
Discrete Applied Mathematics 154 (2006) 15–34
www.elsevier.com/locate/dam

A greedy approximation algorithm for the
group Steiner problem

Chandra Chekuria,∗, Guy Evenb, Guy Kortsarzc

aLucent Bell Labs, Murray Hill, New Jersey, USA
bDepartment of Electrical-Engineering, Tel-Aviv University, Israel

cComputer Sciences Department, Rutgers University, Camden, USA

Received 15 August 2002; received in revised form 14 July 2005; accepted 19 July 2005
Available online 22 September 2005

Abstract

In the group Steiner problem we are given an edge-weighted graph G= (V , E, w) and m subsets
of vertices {gi}mi=1. Each subset gi is called a group and the vertices in

⋃
igi are called terminals. It

is required to find a minimum weight tree that contains at least one terminal from every group.
We present a poly-logarithmic ratio approximation for this problem when the input graph is a tree.

Our algorithm is a recursive greedy algorithm adapted from the greedy algorithm for the directed
Steiner tree problem [Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93
(1999) 265–285, Approximation algorithms for directed Steiner problems, J. Algorithms 33 (1999)
73–91]. This is in contrast to earlier algorithms that are based on rounding a linear programming
based relaxation for the problem [A polylogarithmic approximation algorithm for the Group Steiner
tree problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998
pp. 253–259, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59–63]. We answer in
positive a question posed in [A polylogarithmic approximation algorithm for the Group Steiner tree
problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998 pp.
253–259] on whether there exist good approximation algorithms for the group Steiner problem that
are not based on rounding linear programs. For every fixed constant � > 0, our algorithm gives an
O((log

∑
i |gi |)1+� · log m) approximation in polynomial time. Approximation algorithms for trees

can be extended to arbitrary undirected graphs by probabilistically approximating the graph by a tree.

∗ Corresponding author. Tel.: 9085821204; fax: 9085825857.
E-mail address:chekuri@research.bell-labs.com (C. Chekuri), guy@eng.tau.ac.il (G. Even),

guyk@camden.rutgers.edu (G. Kortsarz).

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.07.010

16 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

This results in an additional multiplicative factor of O(log |V |) in the approximation ratio, where |V |
is the number of vertices in the graph. The approximation ratio of our algorithm on trees is slightly
worse than the ratio of O(log(maxi |gi |) · log m) provided by the LP based approaches.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Group Steiner problem; Tree; Combinatorial; Greedy; Approximation algorithm

1. Introduction

The Steiner tree problem is among the fundamental problems in network design. The
input to the Steiner tree problem is an undirected edge-weighted graph G= (V , E, w) and
a set of terminals T ⊆ V . The objective is to find a minimum weight tree T that spans the
terminals in T. The Steiner tree problem is known to be NP-hard [13] and also APX-hard
[5]. In this paper we consider the group Steiner problem which is a generalization of the
Steiner tree problem. The input to this problem also consists of an edge-weighted graph
G = (V , E, w); however, instead of a single set of terminals we are given a collection
of possibly intersecting subsets of vertices {gi}i . Each subset gi is called a group. The
objective is to find a minimum weight tree that contains at least one vertex from each group.
Throughout, we denote the number of groups by m, the number of terminals |∪m

i=1gi | by
n, and the size of the largest group maxi |gi | by N. We note that the sum of the group sizes∑m

i=1|gi | is at most mn.
The group Steiner problem was introduced by Reich and Widmayer [23] motivated by

applications to wire routing with multi-port terminals in physical VLSI design. See [14]
for additional references to this problem. The problem is of interest not only because of its
applications but also because of its relation to the Steiner tree problem in both undirected
and directed graphs. The search for good approximation algorithms for this problem has
inspired new technical ideas [14,19,20,25].

The group Steiner problem is a strict generalization of the Steiner tree problem, and in [14]
it is shown that very special cases of the group Steiner problem are harder to approximate
than the Steiner tree problem: in particular it is shown that the set cover problem can be
reduced in an approximation preserving way to the group Steiner problem on star graphs.
From the hardness of approximating set cover [12,22], it follows that the group Steiner
problem on stars, and hence trees, is NP-hard to approximate to within a factor better
than c ln m for some constant c, or to a factor better than (1 − o(1)) ln m unless NP ⊆
DTIME(nlog log n). In recent work, Halperin and Krauthgamer [16] improved the hardness
of approximation. They showed that for every � > 0, the group Steiner problem on trees is
hard to approximate to within a factor better than �(log2−� m), unless NP problems can be
solved by quasi-polynomial time Las-Vegas algorithms.

In terms of upper bounds, the first sub-linear approximation ratio for this problem was
an O(

√
m) ratio given by Bateman et al. [4]. Garg et al. [14] improved this substantially

and obtained the first poly-logarithmic approximation ratio for this problem. They gave
an O(log N log m) approximation algorithm for the problem on trees based on an ele-
gant randomized rounding of the natural linear programming relaxation for the problem.
It should be mentioned that their algorithm achieves a ratio of O(min{h, log N} log m) on

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 17

trees of height h. They extended their algorithm for trees to general undirected graphs by
using Bartal’s [1,2] probabilistic approximation of a finite metric by tree metrics. Using
the best possible probabilistic approximation obtained in [11], the approximation ratio for
the group Steiner problem on general graphs is O(log N log m log |V |) where |V | is the
number of vertices in G. Zosin and Khuller [25] achieved similar results in a later paper;
they also use the natural LP relaxation; however, their algorithm is dual based and is sub-
stantially different from the primal based algorithm in [14]. In [7] the algorithm of [14] is
derandomized to give a deterministic algorithm achieving the same approximation ratio.
Note that the approximation ratio for trees is almost matched by the hardness factor in
[16]. It is also known that the integrality gap of the natural linear programming relaxation
is �(log2n) [15].

Approximation algorithms for the group Steiner problem have been obtained through a
different direction by reducing it to the directed Steiner tree problem. The directed Steiner
tree problem is a generalization of the Steiner tree problem to directed graphs and is defined
as follows. We are given an arc-weighted directed graph G=(V , A), a set of terminals T ⊆
V and a special vertex r ∈ V called the root. The objective is to find a minimum weight out-
tree T rooted at r in which r has a directed path to every terminal. The directed group Steiner
problem is also defined similarly as a generalization of the group Steiner problem: we are
given a root in addition to the groups and the goal is to find a min-weight tree such that there
is a directed path from the root to atleast one vertex of each group. It is an easy observation
that the directed Steiner tree problem and the directed group Steiner problem are equivalent.
For the directed Steiner tree problem, the current best known approximation algorithm is by
Charikar et al. [6]. They gave an algorithm that given an integer parameter i�1, achieves
an O(i3m1/i)-approximation1 and has a running time of O(ni). Hence, for any fixed �, an
O(m�) approximation can be obtained in polynomial time. More interestingly, an O(log3 m)

approximation can be obtained in quasi-polynomial time (i.e., O(nlog m) time) giving strong
evidence for the conjecture that the problem has a poly-logarithmic approximation ratio.
These results carry over to the group Steiner problem. We note that the algorithm in [6] is
based on a greedy framework [6,21,24].

Our results: The two known poly-logarithmic approximation algorithms for the group
Steiner problem are both based on rounding a solution to the linear programming relaxation
[14,25]. In [14] the following question is asked: Is there a “combinatorial” poly-logarithmic
approximation algorithm for the group Steiner problem? By combinatorial they imply an
algorithm that is not based on solving an LP relaxation. In this paper we answer their
question and give such an algorithm for trees. For any fixed � > 0, the approximation ratio
obtained by our algorithm is O((1/�) · (log n)1+� · log m) which is only slightly worse than
the ratio of O(log N log m) given in [14,25]. Following [14], an approximation algorithm on
trees allows us to obtain an approximation algorithm for general graphs: the input graph is
approximated probabilistically by tree metrics [2,8,11]. Given an input graph, the algorithm
in [11] produces a tree such that the expected distance between any pair of vertices in the
tree is at most O(log |V |) times the distance between the pair in the graph. We simply run

1 In [6], a ratio of O(i2m1/i) is claimed but this relied on an erroneous lemma in [24]. The lemma in [24],
when fixed (see [17]), results in a worsening of the approximation ratio claimed in [6].

18 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

our algorithm on this tree. The algorithm in [11] is randomized. It can be derandomized by
using ideas from [8]. We refer the reader to [8,11] for more details.

Even and Kortsarz [9] claimed an approximation algorithm for the group Steiner problem
on trees with an approximation ratio of O(log2 n/ log log n). The analysis presented in [9]
contains an error. We rely on some of the methods used in [9]: The greedy framework
[6,21,24], geometric search, and avoiding low coverage trees. The greedy algorithms in
[6,21] run in quasi-polynomial time to obtain a poly-logarithmic ratio. In this paper we use
several technical ideas to reduce the running time to be polynomial when the input graph
is a tree. Some of our ideas are relevant for the directed Steiner tree problem. It is our
belief that further ideas along these lines may yield a polynomial time algorithm with a
poly-logarithmic ratio for the directed Steiner tree problem.

Techniques: Our algorithm follows the greedy methodology of [6,21]. The density of a
partial solution F is the ratio of the weight of F divided by the number of groups covered
by F. If an algorithm guarantees a partial solution with density at most � times the density
of the optimal tree, then this algorithm can be used iteratively to find a tree that covers all
groups and the resulting approximation ratio will be O(� log m).

Given a tree of height h, the algorithm in [6] yields a partial solution with density O(h)

times the density of the optimal tree. However, the running time of the algorithm is expo-
nential in h. Obtaining polynomial running time requires modifications that reduce both the
exponent (i.e. the height) and the base (i.e. number of iterations, number of demand values
per iteration, and number of children per vertex). We accomplish this using several ideas.
The first of these involve preprocessing the input tree to satisfy certain height and degree
requirements.

• Height reducing transformation: for any � we give a transformation that reduces the height
of the tree to O(log� n) while incurring a multiplicative factor of O(�) in the weight of
the optimal solution.
• Degree reducing transformation: given a parameter ��3 we reduce the maximum degree

of the tree to �+1 while (additively) increasing the height of the tree by O(log�/2 n) and
not increasing the weight of the optimal solution.

By choosing �=log� n and �=log n we obtain a tree with height O((1/�) log n/ log log n)

and maximum degree O(log n). Further, we are guaranteed that there is a solution in this
tree of weight at most O(log� n) times the weight of an optimal solution in the input
tree.

Finally, the greedy algorithm is modified so as to reduce the number of recursive calls by
using geometric search and avoiding sub-trees that cover few groups. These modifications
combined with the preprocessing mentioned above result in a polynomial time algorithm.
Although our algorithm runs in polynomial time, it is not efficient. Our goal is to investigate
the greedy approach to this problem and we have not made much effort to choose the best
possible parameters to optimize the running time.

Our height reduction procedure is non-trivial and we use it to obtain an algorithm for trees.
However, for arbitrary graphs our first step is to reduce the graph to a tree via probabilistic
approximation. The trees returned by the algorithms in [1,2,8,11] are HSTs (hierarchically
well separated) and height reduction for these structured trees that achieves the same bounds

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 19

as our procedure is straightforward. For an example of this latter kind of height reduction,
see [3].

Organization: Section 2 contains the formal problem definition and useful notation for
the rest of the paper. In Section 3 we present our greedy algorithm with geometric search
and analyze its performance. We show that the running time of the algorithm is polynomial
for trees with height and degree appropriately bounded. The height and degree reducing
transformations are presented in Sections 4 and 5. We conclude in Section 6 with some
remarks.

2. Preliminaries

Problem formulation: The group Steiner problem restricted to trees is defined as follows.
The input consists of (i) a rooted tree T = (V , E) with a root r, (ii) non-negative edge
weights w(e), and (iii) a collection of vertex subsets {gi}i . The subsets gi are referred to as
groups and vertices in ∪igi are referred to as terminals. A group gi is covered by a subtree
T ′ = (E′, V ′) if gi ∩V ′ �= �. A cover of the groups is a tree T ′ that covers every group and
contains the root r. The goal is to find a minimum weight cover.

Note that we consider a rooted version of the group Steiner problem. This is not a
restriction since the unrooted version and the rooted version are polynomially equivalent
(i.e., if no root is specified, simply run the algorithm |V | times each time with a different
vertex assigned as the root).

A tree T ′ ⊆ T is z-cover if it covers at least z groups. We consider also the problem of
finding a minimum weight z-cover.

Notation and definitions: The input to our problem is a rooted tree. A child–parent and an
ancestor–descendant relation is naturally induced over the vertices. The parent of a non-root
vertex v is denoted by p(v). The subtree rooted at a vertex v is denoted by Tv . Let e= (u, v)

be an edge where u is the parent of v. The subtree induced by the edge (u, v) is the tree
Tv ∪ {(u, v)}, namely, the tree Tv in addition to the edge (u, v) and the vertex u. We denote
the subtree induced by the edge (u, v) by T(u,v). We denote the set of leaves of a tree T by
L(T).

Let m denote the number of groups, n = |∪m
i=1gi | denote the number of terminals, and

s =∑m
i=1|gi | denote the sum of the group sizes. Note that s might be significantly greater

than n, and therefore, s is used to measure the input length.
Let n(T ′) denote the number of terminals in T ′. For a rooted subtree Tu, we denote n(Tu)

simply by nu. The number of groups covered by T ′ is denoted by m(T ′). The sum of the
edge weights in a subtree T ′ is denoted by w(T ′). The density of a subtree tree T ′ is defined
as

�(T ′)� w(T ′)
m(T ′)

.

The height of a tree is the maximum number of edges along a simple path from the root
to a leaf. The height of a tree T is denoted by h(T).

We interpret every subtree T ′ that contains the root r as a partial cover, that is, T ′ covers a
subset of the groups. A partial cover transforms a problem instance into a residual problem.

20 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

The residual problem is obtained by declaring all the terminals in the groups covered by T ′
to be nonterminals. (Weights of edges in T ′ could be zeroed in the residual problems, but
the analysis we present does not benefit by this, so we keep the edge weights unchanged.)
Observe that if T ∗ covers the groups in T, then T ∗ covers the groups in every residual
problem. Hence the weight of an optimal solution to the residual problem is no greater than
the weight of an optimal solution to the initial problem.

Preprocessing: We preprocess the tree as follows so that the total number of vertices is
O(n) and every vertex is a terminal.

1. Eliminate every nonterminal leaf. Obviously, this does not affect the set of feasible
solutions. Hence, we may assume that every leaf is a terminal.

2. Eliminate every nonterminal interior vertex v of degree two. This is done by replacing
the length two path p = x − v − y that traverses v by a new edge (x, y). The weight
of the new edge is w(x, v)+w(v, y). Hence, we may assume that every interior vertex
has at least two children, and therefore, the number of vertices is O(n).

3. Add a new dummy group that contains all the vertices. Obviously, this does not affect
the set of feasible solutions.

We remark that if one is not interested in the distinction between n and s, then prepro-
cessing can make the groups disjoint. Simply hang new terminals from every old terminal
v so that there is one new terminal per group that v belongs to. This reduction ensures that
the groups are disjoint at the cost of increasing n so that it equals s.

Finally, by scaling edge weights, we may assume that, for every edge e, w(e) > 0 implies
that w(e)�1.

Faithful trees: Consider a tree T rooted at r. Every subset of vertices S ⊆ V (T) induces
a subtree T [S] consisting of the union of all the paths in T from the root r to the vertices
in S.

The setting for the definition of faithful trees is as follows. Let A and B be two rooted
trees. Let � : V (A) → V (B) be a function (not necessarily one-to-one) that maps the
vertices of A to those of B. In this mapping, A will be the original tree and B will be the
height reduced tree. For S ⊆ V (A), we denote the image of S by �(S). The preimage of
S′ ⊆ �(V (A)) is denoted by �−1(S′). We map the group Steiner instance on A to that in B in
a straightforward way as follows. For every group gi ⊆ V (A), we define a group g′i ⊆ V (B)

by g′i = �(gi).

Fact 2.1. If S ⊆ V (A) covers gi in A then �(S) covers g′i in B. Similarly, if S′ ⊆ �(V (A))

covers g′i in B then �−1(S′) covers gi in A.

We denote the edge weight function of a tree T by wT .

Definition 2.2. The tree B is an �-faithful representation of the tree A if there is a mapping
� : V (A)→ V (B) such that the following two conditions hold:

1. For every S ⊆ V (A), wB(B[�(S)])�� · wA(A[S]).
2. For every S′ ⊆ �(V (A)), wA(A[�−1(S′)])�wB(B[S′]).

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 21

The following claim summarizes the approximation preserving properties of �-faithful
trees.

Claim 2.3. Let B denote an �-faithful representation of A. A �-approximate z-cover in B
induces an (� · �)-approximate z-cover in A.

Proof. Let � : V (A) → V (B) denote the mapping to prove that B is an �-faithful
representation of A. Let S1 be a minimum weight z-cover in A. Let S′1 = �(S1). From
Fact 2.1, it follows that S′1 is a z-cover in B. From �-faithfulness of �, we have that
wB(B[S′1])�� · wA(A[S1]). Let S′2 be a �-approximate z-cover in B. Since S′1 is a z-cover
in B, wB(B[S′2])�� · wB(B[S′1]). Let S2 = �−1(S′2). Again, from Fact 2.1, S2 is a z-cover
in A. From faithfulness, we have that wA(A[S2])�wB(B[S′2]). Putting together, we have
that S2 is a z-cover in A and wA(A[S2])�� · � ·wA(A[S1]). Since S1 is a minimum weight
z-cover in A, the claim follows. �

Transformations: As discussed in Section 1, we preprocess the input tree to reduce its
height and degree before applying our greedy algorithm. We summarize the properties of
these transformations in the following claims that are proved in Sections 4 and 5.

Claim 2.4. Let � > 1. There exists a linear time algorithm that, given a rooted tree T with
n vertices, computes an O(�)-faithful representation T ′ of T such that h(T ′)= O(log� n).

Claim 2.5. Let ��3. There exists a linear time algorithm that, given a rooted tree T with n
vertices, computes a 1-faithful representation T ′ of T such that: h(T ′)�h(T)+
log�/2 n�
and every vertex in T ′ has at most � children.

Throughout the paper we use log x to denote the logarithm of x to some fixed constant.
We do not specify the constant since we are mainly interested in asymptotic ratios. We
explicitly specify the base when it is needed.

3. A recursive greedy algorithm with geometric search

In this section, we present our recursive greedy algorithm which is similar to the greedy
algorithms in [6,21]. The main difference is that we use geometric search to reduce the
number of recursive calls. Together with the height and degree reducing transformations,
this yields a polynomial running time. To motivate and explain our modification, we first
describe the algorithm in [6] for the directed Steiner tree problem, specializing it to the case
of the group Steiner problem on trees. The notation and description are only superficially
different from those in [6].

3.1. Greedy algorithm from [6]

Algorithm GS gets as input, a subtree Tr ′ rooted at r ′, edge weights w(e), groups of
terminals {gi}i , and a covering demand z′. To simplify the notation, we refer to the input as
a pair (Tr ′ , z′). The algorithm computes a z′-cover of Tr ′ .

22 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

A listing of Algorithm GS appears as Algorithm 1. The stopping condition of the algorithm
is when the input subtree consists of a single leaf, in which case the subtree is returned as
the cover. Here we use the assumption that every leaf is a terminal (see Preprocessing in
Section 2). When the input subtree is not a single leaf, the algorithm finds a z′-cover by
adding augmenting trees, one by one, until a z′-cover is found. The variable zres equals the
residual demand, namely, the number of groups that still need to be covered. The residual
tree T res is the tree obtained from Tr ′ as follows. A terminal is active if it belongs to a group
that has not yet been covered. The tree T res is the minimal subtree of Tr ′ that contains all
the active terminals. The while-loop in lines 3–7 iterates while the union of the augmenting
trees found so far is not a z′-cover. Each iteration of the while loop consists of three stages:
recursion, selection, and update. In line 4, the algorithm is called recursively for all the
subtrees hanging from children of r ′ and for all demand values z′′ in the range [1, zres].
The tree computed by GS(Tu, z

′′) is denoted by Cu,z′′ . In line 5, an augmenting tree, Taug,
is selected as follows. For every tree Cu,z′′ , the weight of the edge (r ′, u) is added to the
weight of Cu,z′′ , and Taug is picked to be a tree of lowest density among these trees. In line
6 updating takes place. The selected augmenting tree Taug is added to the cover found so
far,2 and the residual demand zres and residual tree T res are updated. When the residual
demand is zero, the union of the augmenting trees is a z′-cover, and the algorithm returns
this cover.

Algorithm 1 GS(Tr ′ , z′)—A recursive greedy algorithm for the Group Steiner Problem.

1: stopping condition: if r ′ is a leaf then return (Tr ′).
2: Initialize: cover← ∅, zres ← z′, and T res ← Tr ′ .
3: while zres > 0 do
4: recurse: for every u ∈ children(r ′) and every z′′ ∈ [1, zres]

Cu,z′′ ← GS(T res
u , z′′).

5: select: (pick the lowest density tree)

Taug ← MIN-DENSITY{Cu,z′′ ∪ {(r ′, u)} | u ∈ children(r ′)&z′′ ∈ [1, zres]}.
6: update:

(a) cover← cover ∪ Taug.
(b) zres ← z′ −m(cover).
(c) remove all groups covered by Taug from T res.

7: end while
8: return (cover).

2 The algorithm could reduce the cost of the edges in Taug to zero after adding Taug to the cover. There does
not seem to be a way to use this to improve the analysis.

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 23

The following two lemmas adapted from [6] summarize the analysis of the above algo-
rithm which yields an O(h(Tr ′) log m) approximation in time O(nO(h(Tr′))).

Lemma 3.1. The running time of Algorithm GS is bounded by O((� · m2)O(h)), where
h= h(Tr ′) and � is the maximum degree of Tr ′ .

Let OPT(T res
r ′ , zres) denote a min-weight zres-cover in T res

r ′ . The following lemma shows
that the density of Taug is at most h(Tr ′) times the density of OPT(T res

r ′ , zres). Note that
augmenting trees are computed only if r ′ is not a leaf. If r ′ is a leaf, then the density of Tr ′
is zero, and is obviously optimal.

Lemma 3.2.

�(Taug)�h(Tr ′) · �(OPT(T res
r ′ , zres)).

3.2. Geometric search

We now present the Modified-GS Algorithm. The modifications reduce the number of
recursive calls per child of r ′ in each iteration as well as the number of iterations. The
increase in the approximation ratio caused by these modifications can be upper bounded by
a constant factor.

A listing of the Modified-GS-algorithm is given as Algorithm 2. The new or modified
lines are underlined. The main change is in line 4 where the recursive calls are with de-
mand values that are powers of (1 +) in the range [1

deg(r ′)·(1+ 1
)·(1+)

· zres, zres]. This

change is referred to as geometric search since the demands are only powers of (1 +).
Small subtrees are avoided in the sense that the demand value is at least (1

deg(r ′)·(1+ 1
)·(1+)

)·
zres). The second change is that the algorithms stores as coverh the first partial cover
that covers at least z′/h(Tr ′) groups. This modification is used in the proof of Lemma
3.4 instead of the simulation argument in the proof of Lemma 3.2. The final cover
that is returned is either cover or coverh, depending on which has a smaller density.
Note that if coverh is returned in the topmost call of Modified-GS,
then one needs to invoke Modified-GS again on the residual tree until a full cover is
computed.

The proofs of the following two lemmas appear at the end of this section.

Lemma 3.3. Let � be the maximum degree of the tree Tr ′ and let �=�(1+1/)(1+). The
running time of Modified-GS(Tr ′ , z′) is O(n�h(Tr′)) where �=� ·h(Tr ′) · log z′ ·� · log1+	 �.
If h(Tr ′)=O(log n/ log log n), �=O(log n) and 1�1/	=O(log n), then the running time
is polynomial in n and in m.

The following lemma proves that if 1/	�h(Tr ′), the modifications affect the density of
the augmentation tree only by a constant factor.

24 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

Algorithm 2 Modified-GS(Tr ′ , z′)—Modified GS Algorithm (uses geometric search).

1: stopping condition: if r ′ is a leaf then return (Tr ′).
2: Initialize: cover← ∅, zres ← z′, and T res ← Tr ′ .
3: while zres > 0 do
4: recurse: for every u ∈ children(r ′) and

for every z′′power of (1+) in [1

deg(r ′)·(1+ 1
)·(1+)

· zres, zres]

Cu,z′′ ← Modified-GS(Tu, z
′′).

5: select: (pick the lowest density tree)

Taug ← MIN-DENSITY{Cu,z′′ ∪ {(r ′, u)}}.
6: update:

(a) cover← cover ∪ Taug.
(b) zres ← z′ −m(cover).
(c) remove all groups covered by Taug from T res.
(d) if first time m(cover)�z′/h(Tr ′) then coverh← cover.

7: end while
8: return (lowest density tree ∈ {cover, coverh}).

Lemma 3.4.

�(Taug)�(1+)2h(Tr′) · h(Tr ′) · �(OPT(T res
r ′ , zres)).

We obtain the following theorem from the above two lemmas.

Theorem 3.5. Let I be an instance of the group Steiner problem on a tree T of height
O(log n/ log log n) and maximum degree O(log n). Then Modified-GS runs in time poly-
nomial n and m and gives an O(h(T) log m)-approximation.

Proof. Choose 	 = 1/h(T) in Modified-GS. For this choice of 	 and the bounds on the
height and degree of T it follows from Lemma 3.3 that Modified-GS runs in time polynomial
in n and m.

From Lemma 3.4, we obtain that �(Taug)�(1+ 1/h(T))2h(T) ·h(T) · �(OPT(T res, zres)).
Therefore �(Taug)�e2h(T)�(OPT(T res, zres)). It follows that we obtain an O(h(T) log m)

approximation. �

Corollary 3.6. For any fixed � > 0, there is a polynomial time recursive greedy algorithm
for the group Steiner problem on trees with an approximation ratio of O((1/�) · (log n)1+� ·
log m).

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 25

Proof. Use Claim 2.4 with � = log� n to reduce the height of the input tree to O(log n/

log log n) and use Claim 2.5 with � = log n to reduce the maximum degree of the tree to
O(log n) while still keeping the height O(log n/ log log n). These transformations worsen
the approximation ratio by a multiplicative factor of O(log� n). Applying the algorithm
Modified-GS to the transformed tree gives the desired result. �

Now we prove Lemmas 3.3 and 3.4.

Proof of Lemma 3.3. Let t (h, z) denote the running time of Modified-GS on a tree of
height h and with z terminals. The recurrence relation for t (h, z) is obtained by bounding
the number of recursive calls in Modified-GS. In line 4 each child of r ′ is called with
at most log1+	 � values of z′′ since we do a geometric search with powers of (1 +) in
the range [zres/�, zres]. Hence the total number of calls in line 4 is � · log1+	 �. A call
to Modified-GS with a covering requirement of z′ returns a tree with either z′ groups or
z′/h(Tr ′) groups. Hence in every iteration of the while loop in line 3, zres is reduced by at
least a factor of (1 − 1/(�h(Tr ′)). Hence the number of iterations of the while loop is at
most �h(Tr ′) log z′. Let � be the total number of recursive calls. From the above we can
bound � by �h(Tr ′) log z′ · �log1+	 �.

For each recursive call, the amount of processing required to compute the density of the
returned tree and remove the covered groups is linear in s =∑

i |gi |. Hence we can write
a recurrence relation for t (h, z′) as t (h, z′)��t (h− 1, z′)+ cs for some constant c. From
this we obtain t (h, z′)�cs�h.

When 1/	, �, and h(Tr ′) are O(log n) it is easy to verify that � is poly-logarithmic in
s (or, equivalently, in n and m). If h(Tr ′) is O(log n/ log log n) it follows that �h(Tr′) is
polynomial in n and m. �

Proof of Lemma 3.4. The proof is by induction on the height of Tr ′ . The induction basis
for h(Tr ′)= 1 follows from the fact that the density of Taug is optimal. This follows simply
by the fact that Taug is an edge to a closest leaf.

The induction step is proved as follows. Let {u1, u2, . . . , uk} denote the set of children of
r ′. Let Q∗=OPT(T res

r ′ , zres). Decompose Q∗ into the trees Q∗
(r ′,u1)

∪Q∗
(r ′,u2)

∪· · ·∪Q∗
(r ′,uk)

.
Recall that Q∗

(r ′,ui)
is the tree Q∗ui

together with the edge (r ′, ui).
We distinguish between subtrees that cover a large number of groups and those that cover

few. A subtree Q∗
(r ′,ui)

is bad if m(Q∗
(r ′,ui)

) < zres/ deg(r ′) · (1+ 1/); otherwise it is good.
Observe that the union of all bad subtrees covers at most zres/(1+ 1/) groups. Hence the
union of all good subtrees, denoted by Q∗big, covers at least zres/(1+) groups. It follows
that �(Q∗big)��(Q∗) · (1 +). By a simple averaging argument it also follows that the
density of at least one of the good subtrees is at most �(Q∗big). Without loss of generality,
assume that Q∗(r ′, u1) is good and that �(Q∗(r ′, u1))��(Q∗big). It follows that

�(Q∗(r ′,u1)
)��(Q∗big)�(1+) · �(Q∗). (1)

Let z∗i = m(Q∗
(r ′,ui)

), namely, z∗i is the number of groups covered by Q∗
(r ′,ui)

. Let z1

denote the integral power of (1+) such that z1 �z∗1 < (1+) · z1. Note that z1 is in the
range of powers of (1+) considered in line 4 (in fact, this is why the threshold between

26 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

bad and good subtrees is divided by an extra factor of (1 +)). Consider the execution
of Cu1,z1 ← Modified-GS(T res

u1
, z1) in line 4. The tree Cu1,z1 is incrementally constructed

from a sequence of augmenting trees, denoted by {R1, R2, . . .}. Let i denote the smallest
integer such that

m(∪j � iRj)�
z1

h(Tr ′)
. (2)

By the definition of i, it follows that coverh =∪j � iRj in the execution of Modified-GS
(T res

u1
, z1). Observe that, during all the iterations of the while loop in which Cu1,z1 is com-

puted, the subtree Q∗u1
is a cover that covers the residual demand. This implies that the

weight of a min-weight cover of the residual demand is not greater than w(Q∗u1
). Moreover,

the residual demand when Rj is computed, for j � i, is at least z1 − z1/h(Tr ′). Therefore,
the induction hypothesis when applied to Rj , for j � i, implies

�(Rj)�(1+)2h(Tu1) · h(Tu1) ·
w(Q∗u1

)

z1 − z1/h(Tr ′)

= (1+)2h(Tr′)−2 · (h(Tr ′)− 1) · w(Q∗u1
)

z1 − z1/h(Tr ′)
(using h(Tu1)= h(Tr ′)− 1)

= (1+)2h(Tr′)−2 · h(Tr ′) ·
w(Q∗u1

)

z1
. (3)

Since �(∪j � iRj)�maxj � i�(Rj), it follows that

�(∪j � iRj)�(1+)2h(Tr′)−2 · h(Tr ′) ·
w(Q∗u1

)

z1
. (4)

Since Taug is selected to be a tree of min-density among cover and coverh in the execution
of Modified-GS(T res

u1
, z1), it follows that

�(Taug)�
w(∪j � iRj)+ w(r ′, u1)

m(∪j � iRj)

(by Eqs. (4) and (2))�(1+)2h(Tr′)−2 · h(Tr ′) ·
w(Q∗u1

)

z1
+ w(r ′, u1)

z1/h(Tr ′)

(since z∗1 �z1(1+))�(1+)2h(Tr′)−2 · h(Tr ′) ·
w(Q∗u1

)

z∗1/(1+)
+ h(Tr ′) · w(r ′, u1)

z∗1/(1+)

�(1+)2h(Tr′)−1 · h(Tr ′) ·
w(Q∗u1

)+ w(r ′, u1)

z∗1
(by definition)= (1+)2h(Tr′)−1 · h(Tr ′) · �(Q∗(r ′,u1)

)

(by Eq. (1))�(1+)2h(Tr′) · h(Tr ′) · �(Q∗).

This proves the lemma. �

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 27

4. Height reducing transformation

In this section, we present a height reducing transformation that proves Claim 2.4. The
transformation is defined by the following recursive procedure. Given a rooted tree T, a
special subtree Q ⊆ T , called an �-decomposition, is found. The subtree Q is a prefix of T
(i.e., the root of T is also the root of Q and the leaves of Q may be internal vertices of the
original tree T). Loosely speaking, the subtree Q induces a partition of T into subtrees that
have 1/� as many vertices as the whole tree. The subtree Q is substituted by an O(�)-faithful
representation Q′ of Q. This O(�)-representation is a height-3 tree with the same root and
leaf-set. This procedure is then applied recursively to the subtrees rooted at the leaves of
Q. Namely, as a leaf u in Q roots a subtree Tu in T, we recursively repeat this modification
in Tu. The reduction by a factor of � in the number of terminals per three levels reduces
the height to 3 · log� n. Since every �-decomposition is substituted by an O(�)-faithful
representation, the penalty incurred by this transformation is O(�). We choose � = log� n

to reduce the height to O(log n/ log log n) so that the recursive greedy algorithm runs in
polynomial time. Interestingly, setting � to a constant reduces the height to O(log n) while
incurring only a constant (multiplicative) penalty. Our transformation runs in linear time.

4.1. �-decompositions

An �-decomposition of a tree Tr is a partition of Tr into � sub-trees, each subtree contain-
ing nr/� terminals. However, such a partition may not be possible; consider, for example,
the case when Tr is a star. We therefore need to deal with the situation that there are many
“light” descendants.

Let u denote a descendant of r. Let � > 1. A vertex u is �-light with respect to Tr if
nu �nr/�. A vertex u is �-heavy with respect to Tr if nu > nr/�. A vertex u is minimally
�-heavy if u is �-heavy and v is �-light, for every child v of u. A vertex u is maximally
�-light if u is �-light and p(u) is �-heavy. We fix � upfront and hence, for ease of notation,
we refer to �-heavy vertices as heavy and to �-light vertices as light.

Definition 4.1. A subtree Q ⊆ Tr is an �-decomposition of Tr if r ∈ Q and every leaf of
Q is maximally �-light.

Definition 4.2. The skeleton of an �-decomposition Q is the subtree sk(Q) ⊂ Q induced
by all the �-heavy vertices in Q.

Returning to the example in which Tr is a star, note that in this case Q = Tr is an �-
decomposition of Tr , and the skeleton is simply sk(Q)= {r}. An �-decomposition of Tr is
easy to compute: explore the subtree Tr via depth first search stopping the exploration of a
vertex’s children if it is a maximally light vertex.

Note that every leaf in a skeleton is minimally �-heavy, and therefore, the number of
leaves in the skeleton at most �. We refer to the edges in Q that are incident to light leaves
as the fluff of Q. Every edge of an �-decomposition Q is either an edge in the skeleton sk(Q)

or an edge in the fluff of Q, but not both.

28 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

Fig. 1. Promotion of bunches along a single branch. Depth of light leaves after promotion is three.

4.2. Promotion of �-decompositions

In this section, we describe how the height reducing transformation substitutes an �-
decomposition Q of Tr by a tree Q′ of height 3. We also describe a mapping � from the
vertices of Q to those in Q′ which will be used to establish the O(�)-faithfulness of the
transformation.

Branches: A branch is a maximal subpath in sk(Q) between two branching points (i.e.,
vertices with at least two children). There are at most (2�− 1) branches since there are at
most � leaves in sk(Q). To avoid inclusion of branching points in multiple branches, we
assume that (except for the root) a branching point belongs to the branch above it. The root
belongs to one of the branches that emanate from the root.

Bunches: Fix a branch B of sk(Q). Denote the endpoint of B closer to the root of Q by v.
Form bunches B0, B1, B2 . . . of vertices along B as follows. The first bunch B0 is defined
as follows:

B0 � {u ∈ B | w(path(v, u))= 0}.
For every positive integer i, the ith bunch, denoted by Bi , is defined as follows:

Bi � {u ∈ B | w(path(v, u)) ∈ [2i−1, 2i)}.
Recall that nonzero edge weights are at least 1, so there are no vertices between B0 and B1.
Since the start-vertex v of a branch B belongs to the branch above it, v does not belong to
the bunch B0.

Promotion: We now create a height-3 tree Q′ which has the same number of leaves as
Q by promoting bunches in branches as follows. Fig. 1 depicts the promotion of bunches
along a single branch. Intuitively, a path from r to a light leaf � is divided into three parts.
The first part is the path from r to v, the start-vertex of the bunch of �. The second part is
the path from v to p(�) ∈ B, and the third part is the edge (p(�), �). This path is replaced
with a path of length 3; the weight of first and last edges in this path equals the weight of
the corresponding part in path(r, �). The weight of the middle edge is a power of two and
approximates the weight of path(v, p(�)).

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 29

For every branch B, the following subtree is constructed. Let r ′ denote the root of Q′. Add
a vertex v(B) in Q′, which corresponds to v, and an edge (r ′, v(B)). The edge (r ′, v(B))

is given weight equal to the weight of the path from r to v. The bunches Bi are promoted
as follows. For every non-empty bunch Bi , add a new vertex bi and an edge (v(B), bi). For
every leaf � ∈L(Q) hanging from a vertex in Bi , we create a leaf �′ ∈L(Q′) that hangs
from bi . Weights are assigned as follows: (a) w(v(B), b0) = 0, (b) w(v(B), bi) ← 2i , if
i > 0, and (c) w(bi, �

′)← w(p(�), �), for a leaf � hanging from a vertex in Bi .
The mapping � maps the vertices V (Q) to V (Q′) as follows. The root of Q is mapped

to the root of Q′. For a branch B, all the vertices in Bi are mapped to the vertex bi . Every
leaf � ∈L(Q) is mapped to its counterpart �′ ∈L(Q).

4.3. The transformation

The height reducing transformation proceeds as follows. If r is a leaf, then it returns a
copy of Tr . Otherwise, an �-decomposition Q is computed. A height 3 subtree Q′ is created
from Q. The transformation is then applied recursively to the subtrees rooted at the leaves
of Q and they are attached appropriately to Q′. The mapping � is defined in every step of
the recursion as described above.

4.4. Analysis of the height reducing transformation

Let T ′ denote the tree resulting when the height reducing transformation is applied to
the tree T. In this section we prove that h(T ′) is O(log� n) and that T ′ is an O(�)-faithful
representation of T.

Consider a single promotion step applied to an �-decomposition Q ⊆ T . Promotion
substitutes Q by a tree Q′ of depth 3. It follows that the height h(n) of a reduced tree with
n terminals satisfies the recurrence h(n)�3+ h(n/�). This yields the following claim.

Claim 4.3. h(T ′)�3 · log� n.

The following proves the faithfulness of the height reducing transformation.

Claim 4.4. T ′ is an O(�)-faithful representation of T.

Proof. Let Q1, Q2, . . . , Qk ⊆ T denote the sequence of �-decompositions computed
during the height reduction transformation. By construction, the edge sets of the subtrees
in this sequence partition the edge set of T. Let Q′i denote the height-3 subtree of T ′ that is
used to promote Qi . By definition, the edge sets of {Q′i}i also partition the edge set of T ′
into disjoint parts. The transformation is local in the sense that �(V (Qi))= V (Q′i).

We say that a vertex v ∈ V (T) is a border point if it belongs to more than one subtree
Qi . Note that v is a border point iff it is a light leaf in one Qi and a root of another Qj .

Consider a set of vertices S ⊆ V (T). We may assume that S contains all the border points
in T [S]. Namely, we add all border points in T [S] to S, and this does not affect T [S]. Let

30 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

Si = S ∩ V (Qi), S′ = �(S), and S′i = �(Si). It follows that

wT (T [S])=
k∑

i=1

wQi
(Qi[Si]),

and

wT ′(T
′[S′])=

k∑
i=1

wQ′i (Q
′
i[S′i]).

The above equalities hold if S′ ⊆ �(V (T)) and S = �−1(S′). Hence, it suffices to prove
that Q′i is an O(�)-faithful representation of Qi , for every 1� i�k.

For this purpose we consider a single �-decomposition Q rooted at r and its height-3
substitute Q′. The main issue in proving that Q′ is an O(�)-faithful representation of Q
is that we have a separate subtree in Q′ for every branch in Q. This means that if there
are several branches “below” an edge e, then w(e) is counted multiple times. Luckily, the
number of branches is O(�), so the increase in weight can be bounded by O(�). However,
we also have multiple counting within each branch since bunches are connected separately.
Here we utilize the fact that weights of edges (v(B), bi) increase exponentially with i, and
hence their sum is dominated by the heaviest edge. We now provide a rigorous proof.

Consider a single branch B. We use the notation used in the description of the promotion
of bunches along a single branch. Let B+ denote B together with the light leaves hanging
from it. We focus now on SB = S ∩B+ and S′B =�(SB). Assume that SB is not empty (and
therefore S′B is also not empty). We claim that

wQ(Q[SB])�wQ′(Q
′[S′B])�4 · wQ(Q[SB]). (5)

Let u ∈ B denote the “deepest” vertex in Q[SB] and let v be start vertex of B. The subtree
Q[SB] consists of three types of edges: (i) edges along the path from the root r to v, (ii)
edges along the path from v to u, and (iii) edges from vertices in B to light leaves in B+.
We therefore rewrite wQ(Q[SB]) as follows:

wQ(Q[SB])= wQ(path(r, v))+ wQ(path(v, u))+
∑

�∈SB∩L(B+)

wQ(p(�), �). (6)

Let i denote the index of the bunch that u belongs to (i.e., u ∈ Bi). The subtree Q′[S′B]
consists of three types of edges: (i) the edge (r ′, v(B)) whose weight equals wQ(path(r, v)),
(ii) edges (v(B), bj) whose weight is 2j , and (iii) edges from vertices in bunch vertices
bj to leaves. We know that bi ∈ Q′[S′B] since u ∈ Bi . Hence, edges of the second type
contribute at least 2i . The bunch vertices bj in Q′[S′B] are a subset of {b1, . . . , bi}. Hence,
the edges of the second type contribute at most

∑i
j=12j . It follows that

wQ′(Q
′[S′B])�wQ(path(r, v(B)))+

i∑
j=1

2j +
∑

�′∈S′B∩�(L(B+))

wQ′(p(�′), �′), (7)

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 31

wQ′(Q
′[S′B])�wQ(path(r, v(B)))+ 2i +

∑
�′∈S′B∩�(L(B+))

wQ′(p(�′), �′). (8)

Note that the contribution of edges of the third type in Q[SB] and Q′[S′B] is identical. It
follows that the only difference between wQ(Q[SB]) and the bounds on wQ′(Q′[S′B]) in the
rewriting above is in the middle terms. Since u ∈ Bi , it follows that 2i−1 �wQ(path(v, u))

<2i , and Eq. (5) follows.
We are now ready to complete the proof of the O(�)-faithfulness of Q′. Since each branch

B is mapped to a separate subtree in Q′, it follows that

wQ′(Q
′[S′])=

∑
B

wQ′(Q
′[S′B]). (9)

By Eq. (5), the term
∑

BwQ′(Q′[S′B]) is bounded by 4 ·∑BwQ(Q[SB]). Since there are
at most (2� − 1) branches, it follows that

∑
BwQ′(Q′[S′B]) = O(�) · maxB{wQ(Q[SB])}.

However, maxB{wQ(Q[SB])}�wQ(Q[S]). It follows that

wQ′(Q
′[S′])�O(�) · wQ(Q[S]).

This completes the first part of the proof.
To prove the second part, we consider a set of terminals S′ ⊆ �(V (Q)) and define

S = �−1(S′). We need to show that

wQ(Q[S])�w(Q′[S′]).
By Eqs. (9) and (5), it follows that

wQ′(Q
′[S′])�

∑
B

wQ(Q[SB]).

However,
∑

BwQ(Q[SB])�wQ(Q[S]), and the claim follows. �

5. Degree reducing transformation

In this section, we present a degree reducing transformation that proves Claim 2.5. Given
a rooted tree T and an integer ��3, the transformation produces a 1-faithful representation

(T) of T. The rooted tree
(T) satisfies: (a) each vertex in
(T) has at most � children,
and (b) the height of
(T) is at most h(T)+ �log�/2 n�.

Given a tree T rooted at u and a parameter �, the tree
(T) is constructed recursively
as follows. If u is a leaf, then the algorithm returns u. Otherwise, the subtree induced by
the edges between u and its children is locally transformed as follows. Let v1, v2, . . . , vk

denote the children of u.

1. The �-heavy children vi of u (i.e., such that nvi
�nu/�) are not changed; the edges (u, vi)

are kept and their weight is not modified.
2. The �-light children of u are grouped arbitrarily into minimal bunches such that each

bunch (except perhaps for the last) is �-heavy. Note that the number of leaves in each

32 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

bunch (except perhaps for the last bunch) is in the interval [nu/�, 2nu/�). For every
bunch B, a new vertex b is created. An edge (u, b) is added as well as edges between b
and the children of u in B. The edge weights are set as follows: (a) w(u, b) ← 0, and
(b) w(b, vi)← w(u, vi).

After the local transformation, let v′1, v′2, . . . , v′j be the new children of u. Some of these
children are the original children and some are the new vertices introduced in the bunching.
The tree
(T) is obtained by recursively processing the subtrees Tv′i , for 1� i�j , in essence
replacing Tv′i by
(Tv′i). Note that after processing, the number of children of u is at most
� because the subtrees {Tv′i }i partition the vertices of V (Tu) − {u} and each tree except
perhaps one is �-heavy. The recursion is applied to each subtree Tv′i , and hence
(T) will
satisfy the degree requirement, as claimed. The 1-faithfulness of
(T) follows from the fact
that the “shared” edges (u, b), which were created for bunching together �-light children
of u, have zero weight.

We now bound the height of
(T). Given a tree of height h and n vertices let �(h, n) be
the height of the tree that results when the above procedure is applied. From the recursive
procedure, we have that h(
(T)) = 1 + maxj

i=1h(
(Tv′i)). If v′i corresponds to a �-heavy
child of u, then h(Tv′i)�h(T) − 1 and n(Tv′i)�n. If v′i is formed by bunching together
�-light children of u then nv′i < 2nu/� and h(Tv′i)�h(T). Therefore �(h, n) satisfies the
following recurrence:

�(h, n)�
{

0 if h= 0,

1+max{�(h− 1, n), �(h,
 2n
� �}) otherwise.

It follows that the height of
(T) is bounded by h(T)+
log�/2 n�, as required.

6. Conclusions

We conclude the paper with a few remarks.
An approximation algorithm for the covering Steiner problem on trees: The covering

Steiner problem generalizes the group Steiner problem; in addition to the graph and groups
we are given an integer demand di for every group gi and the goal is to cover, for each i,
at least di terminals from gi . In the 1

2 -group Steiner problem the input is the same as in
the group Steiner problem, but the goal is to compute a minimum-weight tree containing a
terminal from at least half the groups. Poly-logarithmic approximation algorithms for the
covering Steiner problem are given in [19,20] and these algorithms rely on solving an LP
relaxation for the problem. In [10] a simple randomized procedure is applied to show that
a
 ratio approximation for the 1

2 -group Steiner problem can be used to approximate the
covering Steiner problem within
 log(

∑
idi). Our algorithm for the group Steiner problem

on trees can be used to derive an O((log n)1+�) approximation algorithm for the 1
2 -group

Steiner problem on trees and hence, O(log2+� n) ratio algorithm for the covering Steiner
problem on trees. It can also be used to obtain an O(log3+� n) ratio for the covering Steiner
problem on graphs, using [11]. Thus we obtain an algorithm that does not rely on solving
linear programs.

C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34 33

On improving the log2 n ratio: Our algorithm can be modified to give an O(log2 n/

log log n) ratio algorithm for the group Steiner problem on trees which would slightly
improve upon the best known ratio [14,25]. The main idea is to guess all the minimally
log n-heavy vertices in the optimum solution. We note, however, that the algorithm would
run in quasi-polynomial time. One should contrast this result with the recent �(log2−� n)

hardness of approximation for this problem [16] where � > 0 is any fixed constant. The
hardness of approximation does not preclude a polynomial time algorithm that achieves an
O(log2 n/ log log n) ratio.

Currently the only way to get a poly-logarithmic approximation for the group Steiner
problem on graphs is to first reduce it to the tree case. This reduction incurs a logarithmic
factor in the approximation ratio. Is it possible to avoid this reduction and work directly
with graphs? This would improve the ratio by a logarithmic factor.

Directed Steiner tree problem: Currently there is no poly-logarithmic approximation ratio
for the directed Steiner tree problem that runs in polynomial time (the algorithm in [6] runs
in quasi-polynomial time). Geometric search and height reduction can be applied to directed
acyclic graphs (DAGs). However, there is no degree reducing transformation for DAGs that
has the same properties as those for trees. We believe that with some more sophisticated
ideas, the greedy algorithm can be adapted to give a polynomial time poly-logarithmic
approximation for the directed Steiner tree problem.

Height reduction: The height reducing transformation presented in this paper loses only a
constant factor to reduce the height of the tree to O(log n). On the other hand, the reduction
procedure of Zelikovsky [24,17] loses an �(log n) factor to achieve a similar reduction. The
analysis in [6] relies on height reduction and hence it might appear that a logarithmic factor
can be saved by using the transformation from this paper. However, the transformation in
this paper requires an explicit tree and does not seem to be adequate for the algorithm and
analysis in [6].

Acknowledgements

Chandra Chekuri thanks Moses Charikar for useful discussions, in particular on the
degree reducing transform. We thank the anonymous referees for extensive comments and
suggestions that improved the presentation of the paper.

References

[1] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, Proceedings of FOCS,
1996, pp. 93–184.

[2] Y. Bartal, On approximating arbitrary metrics by tree metrics, Proceedings of STOC, 1998, pp. 161–168.
[3] Y. Bartal, M. Charikar, D. Raz, Approximating min-sum k-clustering in metric spaces, Proceedings of STOC,

2001, pp. 11–20.
[4] C.D. Bateman, C.S. Helvig, G. Robins, A. Zelikovsky, Provably good routing tree construction with multi-port

terminals, Proceedings of ACM/SIGDA International Symposium on Physical Design, 1997, pp. 96–102.
[5] M.M. Bern, P. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform. Process. Lett. 32 (1989)

171–176.
[6] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, M. Li, Approximation algorithms for directed

Steiner problems, J. Algorithms 33 (1999) 73–91.

34 C. Chekuri et al. / Discrete Applied Mathematics 154 (2006) 15–34

[7] M. Charikar, C. Chekuri, A. Goel, S. Guha, Rounding via trees: deterministic approximation algorithms for
group Steiner trees and k-median, Proceedings of STOC, 1998, pp. 114–123.

[8] M. Charikar, C. Chekuri, A. Goel, S. Guha, S. Plotkin, Approximating a finite metric by small number of
trees, Proceedings of FOCS, 1998, pp. 379–388.

[9] G. Even, G. Kortsarz, An approximation algorithm for the Group Steiner Problem, Proceedings of SODA,
2002, pp. 49–58.

[10] G. Even, G. Kortsarz, W. Slany, On network design Problems: fixed cost flows and the covering steiner
Problem, Proceedings of SWAT, 2002, pp. 318–327.

[11] J. Fakcharoenphol, S. Rao, K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics,
Proceedings of STOC, 2003, pp. 448–455.

[12] U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998) 634–652.
[13] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.

Freeman and Company, 1979.
[14] N. Garg, G. Konjevod, R. Ravi, A polylogarithmic approximation algorithm for the Group Steiner tree

problem, J. Algorithms 37 (2000) 66–84 preliminary version in Proceedings of SODA, 1998 pp. 253–259.
[15] E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srinivasan, N. Wang, Integrality ratio for group Steiner trees

and directed Steiner trees, Proceedings of SODA, 2003, pp. 275–284.
[16] E. Halperin, R. Krauthgamer, Polylogarithmic in approximability, Proceedings of STOC, 2003, pp. 585–594.
[17] C.H. Helvig, G. Robins, A. Zelikovsky, Improved approximation scheme for the group Steiner problem,

Networks 37 (1) (2001) 8–20.
[19] G. Konjevod, R. Ravi, An approximation algorithm for the covering Steiner problem, Proceedings of SODA,

2000, pp. 338–334.
[20] G. Konjevod, R. Ravi, A. Srinivasan, Approximation algorithms for the covering Steiner problem, Random

Structures and Algorithms 20 (2002) 465–482.
[21] G. Kortsarz, D. Peleg, Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93 (1999)

265–285.
[22] R. Raz, S. Safra, A sub-constant error-probability low-degree test and a sub-constant error-probability PCP

characterization of NP, Proceedings of STOC, 1997, pp. 475–484.
[23] G. Reich, P. Widmayer, Beyond Steiner’s problem: a VLSI oriented generalization, Proceedings of Graph-

Theoretic Concepts in Computer Science (WG-89), Lecture Notes in Computer Science, vol. 411, 1990,
pp. 196–210.

[24] A. Zelikovsky, A series of approximation algorithms for the acyclic directed Steiner tree problem,
Algorithmica 18 (1997) 99–110.

[25] L. Zosin, S. Khuller, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59–63.

