains a terminal
of T ′ and S2 contains the root, there must be at least 2 vertex-disjoint paths from S1
to S2. At most |V \ (S1 ∪ S2)| of these paths can go through V \ (S1 ∪ S2), and so a
feasible solution must contain at least f (S1, S2) edges from δ(S1, S2).

LP2 min
∑

e∈E

c(e)xe

∑

e∈δ(S1,S2)

xe ≥ f (S1, S2) (∀S1, S2 ⊆ V : S1 ∩ T ′ = ∅, S2 � r)

0 ≤ xe ≤ 1 (∀e ∈ E)

We now describe a feasible fractional solution of cost 2j+1 · OPTLP for the in-
stance of LP2 in which the terminal set Yj is to be 2-connected to the root. As LP2
has an integrality gap of 2 and |Yj | ≥ 2j−1/ log�, this suffices to show that the density
of H is at most O(log�)OPTLP. To obtain this feasible fractional solution to LP2, we
simply scale up the given optimal solution of LP-dens by a factor of 2j+1. That is, we

5The LP and algorithm of [16] are more general; we omit details here.
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set xe = min{1,2j+1 · x∗
e }. Clearly, the cost of this solution is at most 2j+1 · OPTLP,

and it is straightforward to verify that this is a feasible solution: The intuition is that
using the values x∗, each terminal could fractionally send yt > 2−(j+1) units of flow
using cycles in Ct ; after scaling up, each terminal t can send 1 unit of flow using
cycles in Ct , and hence t is fractionally 2-connected to r . We omit the details.

Therefore, the algorithm for DENS-2VC is:

1. Find an optimal fractional solution to LP-dens.
2. Find a set of terminals Yi such that

∑
t∈Yi

yt ≥ 1
2 log �

.
3. Find a min-cost subgraph H in which every terminal in Yi is 2-connected to r

using the algorithm of [16]. H has density at most O(log�) times the optimal
solution to DENS-2VC.

3 Finding Low-density Non-trivial Cycles

A cycle C ⊆ G is non-trivial if it contains at least 2 terminals. We define the min-
density non-trivial cycle problem: Given a graph G(V,E), with S ⊆ V marked as
terminals, edge costs, and (positive) terminal weights, find a minimum-density cycle
that contains at least 2 terminals. Non-terminals have zero weight; we use weight(H)

to denote the total weight of terminals in any subgraph H . Note that if we remove
the requirement that the cycle be non-trivial (that is, it contains at least 2 terminals),
the problem reduces to the min-mean cycle problem in directed graphs, and can be
solved exactly in polynomial time (see [2]). Algorithms for the min-density non-
trivial cycle problem are a useful tool for solving the k-2VC and k-2EC problems. In
this section, we give an O(log�)-approximation algorithm for the minimum-density
non-trivial cycle problem.

First, we prove Theorem 1.4, that a 2-connected graph with edge costs and termi-
nal weights contains a simple non-trivial cycle with density no more than the average
density of the graph. We give two algorithms to find such a cycle; the first, described
in Sect. 3.1, is simpler, but the running time is not polynomial. A more technical
proof that leads to a strongly polynomial-time algorithm is described in Sect. 3.2; we
recommend this proof be skipped on a first reading.

3.1 An Algorithm to Find Cycles of Average Density

To find a non-trivial cycle of density at most that of the 2-connected input graph G,
we will start with an arbitrary non-trivial cycle, and successively find cycles of better
density until we obtain a cycle with density at most Density(G). We decrease the
density of cycles using ears: An ear of a cycle C is a path with both its endpoints
belonging to the cycle, but no edges or other vertices in common with the cycle. The
following lemma shows that if a cycle C has an ear with density less than Density(C),
we can use this ear to find a cycle of lower density.

Lemma 3.1 Let C be a non-trivial cycle, and H be an ear incident to C at u and v,
such that cost(H)

weight(H−{u,v}) < Density(C). Let S1 and S2 be the two internally disjoint
paths between u and v in C. Then H ∪S1 and H ∪S2 are both simple cycles and one
of them is non-trivial and has density less than Density(C).
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Proof C has at least 2 terminals, so it has finite density; H −{u,v} must then have at
least 1 terminal. Let c1, c2 and cH be, respectively, the sum of the costs of the edges
in S1, S2 and H , and let w1, w2 and wH be the sum of the weights of the terminals
in S1, S2 and H . Note that if u and/or v are terminals, their weights are counted in all
of w1,w2,wH ; we use wuv to denote the sum of the weights of u and v.

Assume w.l.o.g. that c1(w2 − wuv) ≤ c2(w1 − wuv); this can be guaranteed by
renaming S1, S2.6 We claim that H ∪ S1 is a simple non-trivial cycle; if S1 contains
a terminal, this is immediate. If not, w1 and wuv are both 0. By assumption, w2
must also then be 0, but this implies that there are no terminals in C, which is a
contradiction.

Thus, it remains only to argue that Density(H ∪ S1) < Density(C); this is equiva-
lent to (cH + c1)(w1 + w2 − wuv) < (c1 + c2)(wH + w1 − wuv).

(cH + c1)(w1 + w2 − wuv) = c1w1 + c1w2 − c1wuv + cH (w1 + w2 − wuv)

≤ c1w1 + c2(w1 − wuv) + cH (w1 + w2 − wuv)

< c1w1 + c2(w1 − wuv) + (c1 + c2)(wH − wuv)

= (c1 + c2)(w1 + wH − wuv) − c2wuv

≤ (c1 + c2)(w1 + wH − wuv)

where the first inequality follows from the assumption c1(w2 −wuv) ≤ c2(w1 −wuv),
and the second (strict) inequality from the fact that cost(H)

weight(H−{u,v}) < Density(C).
Therefore, H ∪ S1 is a simple cycle containing at least 2 terminals of density less

than Density(C). �

Lemma 3.2 Given a cycle C in a 2-connected graph G, let G′ be the graph formed
from G by contracting C to a single vertex v. If H is a connected component of
G′ − v, then H ′ = H ∪ {v} is 2-connected in G′.

Proof To prove that H ′ is 2-connected, we first observe that v is 2-connected to any
vertex x ∈ H . (Any set that separates x from v in H ′ separates x from the cycle C

in G.)
It now follows that for all vertices x, y ∈ V (H), x and y are 2-connected in H ′.

Suppose deleting some vertex u separates x from y. The vertex u cannot be v, since H

is a connected component of G′ −v. But if u = v, v and x are in the same component
of H ′ − u, since v is 2-connected to x in H ′. Similarly, v and y are in the same
component of H ′ − u, and so deleting u does not separate x from y. �

We now show that given any 2-connected graph G, we can find a non-trivial cycle
of density no more than that of G.

Theorem 3.3 Let G be a 2-connected graph with at least 2 terminals. G contains a
simple non-trivial cycle X such that Density(X) ≤ Density(G).

6This roughly corresponds to Density(S1) ≤ Density(S2); there is an adjustment so that the weights of u

and v are not included in the calculation.
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Proof We prove this statement by using induction on the number of terminals. In the
base case, if G has exactly 2 terminals, any simple non-trivial cycle has density at
most Density(G).

For the inductive step, suppose by way of contradiction that G does not contain
a simple non-trivial cycle X such that Density(X) ≤ Density(G). Let C be a simple
non-trivial cycle of G with minimum density. (As G contains a finite number of
cycles, the set of minimum density non-trivial cycles is well-defined; the set is also
non-empty as G is 2-connected and has at least 2 terminals. The cycle C can be
chosen arbitrarily from this set.) By assumption, Density(C) > Density(G). We show
the existence of a new non-trivial cycle C′ such that Density(C′) < Density(C); this
yields the desired contradiction.

Let G′ be the graph formed by contracting the given cycle C to a single vertex v.
In G′, v is not a terminal, and so has weight 0. Consider the 2-connected components
of G′ (from Lemma 3.2, each such component is formed by adding v to a connected
component of G′ − v), and pick a component H of minimum density. By a simple
averaging argument, Density(H) < Density(G).

H contains at least 1 terminal, but has fewer terminals than G as terminals of C

have been removed. First, suppose that H contains 2 or more terminals. By the in-
duction hypothesis, H contains a simple non-trivial cycle C′ such that Density(C′) ≤
Density(H) < Density(C). If this cycle C′ exists in the original graph G, it has the
desired properties, and we are done. Otherwise, C′ does not exist in the original
graph C; in this case, C′ contains v, and the edges of C′ form an ear of C in the
graph G. The density of this ear is at most Density(H) < Density(C), so we can apply
Lemma 3.1 to obtain a non-trivial cycle in G that has density less than Density(C).

Finally, suppose that H contains exactly 1 terminal u. Find any 2 vertex-disjoint
paths using edges of H from u to distinct vertices in the cycle C. (Since G is
2-connected, there always exist such paths.) The cost of these paths is at most
cost(H), and concatenating these 2 paths corresponds to an ear of C in G. The den-
sity of this ear is at most Density(H) < Density(C); again, we use Lemma 3.1 to
obtain a cycle in G with the desired properties. �

We remark that the proof of Theorem 3.3 is algorithmic. Given any simple non-
trivial cycle with density larger than Density(G), we find a cycle of lower density; as
the number of cycles in G is finite, this process is guaranteed to terminate with a cy-
cle of density at most Density(G). However, this is not necessarily a polynomial-time
algorithm, even if all edge costs and terminal weights are polynomially bounded. In
Sect. 3.2, we describe a strongly polynomial-time algorithm that, given a graph G,
finds a non-trivial cycle of density at most that of G. Note that neither of these algo-
rithms may directly give a good approximation to the min-density non-trivial cycle
problem, because the optimal non-trivial cycle may have density much less than that
of G. However, we can use Theorem 3.3 to prove the following theorem:

Theorem 3.4 There is an α-approximation to the (unrooted) DENS-2VC problem if
and only if there is an α-approximation to the problem of finding a minimum-density
non-trivial cycle.
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Proof Assume we have a γ (�)-approximation for the DENS-2VC problem; we use
it to find a low-density non-trivial cycle. Solve the DENS-2VC problem on the given
graph; since the optimal cycle is a 2-connected graph, our solution H to the DENS-
2VC problem has density at most γ (�) times the density of this cycle. Find a non-
trivial cycle in H of density at most that of H ; it has density at most γ (�) times that
of an optimal non-trivial cycle.

Note that any instance of the (unrooted) DENS-2VC problem has an optimal so-
lution that is a non-trivial cycle. (Consider any optimal solution H of density ρ; by
Theorem 1.4, H contains a non-trivial cycle of density at most ρ. This cycle is a valid
solution to the DENS-2VC problem.) Therefore, a β(�)-approximation for the min-
density non-trivial cycle problem gives a β(�)-approximation for the DENS-2VC
problem. �

Theorem 3.4 and Lemma 1.5 imply an O(log�)-approximation for the minimum-
density non-trivial cycle problem; this proves Corollary 1.6.

We say that a graph G(V,E) is minimally 2-connected on its terminals if for every
edge e ∈ E, some pair of terminals is not 2-connected in the graph G− e. Section 3.2
shows that in any graph which is minimally 2-connected on its terminals, every cycle
is non-trivial. Therefore, the problem of finding a minimum-density non-trivial cycle
in such graphs is just that of finding a minimum-density cycle, which can be solved
exactly in polynomial time. However, as we explain at the end of the section, this
does not directly lead to an efficient algorithm for arbitrary graphs.

3.2 A Strongly Polynomial-Time Algorithm to Find Cycles of Average Density

In this section, we describe a strongly polynomial-time algorithm which, given a 2-
connected graph G(V,E) with edge costs and terminal weights, finds a non-trivial
cycle of density at most that of G.

We begin with several definitions: Let C be a cycle in a graph G, and G′ be the
graph formed by deleting C from G. Let H1,H2, . . . ,Hm be the connected compo-
nents of G′; we refer to these as earrings of C.7 For each Hi , let the vertices of C

incident to it be called its clasps. From the definition of an earring, for any pair of
clasps of Hi , there is a path between them whose internal vertices are all in Hi .

We say that a vertex of C is an anchor if it is the clasp of some earring. (An
anchor may be a clasp of multiple earrings.) A segment S of C is a path contained
in C, such that the endpoints of S are both anchors, and no internal vertex of S is
an anchor. (Note that the endpoints of S might be clasps of the same earring, or of
distinct earrings.) It is easy to see that the segments partition the edge set of C. By
deleting a segment, we refer to deleting its edges and internal vertices. Observe that
if S is deleted from G, the only vertices of G − S that lose an edge are the endpoints
of S. A segment is safe if the graph G − S is 2-connected.

Arbitrarily pick a vertex o of C as the origin, and consecutively number the ver-
tices of C clockwise around the cycle as o = c0, c1, c2, . . . , cr = o. The first clasp of
an earring H is its lowest numbered clasp, and the last clasp is its highest numbered

7If Hi were simply a path, it would be an ear of C, but Hi may be more complex.
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Fig. 1 H is an earring of G,
with clasps c4, c6, c9; c4 is its
first clasp, and c9 its last clasp.
The arrow indicates the arc of H

clasp. (If the origin is a clasp of H , it is considered the first clasp, not the last.) The
arc of an earring is the subgraph of C found by traversing clockwise from its first
clasp cp to its last clasp cq ; the length of this arc is q − p. (That is, the length of an
arc is the number of edges it contains.) Note that if an arc contains the origin, it must
be the first vertex of the arc. Figure 1 illustrates several of these definitions.

Theorem 3.5 Let H be an earring of minimum arc length. Every segment contained
in the arc of H is safe.

Proof Let H be the set of earrings with arc identical to that of H . Since they have
the same arc, we refer to this as the arc of H, or the critical arc. Let the first clasp of
every earring in H be ca , and the last clasp of each earring in H be cb. Because the
earrings in H have arcs of minimum length, any earring H ′ /∈ H has a clasp cx that
is not in the critical arc. (That is, cx < ca or cx > cb.)

We must show that every segment contained in the critical arc is safe; recall that a
segment S is safe if the graph G − S is 2-connected. Given an arbitrary segment S in
the critical arc, let cp and cq (p < q) be the anchors that are its endpoints. We prove
that there are always 2 internally vertex-disjoint paths between cp and cq in G − S;
this suffices to show 2-connectivity.

We consider several cases, depending on the earrings that contain cp and cq . Fig-
ure 2 illustrates these cases. If cp and cq are contained in the same earring H ′, it is
easy to find two vertex-disjoint paths between them in G − S. The first path is clock-
wise from q to p in the cycle C. The second path is entirely contained in the earring
H ′ (an earring is connected in G − C, so we can always find such a path).

Otherwise, cp and cq are clasps of distinct earrings. We consider three cases: Both
cp and cq are clasps of earrings in H, one is (but not both), or neither is.

1. We first consider that both cp and cq are clasps of earrings in H. Let cp be a clasp
of H1, and cq a clasp of H2. The first path is from cq to ca through H2, and then
clockwise along the critical arc from ca to cp . The second path is from cq to cb

clockwise along the critical path, and then cb to cp through H1. It is easy to see
that these paths are internally vertex-disjoint.

2. Now, suppose neither cp nor cq is a clasp of an earring in H. Let cp be a clasp of
H1, and cq be a clasp of H2. The first path we find follows the critical arc clock-
wise from cq to cb (the last clasp of the critical arc), from cb to ca through H ∈ H,
and again clockwise through the critical arc from ca to cp . Internal vertices of this
path are all in H or on the critical arc. Let cp′ be a clasp of H1 not on the critical
arc, and cq ′ be a last clasp of H2 not on the critical arc. The second path goes from
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Fig. 2 The various cases of Theorem 3.5 are illustrated in the order presented. In each case, one of the 2
vertex-disjoint paths from cp to cq is indicated with dashed lines, and the other with dotted lines

cp to cp′ through H1, from p′ to q ′ through the cycle C outside the critical arc,
and from cq ′ to cq through H2. Internal vertices of this path are in H1,H2, or in C,
but not part of the critical arc (since each of cp′ and cq ′ are outside the critical arc).
Therefore, we have 2 vertex-disjoint paths from cp to cq .

3. Finally, we consider the case that exactly one of cp, cq is a clasp of an earring
in H. Suppose cp is a clasp of H1 ∈ H, and cq is a clasp of H2 /∈ H; the other case
(where H1 /∈ H and H2 ∈ H is symmetric, and omitted, though Fig. 2 illustrates
the paths). Let q ′ be the index of a clasp of H2 outside the critical arc. The first path
is from cq to cb through the critical arc, and then from cb to cp through H1. The
second path is from cq to cq ′ through H2, and from cq ′ to cp clockwise through C.
Note that the last part of this path enters the critical arc at ca , and continues through
the arc until cp . Internal vertices of the first path that are in C are on the critical
arc, but have index greater than q . Internal vertices of the second path that belong
to C are either not in the critical arc, or have index between ca and cp . Therefore,
the two paths are internally vertex-disjoint.

�

We now describe our algorithm to find a non-trivial cycle of good density, proving
Theorem 1.4: Let G be a 2-connected graph with edge-costs and terminal weights,
and at least 2 terminals. There is a polynomial-time algorithm to find a non-trivial
cycle X in G such that Density(X) ≤ Density(G).

Proof of Theorem 1.4 Let G be a graph with � terminals and density ρ; we describe
a polynomial-time algorithm that either finds a cycle in G of density less than ρ, or
a proper subgraph G′ of G that contains all � terminals. In the latter case, we can
recurse on G′ until we eventually find a cycle of density at most ρ.
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We first find, in O(n3) time, a minimum-density cycle C in G. By Theorem 3.3,
C has density at most ρ, because the minimum-density non-trivial cycle has at most
this density. If C contains at least 2 terminals, we are done. Otherwise, C contains
exactly one terminal v. Since G contains at least 2 terminals, there must exist at least
one earring of C.

Let v be the origin of this cycle C, and H an earring of minimum arc length. By
Theorem 3.5, every segment in the arc of H is safe. Let S be such a segment; since v

was selected as the origin, v is not an internal vertex of S. As v is the only terminal
of C, S contains no terminals, and therefore, the graph G′ = G − S is 2-connected,
and contains all � terminals of G. �

The proof above also shows that if G is minimally 2-connected on its terminals
(that is, G has no 2-connected proper subgraph containing all its terminals), every
cycle of G is non-trivial. (If a cycle contains 0 or 1 terminals, it has a safe segment
containing no terminals, which can be deleted; this gives a contradiction.) Therefore,
given a graph that is minimally 2-connected on its terminals, finding a minimum-
density non-trivial cycle is equivalent to finding a minimum-density cycle, and so
can be solved exactly in polynomial time. This suggests a natural algorithm for the
problem: Given a graph that is not minimally 2-connected on its terminals, delete
edges and vertices until the graph is minimally 2-connected on the terminals, and
then find a minimum-density cycle. As shown above, this gives a cycle of density no
more than that of the input graph, but this may not be the minimum-density cycle
of the original graph. For instance, there exist instances where the minimum-density
cycle uses edges of a safe segment S that might be deleted by this algorithm.

4 Pruning 2-Connected Graphs of Good Density

In this section, we prove Theorem 4.1. Theorem 1.2, stated in the introduction, is
simply the special case of this theorem with H = G, and in which every vertex is a
terminal.

Theorem 4.1 Let G be a 2-connected graph with edge costs and a designated vertex
r ∈ V (G) such that every vertex of G has 2 vertex-disjoint paths to r of total cost at
most L. Let H ⊆ G be a 2-connected subgraph of G, with a given set S ⊆ |S| \ {r}
of terminals; let ρ = cost(H)/|S| be the density of H . There is a polynomial-time
algorithm that, given any integer k ≤ |V (H)|, finds a 2-connected subgraph H ′ of G

containing r and at least k terminals, of total cost at most O(log k)ρk + 2L.

Let � = |S| be the number of terminals in H , and cost(H) its total cost; ρ =
cost(H)

�
is the density of H . We describe an algorithm that finds a subgraph H ′ of G

containing at least k terminals, each of which is 2-connected to the root, and of total
edge cost O(logk)ρk + 2L. (Note that H ′ may not be a subgraph of H , as we are not
even guaranteed that the root is in H .)

We can assume � > (8 log k) · k, or the following trivial solution suffices: Take the
entire graph H , pick two distinct vertices u,v ∈ V (H), and connect each of u and v
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to the root using 2 disjoint paths. The main phase of our algorithm proceeds by main-
taining a set of 2-connected subgraphs that we call clusters, and repeatedly finding
low-density cycles that merge clusters of similar weight to form larger clusters. (The
weight of a cluster X, denoted by wX , is (roughly) the number of terminals it con-
tains.) Clusters are grouped into tiers by weight; tier i contains clusters with weight
at least 2i and less than 2i+1. Initially, each terminal is a separate cluster in tier 0. We
say a cluster is large if it has weight at least k, and small otherwise. The algorithm
stops when most terminals are in large clusters.

We describe the algorithm MERGECLUSTERS below. To simplify notation, let α

be the quantity 2�logk�ρ. We say that a cycle is good if it has density at most α; that
is, good cycles have density at most O(log k) times the density of the input graph H .

MERGECLUSTERS:
For (each i in {0,1, . . . , (�log2 k� − 1)}) do:

If (i = 0):
Every terminal has weight 1

Else:
Mark all vertices as non-terminals
For (each small 2-connected cluster X in tier i) do:

Add a (dummy) terminal vX to G of weight wX

Add (dummy) edges of cost 0 from vX to two (arbitrary) distinct vertices of X

While (H has a non-trivial cycle C of density at most α):
Let X1,X2, . . . ,Xq be the small clusters that contain a terminal or an edge of C.
(Note that the terminals in C belong to a subset of {X1, . . . ,Xq }.)
Form a new cluster Y (of tier greater than i) by merging the clusters X1, . . . ,Xq

wY ← ∑q
j=1 wXj

If (i = 0):
Mark all terminals in Y as non-terminals

Else:
Delete all (dummy) terminals in Y and the associated (dummy) edges.

We briefly remark on some salient features of this algorithm and our analysis
before presenting the details of the proofs.

1. In iteration i, the terminals correspond to tier i clusters. Clusters are 2-connected
subgraphs of G, and by using cycles to merge clusters, we preserve 2-connectivity
as the clusters become larger.

2. When a cycle C is used to merge clusters, all small clusters that contain an edge
of C (regardless of their tier) are merged to form the new cluster. Therefore, at
any stage of the algorithm, all currently small clusters are edge-disjoint. Large
clusters, on the other hand, are frozen; even if they intersect a good cycle C, they
are not merged with other clusters on C. Thus, at any time, an edge may be in
multiple large clusters and up to one small cluster.

3. In iteration i of MERGECLUSTERS, the density of a cycle C is only determined by
its cost and the weight of terminals in C corresponding to tier i clusters. Though
small clusters of other (lower or higher) tiers might be merged using C, we do not
use their weight to pay for the edges of C.
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4. The ith iteration terminates when no good cycles can be found using the remain-
ing tier i clusters. At this point, there may be some terminals remaining that corre-
spond to clusters which are not merged to form clusters of higher tiers. However,
our choice of α (which defines the density of good cycles) is such that we can
bound the number of terminals that are “left behind” in this fashion. Therefore,
when the algorithm terminates, most terminals are in large clusters.

By bounding the density of large clusters, we can find a solution to the rooted
k-2VC problem of bounded density. Because we always use cycles of low density
to merge clusters, an analysis similar to that of [24] and [10] shows that every large
cluster has density at most O(log2 k)ρ. We first present this analysis, though it does
not suffice to prove Theorem 4.1. A more careful analysis shows that there is at least
one large cluster of density at most O(logk)ρ; this allows us to prove the desired
theorem.

We now formally prove that MERGECLUSTERS has the desired behavior. First, we
present a series of claims which, together, show that when the algorithm terminates,
most terminals are in large clusters, and all clusters are 2-connected.

Claim 4.2 Throughout the algorithm, the graph H is always 2-connected. The weight
of a cluster is at most the number of terminals it contains.

Proof The only structural changes to G are when new vertices are added as terminals;
they are added with edges to two distinct vertices of H . This preserves 2-connectivity,
as does deleting these terminals with the associated edges.

To see that the second claim is true, observe that if a terminal contributes weight
to a cluster, it is contained in that cluster. A terminal can be in multiple clusters,
but it contributes to the weight of exactly one cluster. This is because the weights of
clusters are updated during merges; when the weight of a new cluster Y is computed,
any smaller cluster Xj containing terminals which contribute to the weight of Y is
absorbed into Y . �

We use the following simple proposition in proofs of 2-connectivity; the proof is
straightforward, and hence omitted.

Proposition 4.3 Let H1 = (V1,E1) and H2 = (V2,E2) be 2-connected subgraphs of
a graph G(V,E) such that |V1 ∩ V2| ≥ 2. Then the graph H1 ∪ H2 = (V1 ∪ V2,E1 ∪
E2) is 2-connected.

Lemma 4.4 The clusters formed by MERGECLUSTERS are all 2-connected.

Proof Let Y be a cluster formed by using a cycle C to merge clusters X1,X2, . . . ,Xq .
The edges of the cycle C form a 2-connected subgraph of H , and we assume that each
Xj is 2-connected by induction. Further, C contains at least 2 vertices of each Xj : if
C contains an edge of Xj , this follows immediately, and if it contains a (dummy) ter-
minal, it must contain at least the two edges of Xj incident to this terminal.8 There-

8A cluster Xj may be a singleton vertex (for instance, if we are in tier 0), but such a vertex does not affect
2-connectivity.
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fore, we can use induction and Proposition 4.3 above: We assume C ∪ {Xl}jl=1 is

2-connected by induction, and C contains 2 vertices of Xj+1, so C ∪ {Xl}j+1
l=1 is 2-

connected.
Note that we have shown Y = C ∪ {Xj }qj=1 is 2-connected, but C (and hence Y )

might contain dummy terminals and the corresponding dummy edges. However, each
such terminal with the 2 associated edges is an ear of Y ; deleting them leaves Y 2-
connected. More formally, if u,v are the other endpoints of the edges incident to the
dummy terminal in Xj , there are at least 2 disjoint paths remaining between u and v

even after deleting the dummy edges, as Xj was 2-connected prior to the introduction
of the dummy terminal. �

Lemma 4.5 The total weight of small clusters in tier i that are not merged to form
clusters of higher tiers is at most �

2�log k� .

Proof Assume this were not true; this means that MERGECLUSTERS could find no
more cycles of density at most α using the remaining small tier i clusters. But the
total cost of all the edges is at most cost(H), and the sum of terminal weights is at
least �

2�log k� ; this implies that the density of the graph (using the remaining terminals)

is at most 2�logk� · cost(H)
�

= α. But by Theorem 3.3, the graph must then contain a
good non-trivial cycle, and so the while loop would not have terminated. �

Corollary 4.6 When the algorithm MERGECLUSTERS terminates, the total weight
of large clusters is at least �/2 > (4 logk) · k.

Proof Each terminal not in a large cluster contributes to the weight of a cluster that
was not merged with others to form a cluster of a higher tier. The previous lemma
shows that the total weight of such clusters in any tier is at most �

2�log k� ; since there
are �logk� tiers, the total number of terminals not in large clusters is less than �logk�·

�
2�log k� = �/2. �

So far, we have shown that most terminals reach large clusters, all of which are
2-connected, but we have not argued about the density of these clusters. The next
lemma says that if we can find a large cluster of good density, we can find a solution
to the k-2VC problem of good density.

Lemma 4.7 Let Y be a large cluster formed by MERGECLUSTERS. If Y has density
at most δ, we can find a graph Y ′ with at least k terminals, each of which is 2-
connected to r , of total cost at most 2δk + 2L.

Proof Let X1,X2, . . . ,Xq be the clusters merged to form Y in order around the cycle
C that merged them; each Xj was a small cluster, of weight at most k. A simple av-
eraging argument shows that there is a consecutive segment of Xj s with total weight
between k and 2k, such that the cost of the edges of C connecting these clusters, to-
gether with the costs of the clusters themselves, is at most 2δk. Let Xa be the “first”
cluster of this segment, and Xb the “last”. Let v and w be arbitrary terminals of Xa

and Xb respectively. Connect each of v and w to the root r using 2 vertex-disjoint
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paths; the cost of this step is at most 2L. (We assumed that every terminal could be 2-
connected to r using disjoint paths of cost at most L.) The graph Y ′ thus constructed
has at least k terminals, and total cost at most 2δk + 2L.

We show that every vertex z of Y ′ is 2-connected to r ; this completes our proof. Let
z be an arbitrary vertex of Y ′; suppose there is a cut-vertex x which, when deleted,
separates z from r . Both v and w are 2-connected to r , and therefore neither is in
the same component as z in Y ′ − x. However, we describe 2 vertex-disjoint paths
Pv and Pw in Y ′ from z to v and w respectively; deleting x cannot separate z from
both v and w, which gives a contradiction. The paths Pv and Pw are easy to find;
let Xj be the cluster containing z. The cycle C contains a path from vertex z1 ∈ Xj

to v′ ∈ Xa , and another (vertex-disjoint) path from z2 ∈ Xj to w′ ∈ Xb . Concatenat-
ing these paths with paths from v′ to v in Xa and w′ to w in Xb gives us vertex-
disjoint paths P1 from z1 to v and P2 from z2 to w. Since Xj is 2-connected, we can
find vertex-disjoint paths from z to z1 and z2, which gives us the desired paths Pv

and Pw .9 �

We now present the two analyses of the density of large clusters referred to earlier:
First, we present a simpler but weaker analysis that shows that every large cluster has
density at most O(log2 kρ). This does not suffice to prove Theorem 4.1; we subse-
quently refine the analysis to show that there exists a large cluster of density at most
O(log k)ρ, allowing us to complete the proof of Theorem 4.1. The key difference
between the weaker and tighter analysis is in the way we bound edge costs. In the
former, each large cluster pays for its edges separately, using the fact that all cycles
used have density at most α = O(log k)ρ. In the latter, we crucially use the fact that
small clusters which share edges are merged. Roughly speaking, because small clus-
ters are edge-disjoint, the average density of small clusters must be comparable to the
density of the input graph H . Once an edge is in a large cluster, we can no longer use
the edge-disjointness argument. We must pay for these edges separately, but we can
bound this cost.

First, the following lemma allows us to show that every large cluster has density
at most O(log2 k)ρ.

Lemma 4.8 For any cluster Y formed by MERGECLUSTERS during iteration i, the
total cost of edges in Y is at most (i + 1) · αwY .

Proof We prove this lemma by induction on the number of vertices in a cluster. Let S
be the set of clusters merged using a cycle C to form Y . Let S1 be the set of clusters
in S of tier i, and S2 be S − S1. (S2 contains clusters of tiers less or greater than i

that contained an edge of C.)
The cost of edges in Y is at most the sum of: the cost of C, the cost of S1, and

the cost of S2. Since all clusters in S2 have been formed during iteration i or earlier,
and are smaller than Y , we can use induction to show that the cost of edges in S2 is
at most (i + 1)α

∑
X∈S2

wX . All clusters in S1 are of tier i, and so must have been

9The vertex z may not be in any cluster Xj . In this case, Pv is formed by using edges of C from z to
v′ ∈ Xa , and then a path from v′ to v; Pw is formed similarly.
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formed before iteration i (any cluster formed during iteration i is of a strictly greater
tier), so we use induction to bound the cost of edges in S1 by iα

∑
X∈S1

wX .
Finally, because C was a good-density cycle, and only clusters of tier i contribute

to calculating the density of C, the cost of C is at most α
∑

X∈S1
wX . Therefore, the

total cost of edges in Y is at most (i + 1)α
∑

X∈S wX = (i + 1)αwY . �

Let Y be an arbitrary large cluster; since we have only �logk� tiers, the previ-
ous lemma implies that the cost of Y is at most �logk� · αwY = O(log2 k)ρwY .
That is, the density of Y is at most O(log2 k)ρ, and we can use this fact together
with Lemma 4.7 to find a solution to the rooted k-2VC problem of cost at most
O(log2 k)ρk + 2L. This completes the ‘weaker’ analysis, but this does not suffice to
prove Theorem 4.1; to prove the theorem, we would need to use a large cluster Y of
density O(log k)ρ, instead of O(log2 k)ρ.

For the purpose of the more careful analysis, implicitly construct a forest F on
the clusters formed by MERGECLUSTERS. Initially, the vertex set of F is just S, the
set of terminals, and F has no edges. Every time a cluster Y is formed by merging
X1,X2, . . . ,Xq , we add a corresponding vertex Y to the forest F , and add edges
from Y to each of X1, . . . ,Xq ; Y is the parent of X1, . . . ,Xq . We also associate a
cost with each vertex in F ; the cost of the vertex Y is the cost of the cycle used to
form Y from X1, . . . ,Xq . We thus build up trees as the algorithm proceeds; the root
of any tree corresponds to a cluster that has not yet become part of a bigger cluster.
The leaves of the trees correspond to vertices of H ; they all have cost 0. Also, any
large cluster Y formed by the algorithm is at the root of its tree; we refer to this tree
as TY .

For each large cluster Y after MERGECLUSTERS terminates, say that Y is of type
i if Y was formed during iteration i of MergeClusters. We now define the final-stage
clusters of Y : They are the clusters formed during iteration i that became part of Y .
(We include Y itself in the list of final-stage clusters; even though Y was formed
in iteration i of MERGECLUSTERS, it may contain other final-stage clusters. For
instance, during iteration i, we may merge several tier i clusters to form a cluster X

of tier j > i. Then, if we find a good-density cycle C that contains an edge of X,
X will merge with the other clusters of C.) The penultimate clusters of Y are those
clusters that exist just before the beginning of iteration i and become a part of Y .
Equivalently, the penultimate clusters are those formed before iteration i that are the
immediate children in TY of final-stage clusters. Figure 3 illustrates the definitions
of final-stage and penultimate clusters. Such a tree could be formed if, in iteration
i − 1, 4 clusters of this tier merged to form E, a cluster of tier i + 1. Subsequently, in
iteration i, clusters L and M merge to form J . We next find a good cycle containing F

and K ; J contains an edge of this cycle, so these three clusters are merged to form B .
Note that the cost of this cycle is paid for the by the weights of F and K only; J is a
tier i + 1 cluster, and so its weight is not included in the density calculation. Finally,
we find a good cycle paid for by A and D; since B and E share edges with this cycle,
they all merge to form the large cluster Y .

An edge of a large cluster Y is said to be a final edge if it is used in a cycle C

that produces a final-stage cluster of Y . All other edges of Y are called penultimate
edges; note that any penultimate edge is in some penultimate cluster of Y . We define



Algorithmica (2012) 62:436–463 457

Fig. 3 A part of the Tree TY corresponding to Y , a large cluster of type i. The number in each vertex indi-
cates the tier of the corresponding cluster. Only final-stage and penultimate clusters are shown: final-stage
clusters are indicated with a double circle; all other clusters are penultimate

the final cost of Y to be the sum of the costs of its final edges, and its penultimate
cost to be the sum of the costs of its penultimate edges; clearly, the cost of Y is the
sum of its final and penultimate costs. We bound the final costs and penultimate costs
separately.

Recall that an edge is a final edge of a large cluster Y if it is used by MERGECLUS-
TERS to form a cycle C in the final iteration during which Y is formed. The reason we
can bound the cost of final edges is that the cost of any such cycle is at most α times
the weight of clusters contained in the cycle, and a cluster does not contribute to the
weight of more than one cycle in an iteration. (This is also the essence of Lemma 4.8.)
We formalize this intuition in the next lemma.

Lemma 4.9 The final cost of any large cluster Y is at most αwY , where wY is the
weight of Y .

Proof Let Y be an arbitrary large cluster. In the construction of the tree TY , we as-
sociated with each vertex of TY the cost of the cycle used to form the corresponding
cluster. To bound the total final cost of Y , we must bound the sum of the costs of
vertices of TY associated with final-stage clusters. The weight of Y , wY is at least the
sum of the weights of the penultimate tier i clusters that become a part of Y . There-
fore, it suffices to show that the sum of the costs of vertices of TY associated with
final-stage clusters is at most α times the sum of the weights of Y ’s penultimate tier
i clusters. (Note that a tier i cluster must have been formed prior to iteration i, and
hence it cannot itself be a final-stage cluster.)

A cycle was used to construct a final-stage cluster X only if its cost was at most α

times the sum of weights of the penultimate tier i clusters that become a part of X.
(Larger clusters may become a part of X, but they do not contribute weight to the
density calculation.) Therefore, if X is a vertex of TY corresponding to a final-stage
cluster, the cost of X is at most α times the sum of the weights of its tier i immediate
children in TY . But TY is a tree, and so no vertex corresponding to an penultimate tier
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i cluster has more than one parent. That is, the weight of a penultimate cluster pays
for only one final-stage cluster. Therefore, the sum of the costs of vertices associated
with final-stage clusters is at most α times the sum of the weights of Y ’s penultimate
tier i clusters, and so the final cost of Y is at most αwY . �

Lemma 4.10 If Y1 and Y2 are distinct large clusters of the same type (that is, formed
during the same iteration of MERGECLUSTERS), no edge is a penultimate edge of
both Y1 and Y2.

Proof Suppose, by way of contradiction, that some edge e is a penultimate edge of
both Y1 and Y2, which are large clusters of type i. Let X1 (respectively X2) be a
penultimate cluster of Y1 (resp. Y2) containing e. As penultimate clusters, both X1

and X2 are formed before iteration i. But until iteration i, neither is part of a large
cluster, and two small clusters cannot share an edge without being merged. Therefore,
X1 and X2 must have been merged, so they cannot belong to distinct large clusters,
giving the desired contradiction. �

Theorem 4.11 After MERGECLUSTERS terminates, at least one large cluster has
density at most O(log k)ρ.

Proof We define the penultimate density of a large cluster to be the ratio of its penul-
timate cost to its weight.

Consider the total penultimate costs of all large clusters: For any i, each edge
e ∈ E(H) can be a penultimate edge of at most 1 large cluster of type i. This im-
plies that each edge can be a penultimate edge of at most �logk� clusters. Therefore,
the sum of penultimate costs of all large clusters is at most �logk�cost(H). Further,
the total weight of all large clusters is at least �/2. Therefore, the (weighted) aver-
age penultimate density of large clusters is at most 2�logk� cost(H)

�
= 2�logk�ρ, and

hence there exists a large cluster Y of penultimate density at most 2�logk�ρ.
The penultimate cost of Y is, therefore, at most 2�logk�ρwY , and from Lemma 4.9,

the final cost of Y is at most αwY . Therefore, the density of Y is at most
α + 2�logk�ρ = O(log k)ρ. �

Theorem 4.11 and Lemma 4.7 together imply that we can find a solution to the
rooted k-2VC problem of cost at most O(logk)ρk + 2L. This completes our proof
of Theorem 4.1.

5 The Algorithms for the k-2VC and BUDGET-2VC Problems

Recall that the goal of the k-2VC problem is to find a minimum-cost 2-connected
subgraph with at least k terminals. In the rooted k-2VC problem, we wish to find a
min-cost subgraph with at least k terminals in which every terminal is 2-connected
to the specified root r . We solve the rooted k-2VC problem; the lemma below shows
that this also suffices to solve the unrooted version.
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Lemma 5.1 If there is an algorithm with approximation ratio α for the rooted k-2VC
problem, there is an algorithm with approximation ratio α for the unrooted k-2VC
problem.

Proof Given an instance of the unrooted k-2VC problem, let OPT denote the cost
of an optimal solution. Guess 2 vertices u,v that are adjacent in a fixed optimal
solution, and let uv be the edge (which must be in the optimal solution) connecting
them. Create an instance of the rooted k-2VC problem by subdividing the edge uv:
Insert a new root vertex r along uv, and set the total cost of the two edges ur and
rv to be equal to the cost of the original edge uv. It is straightforward to see that the
optimal solution to the original unrooted k-2VC instance corresponds to a solution
to the rooted k-2VC instance of cost OPT.

Now, use the α-approximation algorithm for rooted k-2VC to find a subgraph H

in which at least k terminals are 2-connected to r , and of cost at most αOPT. To
convert this into a solution to the original unrooted k-2VC instance, simply undo
the subdivision of uv: replace ur and rv with the original edge uv. The cost of this
solution is at most αOPT; it remains only to verify that all terminals are 2-connected.
To see this, note that there are 2 disjoint paths from each terminal t that end at u and
v respectively (as t is 2-connected to r) and u and v are 2-connected in the final
solution, as they are connected in H \ {r} and hence 2-connected once we reinsert
edge uv. �

Similarly, one can reduce BUDGET-2VC to its rooted version. Note that k-2VC
and BUDGET-2VC are equivalent from the viewpoint of exact optimization, but this is
not true from an approximation perspective. Still, we solve them both via the DENS-
2VC problem, using the algorithm of Lemma 1.5 described in Sect. 2.

We first describe our algorithm for the k-2VC problem. Let OPT be the cost of
an optimal solution to the k-2VC instance. We assume knowledge of OPT; this can
be dispensed with using standard methods. We pre-process the graph by deleting
any terminal that does not have 2 vertex-disjoint paths to the root r of total cost at
most OPT. We use t (H) to denote the number of terminals in a graph H . Given a
partial solution G′ (in which fewer than k terminals are connected to the root), we use
k′ = k − t (G′) to denote the remaining number of terminals that must be connected.
The high-level description of the algorithm for the rooted k-2VC problem is given
below.

k-2VC (Graph G, root r , integer k):
k′ ← k, G′ ← the empty graph.
While (k′ > 0):

Find a low-density subgraph H ⊆ G, using the algorithm of Lemma 1.5 for DENS-2VC.
If (t (H) ≤ k′):

G′ ← G′ ∪ H , k′ ← k′ − t (H).
Mark all terminals in H as non-terminals of G.

Else:
Prune H to obtain H ′ containing k′ terminals, using the algorithm of Theorem 4.1.
G′ = G′ ∪ H ′, k′ ← 0.

Output G′.
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At the beginning of any iteration of the while loop, the graph contains a solution
to the DENS-2VC problem of density at most OPT

k′ . Therefore, the graph H returned
always has density at most O(log�) OPT

k′ . If t (H) ≤ k′, we add H to G′ and decre-
ment k′; we refer to this as the augmentation step. Otherwise, we have a graph H of
good density, but with too many terminals. In this case, we prune H to find a graph
with the required number of terminals; this is the pruning step. A simple set-cover
type argument shows the following lemma:

Lemma 5.2 If, at every augmentation step, we add a graph of density at most
O(log�) OPT

k′ (where k′ is the number of additional terminals that must be selected),
the total cost of all the augmentation steps is at most O(log� · logk)OPT.

Proof Suppose the graph added in each step has density at most γ log� OPT
k′ , for

some constant γ ; we prove that the total cost of augmentation steps is bounded by
γ Jk log� · OPT, where Jk denotes the kth Harmonic number. We use induction on
the number of augmentation steps.

For the base case, suppose there is a single step. The low-density subgraph H

which is added has at most k terminals (if not, we would be in the pruning step); thus,
the total cost of H is less than γ log� · OPT, which is at most γ Jk log� · OPT. For
the inductive step, we initially have k′ = k. Let H be the low-density graph found; it
has t (H) < k terminals. The total cost of edges in H is at most γ log� OPT

k
· t (H). We

then decrement k′ by t (H), mark terminals of H as non-terminals, and (implicitly)
recurse on the graph that remains. This remaining graph has a solution of cost at
most OPT, and by the induction hypothesis, the cost of the remaining augmentation
steps is γ Jk−t (H) log�OPT. Thus, the total cost of all augmentation steps is at most
γ log�(

t (H)
k

+ Jk−t (H)) · OPT, which is at most γ Jk log� · OPT. �

Therefore, it remains only to bound the cost of the graph H ′ added in the pruning
step, and Theorem 4.1, proved in Sect. 4, is precisely what is needed. We can now
prove our main result for the k-2VC problem, Theorem 1.7.

Proof of Theorem 1.7 Let OPT be the cost of an optimal solution to the (rooted)
k-2VC problem. By Lemma 5.2, the total cost of the augmentation steps of our
greedy algorithm is O(log� · logk)OPT. To bound the cost of the pruning step, let
k′ be the number of additional terminals that must be covered just prior to this step.
The algorithm for the DENS-2VC problem returns a graph H with t (H) > k′ ter-
minals, and density at most O(log�) OPT

k′ . As a result of our pre-processing step,
every vertex has 2 vertex-disjoint paths to r of total cost at most OPT. Now, we
use Theorem 4.1 to prune H and find a graph H ′ with k′ terminals and cost at most
O(log k)Density(H)k′ + 2OPT ≤ O(log� · logk)OPT + 2OPT. Therefore, the total
cost of our solution is O(log� · logk)OPT. �

We now describe the similar algorithm for the BUDGET-2VC problem. Given bud-
get B , pre-process the graph as before by deleting vertices that do not have 2 vertex-
disjoint paths to r of total cost at most B . Let OPT denote the number of vertices in
the optimal solution, and k = OPT/c log� log OPT, for some constant c = O(1/ε).
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We run the same greedy algorithm, using the O(log�)-approximation for the DENS-
2VC problem. Note that at each stage, the graph contains a solution to DENS-2VC of
density at most B/(OPT − k) < 2B/OPT. Therefore, we have the following lemma:

Lemma 5.3 If, at every augmentation step of the algorithm for BUDGET-2VC, we
add a graph of density at most O(log�)(2B/OPT), the total cost of all augmentation
steps is at most O(B/ log OPT) ≤ εB .

Again, to prove Theorem 1.9, giving a bicriteria approximation for BUDGET-2VC,
we only have to bound the cost of the pruning step.

Proof of Theorem 1.9 From the previous lemma, the total cost of the augmentation
steps is at most εB . The graph H returned by the DENS-2VC algorithm has density
at most O(log� ·B/OPT), and t (H) > k′ terminals. Now, from Theorem 4.1, we can
prune H to find a graph H ′ containing k′ terminals and cost at most O(logk′ log� ·
B/OPT) ·k′ +2B . As k′ ≤ k = OPT/(c log� log OPT), a suitable choice of c ensures
that the total cost of the pruning step is at most εB + 2B . �

6 Open Problems

We describe several open problems:

• Can the approximation ratio for the k-2VC problem (or the k-2EC problem) be
improved from the current O(log� logk) to O(logn) or better? Removing the de-
pendence on � to obtain even O(log2 k) is also interesting.

• Can we obtain approximation algorithms for the k-λVC or k-λEC problems for
λ > 2? If the graph is complete and edge-costs satisfy triangle inequality, a constant
factor approximation for k-λEC is given in [27].

• Given a 2-connected graph of density ρ with some vertices marked as terminals,
we show that it contains a non-trivial cycle with density at most ρ, and give an
algorithm to find such a cycle. We have also found an O(log�)-approximation for
the problem of finding a minimum-density non-trivial cycle. Is there a constant-
factor approximation for this problem? We do not know whether the problem is
NP-Hard.
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