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Abstract

In the generalized connectivity problem, we are given an edge-weighted graph G = (V,E)
and a collection D = {(S1, T1), . . . , (Sk, Tk)} of distinct demands; each demand (Si, Ti) is a
pair of disjoint vertex subsets. We say that a subgraph F of G connects a demand (Si, Ti)
when it contains a path with one endpoint in Si and the other in Ti. The goal is to identify a
minimum weight subgraph that connects all demands in D. Alon et al. (SODA ’04) introduced
this problem to study online network formation settings and showed that it captures some well-
studied problems such as Steiner forest, facility location with non-metric costs, tree multicast,
and group Steiner tree. Finding a non-trivial approximation ratio for generalized connectivity
was left as an open problem. We describe the first poly-logarithmic approximation algorithm
for generalized connectivity that has a performance guarantee of O(log2 n log2 k). Here, n is the
number of vertices in G and k is the number of demands. We also prove that the cut-covering
relaxation of this problem has an O(log3 n log2 k) integrality gap.

Building upon the results for generalized connectivity, we obtain improved approximation
algorithms for two problems that contain generalized connectivity as a special case. For the
directed Steiner network problem, we obtain an O(k1/2+ε) approximation, which improves on
the currently best performance guarantee of Õ(k2/3) due to Charikar et al. (SODA ’98). For
the set connector problem, recently introduced by Fukunaga and Nagamochi (IPCO ’07), we
present a poly-logarithmic approximation; this result improves on the previously known ratio
which can be Ω(n) in the worst case.
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1 Introduction

Network design problems have received a great deal of attention in the computer science and
operations research communities, as they play an instrumental role in combinatorial optimization
and algorithm engineering. In this paper we investigate the complexity of some network design
problems that seek to find a minimum-cost subgraph connecting a collection of vertex sets. These
problems generalize some previously studied network design problems and help in demarcating the
boundary of tractability between the easier problems in undirected graphs and the more difficult
ones in directed graphs. Interestingly, the algorithm we develop for an undirected set connectivity
problem can be used to improve the approximation ratio for a more general directed connectivity
problem. Our algorithms also illustrate the junction-scheme technique for designing approximation
algorithms.

1.1 The Underlying Setting

In the generalized connectivity problem, we are given an edge-weighted graph G = (V, E) and
a collection D = {(S1, T1), . . . , (Sk, Tk)} of distinct demands, each of which comprises a pair of
disjoint vertex sets. We say that a subgraph F of G connects a demand (Si, Ti) if it contains a path
with one endpoint in Si and the other in Ti. With this definition in mind, the goal is to identify a
minimum weight subgraph that connects all demands in D.

Alon et al. [2] introduced the generalized connectivity problem to study online network formation
settings, and showed that it captures several well-studied problems, such as Steiner forest, non-
metric facility location, tree multicast, and group Steiner tree. Since the group Steiner tree problem
is a special case, known lower bounds for it translate to lower bounds for generalized connectivity.
In particular, Halperin and Krauthgamer [16] show that unless NP ⊆ ZTIME(npolylog(n)), there is
no O(log2−ε n) approximation for group Steiner tree. Further, Halperin et al. [15] prove an Ω(log2 k)
lower bound on the integrality gap of a natural LP-relaxation for group Steiner tree. The above
two lower bounds extend identically to generalized connectivity.

On the positive side, Alon et al. [2] devised a multiplicative-update online algorithm for com-
puting log-competitive fractional solutions to generalized connectivity. They also propose online
rounding procedures for the previously-mentioned special cases by using problem-specific argu-
ments. However, the following problem was left open in their work: Is there a poly-logarithmic
approximation for generalized connectivity in the offline setting?

New results: We present the first poly-logarithmic approximation for generalized connectivity, at-
taining a performance guarantee of O(log2 n log2 k). We also prove that the cut-covering relaxation
of this problem has an O(log3 n log2 k) integrality gap. Section 2 has the details of these results.

Building upon the above-mentioned findings for generalized connectivity, we obtain improved
approximation algorithms for two related problems. We proceed by providing a succinct description
of these results.

1.2 Application 1: The Directed Steiner Network Problem

An instance of the directed Steiner network problem consists of an arc-weighted directed graph
G = (V,E) and a collection of distinct source-sink pairs, to which we refer as (s1, t1), . . . , (sk, tk).
The objective is to construct a minimum weight subgraph that connects all input pairs, where
(si, ti) is said to be connected by F when the latter contains a directed path from si to ti.
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The analogous problem in undirected graphs, also referred to as the Steiner forest problem,
can be approximated to within a 2(1 − 1/k) factor [1, 12, 13]. The directed graph problem is,
however, significantly harder; Dodis and Khanna [8] proved that directed Steiner network cannot be
approximated to within a factor of O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ TIME(npolylog(n)).
In terms of upper bounds, Charikar et al. [5] gave an Õ(k2/3)-approximation algorithm. Their
paper concludes by posing two open problems:

1. Can the Õ(k2/3) guarantee be improved?

2. Is the analysis of the algorithm in [5] tight? The known lower bound on the performance was
Ω(
√

k).

New results: In Section 3, we present a polynomial-time algorithm that approximates directed
Steiner network to within a factor of O(k1/2+ε), for any fixed ε > 0. We also prove a lower bound
of Ω(k2/3/ log k) on the ratio achieved by the algorithm of Charikar et al. [5], thereby showing that
their analysis is essentially tight.

1.3 Application 2: The Set Connector Problem

In order to describe the problem in question we introduce a few definitions. Given an undirected
graph G = (V, E), a division is a family V = {X1, . . . , Xh} of pairwise-disjoint vertex subsets. For
a set of edges F ⊆ E, let F/V be the multigraph obtained from (V, F ) by coalescing each subset
Xi ∈ V into a single vertex (henceforth, V-terminal). Finally, we say that F ⊆ E weakly connects
V if all V-terminals reside in the same connected component of F/V.

In the set connector problem, we are given an edge-weighted graph G = (V, E) and a collection
V1, . . . ,Vm of distinct divisions. The objective is to detect a minimum weight edge set F ⊆ E
that simultaneously weakly connects all input divisions. Generalized connectivity can be viewed
as a special case of set connector in which each division consists of two disjoint vertex sets. It is
important to mention that the seemingly obvious reduction in the opposite direction, where each
division Vi = {X1, . . . , Xh} is replaced by a collection of demands {(Xr, Xs) : 1 ≤ r < s ≤ h}, is
incorrect (see Section 4).

The set connector problem has recently been investigated by Fukunaga and Nagamochi [10],
whose main contribution in this context was a fractional packing theorem, leading to an approxi-
mation guarantee of 2(α − 1) via LP-rounding methods, where α = maxi(

∑
X∈Vi

|X|). However,
this result does not ensure a reasonable upper bound for all possible instances, as α may very well
be Ω(n).

New results: In Section 4, we present the first poly-logarithmic approximation for set connector,
showing that a performance guarantee of O(log2 n log2(mn)) can be achieved in polynomial time.
We also prove that a natural LP-relaxation of this problem has an O(log3 n log2(mn)) integrality
gap.

1.4 Techniques

Our results are based on a simple but effective technique that has recently been highlighted in the
context of the work on the (non-uniform) buy-at-bulk network design problem [14, 6, 7]. Roughly
speaking, we approximately reduce a multi-commodity connectivity problem to the density version
of its single-source variant via the so-called junction-scheme. As single-source problems tend to be

2



easier, this approach can lead to an algorithm for the multi-commodity problem. We informally
describe the junction-scheme approach in approximation algorithms.

The junction-scheme. Given a connectivity problem that asks to link a collection of vertex pairs
(or sets), a subgraph F of G is called a partial solution if it is feasible for a non-empty subset of
the input pairs; the density of F is defined as the ratio between its cost and the number of pairs
it connects. An α-approximation algorithm for finding a minimum-density partial solution can be
straightforwardly used in a greedy iterative fashion [17, 18, 19] to find a solution for the original
problem; the approximation ratio one obtains is O(α log k) where k is the number of pairs to be
connected. To find an approximation for the minimum-density partial solution, the first step is to
establish the existence of an “easy-to-compute” partial solution providing near-optimal density. In
particular, for the junction-scheme, these partial solutions are required to have a simple structure:
There is a junction vertex v through which the pairs in the partial solution are connected. Assuming
that such a solution exists and also assuming knowledge of v, the second step consists of efficiently
finding a subset of the given pairs, which when connected via v, leads to a partial solution of good
density.

In general, this second step is also a challenging problem. Nevertheless, this problem is related
to the single-source variant of the original problem since the vertices in the pairs are now being
connected to the junction vertex v. Finding an approximately good subset of the pairs to connect
via v is possible when the single-source problem admits an approximation based on rounding a
natural linear programming relaxation; a bucketing-and-scaling mechanism allows one to do this at
the expense of additional poly-logarithmic factors in the approximation (see, for example, [6, 7]).
We remark that it is typically easier to establish the existence of a junction-type solution by
reasoning about an optimal integral solution. Therefore, an approximation algorithm obtained via
the junction-scheme does not necessarily lead to a corresponding upper bound on the integrality
gap of an LP relaxation for the problem.

Problem-specific adaptations. For the generalized connectivity problem, it is easy to establish
the existence of good-density junction-type solutions. In this case, the single-source variant happens
to coincide with group Steiner tree, allowing us to employ known algorithms for rounding fractional
solutions to its linear formulation [11, 15, 21]. With respect to directed Steiner network, proving
the existence of good junction subgraphs is far from being enough, as its single-source variant
corresponds to directed Steiner tree [5, 16, 20]; unfortunately, no poly-logarithmic integrality gap
is currently known for the natural LP-relaxation of directed Steiner tree. Nevertheless, we take
advantage of several structural characteristics, and reduce the minimum-density junction problem
on directed graphs to generalized connectivity on undirected trees. Finally, as previously noted,
set connector does not admit a näıve reduction to generalized connectivity, in spite of appearance.
Therefore, to approximate the former problem, we present a refined reduction.

2 A Poly-Logarithmic Approximation for Generalized Connectivity

In what follows, we present a poly-logarithmic approximation for the generalized connectivity prob-
lem. We use the junction-scheme that is described in Section 1, and hence the focus is on con-
structing partial solutions of near-optimal “density”; an algorithm of this nature may be repeatedly
applied in greedy fashion to approximate the original problem, incurring an additional logarithmic
factor in the performance guarantee. The resulting approximation is with respect to an optimum
integral solution. However, we also establish a poly-logarithmic upper bound on the integrality gap
of a cut-based LP-relaxation.
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2.1 Preliminaries

We refer to each vertex in
⋃k

i=1(Si ∪ Ti) as a terminal. When a subgraph F connects only a subset
of demands, we call it a partial solution. In this case, let D(F ) denote the set of demands in D
connected by F , and let c(F ) =

∑
e∈F c(e) denote its cost. Finally, the density of F is given by

density(F ) = c(F )/|D(F )|, i.e., the ratio between its cost and the number of demands it connects.

Relating between density and accumulated cost. Prior to formally defining the minimum
density version of generalized connectivity, let us make some simplifications. By a simple averaging
argument, if a forest F in G consists of several connected components, there must be some tree T
in F whose density is at most density(F ). Moreover, given an algorithm for constructing a dense
solution that contains a predetermined root vertex r, we can handle the unrooted density variant
as well by testing all vertices as possible roots. In terms of the junction-scheme for generalized
connectivity, this argument proves the next claim.

Observation 2.1. For some r ∈ V , there exists an r-rooted tree whose density is at most OPT/k,
where OPT denotes the cost of an optimal (integral) solution.

Consequently, we define the following problem.

Definition 2.2. An instance of minimum density generalized connectivity (MDGC) consists of an
edge-weighted graph G = (V, E), a collection of demands D = {(S1, T1), . . . , (Sk, Tk)}, and a root
vertex r. The objective is to identify a minimum density r-rooted tree.

In the remainder of this section, we focus our attention on approximating MDGC, rather than
directly dealing with the minimum cost version, for two reasons. First, an α-approximation for
the former problem immediately leads to a performance guarantee of O(α log k) for generalized
connectivity, via a standard repeated covering procedure (see, for instance, [17, 18, 19]). Second,
the minimum density version will considerably simplify the analysis of other applications studied
in this paper.

2.2 Approximating the Density Version

Suppose we knew in advance the subset of demands (Si1 , Ti1), . . . , (Sih , Tih) connected by a mini-
mum density r-rooted tree. Then, the computational task in question would be to find a low-cost
tree connecting the groups Si1 , Ti1 , . . . , Sih , Tih to r; this is essentially an instance of the group
Steiner tree problem. However, we obviously do not have such prior knowledge. To work around
this difficulty, we formulate an LP-relaxation which is derived from that of group Steiner tree, and
employ a bucketing-and-scaling mechanism to round its optimal solution.

LP-relaxation. For each demand (Si, Ti), we set up a variable yi that indicates whether both Si

and Ti are connected to r. In addition, for each edge e ∈ E, there is a corresponding variable xe,
indicating whether e is picked. Given a yi value for a demand (Si, Ti), the edges variables should
model the constraint that both Si and Ti are connected to the root r to the extent of yi. Hence,
for each cut (U, V \U) that separates r from some Si or Ti, we require that

∑
e∈δ(U) xe ≥ yi, where

δ(U) denotes the set of edges crossing (U, V \ U). We can linearize the original objective function
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∑
e c(e)xe/

∑
i yi by normalizing

∑
i yi to 1. This discussion leads to the following linear program:

min
∑

e∈E

c(e)xe (LPD)

s.t.
k∑

i=1

yi = 1

∑

e∈δ(U)

xe ≥ yi

∀U ⊆ V ∀ 1 ≤ i ≤ k such that:
(1) r ∈ U ; and
(2) U ∩ Si = ∅ or U ∩ Ti = ∅

xe, yi ∈ [0, 1] ∀ e ∈ E, 1 ≤ i ≤ k

Note that although LPD has exponentially many constraints, it admits a polynomial-time separa-
tion oracle1; therefore, we can efficiently compute an optimal fractional solution (x∗, y∗) using the
Ellipsoid method. Alternatively, one can formulate an equivalent, yet polynomial size, linear pro-
gram by utilizing flow-like variables (see, e.g., [11, 21]). Letting F ∗ be a minimum density solution
to the given instance, it is not difficult to verify that OPT(LPD) provides a lower bound on the
optimal density, that is,

∑
e∈E c(e)x∗e ≤ density(F ∗). To validate this claim, note that LPD has a

feasible solution of value density(F ∗): Set yi = 1/|D(F ∗)| if (si, ti) ∈ D(F ∗) and yi = 0 otherwise;
also, set xe = 1/|D(F ∗)| if e ∈ F ∗ and xe = 0 otherwise.

The bucketing-and-scaling reduction. Since (x∗, y∗) does not necessarily set y∗i ∈ {0, 1}, even
with proper scaling, this fractional solution does not explicitly allow us to identify which pairs
should be connected. To this end, each demand (Si, Ti) ∈ D with y∗i ≥ 1/(2k) is placed in one of
` = dlog2(2k)e classes, depending on its y∗i value. More specifically, for every 1 ≤ j ≤ `, we define
a class Ij = {i : y∗i ∈ (2−j , 2−j+1]}. Since the overall contribution of demands with y∗i < 1/(2k) to∑k

i=1 y∗i can be at most 1/2, a simple averaging argument implies that if Ij∗ is the class over which
the sum of y∗i ’s is maximized, then

∑
i∈Ij∗ y∗i ≥ 1/(2`). In addition, as

∑
i∈Ij∗ y∗i ≤ |I∗j | · 2−j∗+1, it

also follows that |Ij∗ | ≥ 2j∗/(4`).
Using Ij∗ we create a group Steiner tree instance (henceforth, Π) in G; in this instance, the

groups are
⋃

i∈Ij∗{Si, Ti}, and the root r is to be connected to at least one representative of each
terminal group. Now consider the natural LP-relaxation of this instance, formally defined as follows:

min
∑

e∈E

c(e)xe (LPΠ)

s.t.
∑

e∈δ(U)

xe ≥ 1
∀U ⊆ V such that ∃ i ∈ Ij∗ :
(1) r ∈ U ; and
(2) U ∩ Si = ∅ or U ∩ Ti = ∅

xe ∈ [0, 1] ∀ e ∈ E

Note that the main constraint in LPΠ is nearly identical to the one in LPD, with an additional
restriction stating that yi = 1 if i ∈ Ij∗ , and yi = 0 otherwise. With this observation in mind,
it is easy to verify that x̂ = min{2j∗x∗, 1} constitutes a feasible solution to LPΠ, as y∗i ≥ 2−j∗

for every i ∈ Ij∗ . Furthermore, the objective function value of x̂ with respect to LPΠ is at most
2j∗ ∑

e∈E c(e)x∗e.

Putting it all together. At this point in time, we can round the fractional solution x̂ using the
procedure of Garg, Konjevod and Ravi [11]. Their rounding procedure proves that the integrality

1For this purpose, we can interpret the variables {xe : e ∈ E} as edge costs, and check whether there is some
demand (Si, Ti) for which either the minimum r-Si cut or the minimum r-Ti cut has cost strictly less than yi.
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gap of the cut-based LP for the group Steiner problem is O(log2 n log k), which suffices to prove a
bound of O(log2 n log2 k) for MDGC. In what follows, we argue that one of these logarithmic factors
can be saved. Garg et al. show, in fact, that for any fixed constant c < 1, there is an integral solution
that connects at least ck groups to the root and the cost of this solution is O(log2 n) times the
LP cost. Here, k is the number of groups in the initial instance. Moreover, such a solution can be
obtained in polynomial time from the given LP solution. We use this stronger property to obtain a
tree F that connects r to representatives of at least 3|Ij∗ |/2 groups in

⋃
i∈Ij∗{Si, Ti} such that the

cost of F is O(log2 n)
∑

e∈E c(e)x̂e = O(2j∗ log2 n)
∑

e∈E c(e)x∗e. Recall that the number of groups
in Π is 2|Ij∗ |. Since r is connected to at least 3|Ij∗ |/2 groups in

⋃
i∈Ij∗{Si, Ti}, the number of

demands (Si, Ti) ∈ Ij∗ for which r is connected to both Si and Ti is at least |Ij∗ |/2, implying that
|D(F )| ≥ |Ij∗ |/2 ≥ 2j∗/(8`). Since ` = dlog2(2k)e, we have

density(F ) =
O(2j∗ log2 n)

∑
e∈E c(e)x∗e

2j∗/(8`)
= O(log2 n log k) · density(F ∗) ,

which leads to the following results.

Lemma 2.3. MDGC can be approximated to within a factor of O(log2 n log k).

Theorem 2.4. There is a polynomial-time algorithm that approximates generalized connectivity to
within a factor of O(log2 n log2 k).

2.3 Integrality Gap

As previously mentioned, the junction-scheme does not automatically yield an integrality gap result
in multi-commodity settings, even when it depends upon an LP-relaxation of the corresponding
single-source problem. The primary bottleneck is our existence proof of low-density rooted trees,
stated in Observation 2.1, which compares the densities of integral solutions. In what follows, we
take advantage of a reduction to instances in which the input graph is a tree, and prove that
a natural LP-relaxation of generalized connectivity has a poly-logarithmic integrality gap. The
resulting upper bound is worse than the one stated in Theorem 2.4 by a logarithmic factor.

LP-relaxation. We consider the natural cut relaxation, in the spirit of Section 2.2, with a variable
xe for each edge e ∈ E, and a crossing constraint for each cut (U, V \ U) that separates a demand
(Si, Ti).

min
∑

e∈E

c(e)xe (LPGC)

s.t.
∑

e∈δ(U)

xe ≥ 1 ∀U ⊆ V such that ∃ i
Si ⊆ U and Ti ⊆ V \ U

xe ∈ [0, 1] ∀ e ∈ E

The remainder of this section is devoted to proving the next theorem.

Theorem 2.5. The integrality gap of LPGC is O(log3 n log2 k). Moreover, a corresponding integral
solution can be computed in polynomial time.

Integrality gap on rooted trees. We begin by arguing that, when the underlying graph is a
rooted tree of height h, the integrality gap of LPGC is O(min{h, log n} · h log2 k). For this purpose,
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consider a generalized connectivity instance on a tree H = (V, E) of height h. We can assume
without loss of generality that all terminals are at the leaves of H; for each terminal that is an
internal node add a dummy terminal to replace it and connect it with a zero-cost edge to the
original terminal.

Let x∗ be an optimal solution to LPGC, of value OPT(LPGC). We assign a level `(i) to each
demand (Si, Ti) as follows. Noting that x∗ supports a unit flow from Si to Ti, let us arbitrarily
fix such a flow. Since the underlying graph is a tree and all terminals are at the leaves, this flow
must travel upwards towards the root, turn at some vertex, and then travel downwards towards the
leaves. Let f j

i be the total Si-Ti flow that turns at level j of H. We remark that since
∑

j f j
i = 1

and there are only h levels, there must be a level j for which f j
i ≥ 1/h; we set `(i) to be such a

level. We assign the demand (Si, Ti) to level `(i).
Now let Hj = {Hj

1 , . . . , Hj
p} be the collection of vertex-disjoint subtrees rooted at level j of H,

with respective roots r1, . . . , rp. Let Dj
t be the restriction of level-j assigned demands to the tree

Hj
t ; in other words, if `(i) = j then (S′i, T

′
i ) ∈ Dj

t , where S′i and T ′i denote the vertex subsets of
Si and Ti that appear in Hj

t , respectively. We claim that there is an index 1 ≤ s ≤ p such that
OPT(LPD) ≤ h ·OPT(LPGC)/k for some rs-rooted MDGC instance on Hj

s with a demand set Dj
s.

For a demand (Si, Ti), let z(i, t) be the total Si-Ti flow routed in Hj
t , and let OPTj

t =
∑

e∈Hj
t
c(e)x∗e.

Since the subtrees at level j are disjoint,
∑

t

∑
i z(i, t) ≥ k/h whereas

∑
t OPTj

t ≤ OPT(LPGC).
Therefore, there is an index s such that OPTj

s/
∑

i z(i, s) ≤ h · OPT(LPGC)/k. We define a
candidate solution (x′, y′) to LPD on Hj

s by setting x′e = x∗e/
∑

i z(i, s) for each e ∈ Hj
s and

y′i = z(i, s)/
∑

i z(i, s) for each demand (Si, Ti). By construction, the entire Si-Ti flow in Hj
s goes

through the root rs, implying that (x′, y′) is indeed a feasible solution to LPD; in addition, our
scaling method ensures that

∑
e c(e)x′e ≤ h ·OPT(LPGC)/k, as desired.

Based on the above claim, in conjunction with a specialization of Lemma 2.3 to rooted trees2, we
can construct an rs-rooted tree F in Hj

s of density O(min{h, log n} · h log k) ·OPT(LPGC)/k. Note
that F is also a partial solution to the original generalized connectivity instance. Therefore, when
we discard all demands connected by F , the fractional solution x∗ remains feasible for the residual
problem. Using standard covering arguments, these findings establish the existence of an integral
solution of cost O(min{h, log n}) · h log2 k) ·OPT(LPGC), which proves the desired integrality gap.

Integrality gap on arbitrary graphs. We attain an upper bound for general graphs as follows.
A feasible LP solution on the input graph is transformed into a feasible solution on a rooted tree
obtained by probabilistically embedding the given metric into a distribution over dominating tree
metrics [3, 4, 9]. Consequently, an integrality gap of α on rooted trees translates to a gap of
O(α log n) on general graphs. The height of the resulting tree is guaranteed to be O(log ∆), where
∆ is the original aspect ratio, i.e., the ratio between the maximal and minimal edge costs. Standard
scaling tricks can be used to ensure that the aspect ratio in the original graph is bounded by a
polynomial in n, with a negligible increase in the objective function value. For example, we can pick
in advance all edges whose cost is at most OPT(LPGC)/n2, and discard all edges of cost greater
than n2 ·OPT(LPGC); since x∗e ≤ 1/n2 for each of the latter edges, feasibility can be restored when
the x∗e value of every remaining edge is scaled by a factor of 1 + 1/n2. This modification ensures
that the probabilistic embedding will produce O(log n)-height trees. We then apply the previously
obtained bound for rooted trees.

2In trees of height h, we save an additional logarithmic factor, by observing that the rounding method of Garg
et al. [11] connects a constant fraction of the input groups while incurring only an O(min{h, log n}) loss in the
performance guarantee.
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3 An O(k1/2+ε) Approximation for Directed Steiner Network

The main result of this section is a polynomial-time algorithm that approximates directed Steiner
network to within a factor of O(k1/2+ε), for any fixed ε > 0. Along the way, we demonstrate that our
analysis is essentially tight. We also prove a lower bound of Ω(k2/3/ log k) on the approximation
ratio achieved by the algorithm of Charikar et al. [5]. We remind the reader that an instance
of directed Steiner network consists of a directed graph G = (V, E), with non-negative arc costs
specified by c : E → R+, and a collection D = {(s1, t1), . . . , (sk, tk)} of distinct source-sink pairs.
The objective is to construct a minimum cost subgraph that connects all input pairs, where (si, ti) ∈
D is said to be connected by a given subgraph when the latter contains an si-ti path.

3.1 Junction Trees and their Density

In this section, we formally define the junction trees that are useful in our algorithm, prove the
existence of low-density junction trees, and suggest an approximation algorithm to find them. We
remark that the algorithm proposed by Charikar et al. [5] for the directed Steiner tree problem
can, in retrospect, be viewed as an application of the junction-scheme; the algorithm in [5] restricts
attention to junction-trees with a very simple structure (called bunches), the advantage being that
a bunch with near-optimal density can be easily computed in polynomial time. However, instead of
being interested in bunches, whose height is very limited, we focus our attention on junction-trees
of arbitrary height, which allows us to improve the upper bound on the guaranteed density.

Definitions and notation. For this purpose, an r-rooted junction tree J is defined as the union
of an in-tree Tin and an out-tree Tout, both rooted at r ∈ V (see Figure 1). It is worth pointing out
that the trees Tin and Tout are allowed to overlap in both nodes and arcs. Note that a sufficient
condition for J to connect a node pair (si, ti) ∈ D is that si ∈ Tin while ti ∈ Tout. Following
previously used notation, let D(J ) denote the set of source-sink pairs connected by J , and let
c(J ) =

∑
e∈J c(e) denote its cost. In addition, the density of J is given by c(J )/|D(J )|.

s1

s2

s6

s4

s5

s3

r t1

t2

t3

t4

t5

t6

Figure 1: A junction tree.

Bounding the density of junction trees. With the above definitions in mind, we say that a
junction tree J in G is ρ-optimal if density(J ) ≤ ρ · OPT/k, where OPT denotes the cost of an
optimal solution. In the following lemma, we establish the existence of

√
k-optimal junction trees;

this result is complemented by proving a coinciding lower bound, which is tight up to constant
multiplicative factors.

Lemma 3.1. A minimum density junction tree is
√

k-optimal.

Proof. Let H∗ be a minimum cost subgraph of G that connects all node pairs in D. In addition,
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for 1 ≤ i ≤ k, let pi be a directed si-ti path in H∗; when si and ti are connected by more than one
path, pi is arbitrarily picked. The proof proceeds by distinguishing between two cases:

1. There is a node r ∈ V that appears in at least
√

k of the paths p1, . . . , pk. In this case,
consider the junction tree J formed by the union of all paths in p1, . . . , pk passing through r
(technically, the union of these paths is not a junction tree, but it clearly contains one). Since
J is a subgraph of H∗, its cost is at most OPT. Therefore, by observing that J connects at
least

√
k pairs, we have density(J ) ≤ OPT/

√
k =

√
k ·OPT/k.

2. There is no such node. In particular, every arc of H∗ appears in at most
√

k of the paths
p1, . . . , pk. Hence, by creating

√
k copies of each arc, all node pairs can be connected via

arc-disjoint paths. Since the overall duplication cost is
√

k ·OPT, at least one of these paths
is associated with a cost of at most

√
k · OPT/k. This path constitutes a (trivial) junction

tree whose density is at most
√

k ·OPT/k.

Lemma 3.2. There are directed Steiner network instances in which every junction tree is Ω(
√

k)-
optimal.

Proof. Consider the following instance of directed Steiner network, schematically described in
Figure 2:

1. The input graph consists of four layers, with nodes x1, . . . , x√k in the first layer, u1, . . . , u√k
in the second, v1, . . . , v√k in the third, and y1, . . . , y√k in the fourth.

2. For every 1 ≤ i ≤
√

k, there are two
√

k-cost arcs, (xi, ui) and (vi, yi). In addition, every ui

is linked to all vj ’s by zero-cost arcs.

3. The collection of k distinct pairs to be connected is D = {(xi, yj) : 1 ≤ i, j ≤
√

k}.

x1

u1

p

k

x2

u2

p

k

xi

ui

p

k
p

k

xp

k

up

k

v1

y1

p

k

v2

y2

p

k

vi

y i

p

k
p

k

vp

k

yp

k

Figure 2: An example demonstrating that the density of any junction tree is Ω(
√

k) ·OPT/k.
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Note that the instance under consideration has a unique optimal solution, in which all arcs
must be picked. Since the overall cost is 2k, we have OPT/k = 2. Now let H be a minimum
density junction tree. Without loss of generality, we may assume that the root of H belongs to
{u1, . . . , u√k, v1, . . . , v√k}. Consequently, c(H) = (1 + |D(H)|)

√
k, implying that the density of H

is at least
√

k.

3.2 Finding Low-Density Junctions Trees

Overview. We had already observed that junction trees are strongly related to directed Steiner
trees [5, 16, 20]. In particular, identifying a low-density junction tree would have been rather
straightforward, should the natural LP-relaxation of directed Steiner tree had a reasonably small
integrality gap; unfortunately, Zosin and Khuller [21] demonstrated that the latter gap is Ω(

√
k). To

overcome this difficulty, given a fixed accuracy parameter ε > 0, we limit our attention to junction
trees of height 1/ε, while incurring an O(kε) penalty in the performance guarantee via a height
restriction lemma due to Zelikovsky [20]. We then reduce the problem of finding a low density
(1/ε)-height junction tree to MDGC (see Section 2.1), blowing up the final approximation ratio by
only logarithmic factors. In essence, the remainder of this section will be devoted to proving the
next lemma.

Lemma 3.3. For any fixed ε > 0, there is a polynomial-time algorithm that constructs a junction
tree J in G satisfying density(J ) = O(kε) · density(J ∗), where J ∗ is a minimum density junction
tree.

Preliminaries. For ease of presentation, it is convenient to assume that 1/ε is an integer. In
addition, we can assume without loss of generality that G is transitively closed. Finally, we may
assume that the root r of J ∗ is known in advance; otherwise, all nodes can be tested as potential
roots by means of exhaustive search.

Step 1: Layering. An `-layering of G = (V, E) is an operation that produces a directed acyclic
graph as follows. The newly formed node set consists of ` + 1 copies of V , to which we refer as
V0, . . . V`. For every 0 ≤ i ≤ `−1, two types of arcs are added from Vi to Vi+1: Regular and parallel.
Every arc (u, v) ∈ E induces a regular arc from the image of u in Vi to the image of v in Vi+1,
whose cost is identical to that of (u, v). On the other hand, for every v ∈ V , a zero-cost parallel
arc is added between the image of v in Vi and in Vi+1.

Having formally defined layering, we move on to assemble a directed acyclic graph D by unifying
a (1/ε)-layering D+ of G and a (1/ε)-layering D− of the graph obtained from G by reversing its arcs.
More precisely, assuming that D+ and D− consist of the node sets V +

0 , . . . , V +
1/ε and V −

0 , . . . , V −
1/ε,

respectively, the first layers of these graphs (i.e., V +
0 and V −

0 ) are identified as one layer, V0, while
other layers are kept separated, as shown in Figure 3. It is instructive to omit nodes from V0, V +

1/ε

and V −
1/ε as follows: Only r is left in V0; only sinks are left in V +

1/ε; and only sources are left in V −
1/ε.

The next claim is due to Zelikovsky [20, Thm. 2]; a rooted tree in a transitively closed graph can
be transformed into an `-level tree defined on the same set of nodes, while blowing up the overall
cost by no more than O(`k1/`). In this context, k denotes the number of leaves in the original tree.

Claim 3.4. There exists an r-rooted tree Tr in D that satisfies the following properties:

1. For every (si, ti) ∈ D(J ∗), Tr connects r to both si ∈ V −
1/ε and ti ∈ V +

1/ε.

2. c(Tr) = O(kε) · c(J ∗).
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r

V1
+

V2
+

V1/²
+

V1
¡

V2
¡

V
¡

1/² sources sinks

Figure 3: The directed acyclic graph D.

We remark that any r-rooted tree Tr in D can be efficiently translated to a junction tree J in
G such that c(J ) ≤ c(Tr), and such that D(J ) consists of all source-sink pairs (si, ti) for which
both si ∈ V −

1/ε and ti ∈ V +
1/ε are reachable from r in Tr.

Step 2: Path splitting. We proceed by creating an undirected tree T as follows. Consider the star
formed by constructing a collection of O(n1/ε) disjoint paths, one for each path in D connecting r
to a node in V +

1/ε ∪ V −
1/ε, and unifying their roots. We repeatedly merge common prefixes of these

paths, until every branching corresponds to an actual branching in D. Alternatively, one can also
provide a recursive definition:

1. When u ∈ V +
1/ε ∪ V −

1/ε, the resulting tree consists of the singleton vertex u.

2. When u ∈ V +
i , for some 0 ≤ i ≤ 1/ε− 1, we begin by recursively computing a fresh collection

of rooted trees, {Tv : v ∈ V +
i+1}. The root of each Tv is then joined to u by an edge whose

cost is equal to that of the arc (u, v) in D. The case u ∈ V −
i is handled analogously.

With the underlying tree T in place, we create an instance of MDGC by setting up a unique
demand (Si, Ti) for each node pair (si, ti) ∈ D. Specifically, since each source node si ∈ V −

1/ε has

just been duplicated O(n1/ε) times, its corresponding vertex set Si is defined to be the collection
of leaves in T that are duplicates of si. Similarly, the set Ti contains all duplicates of ti ∈ V +

1/ε.
Clearly, there is a one-to-one correspondence between r-rooted trees in D and T , namely, for each
tree Tr in D there is a matching tree T ′r in T of identical cost, such that T ′r connects r to both Si

and Ti if and only if Tr connects r to both si ∈ V −
1/ε and ti ∈ V +

1/ε.
Consequently, it remains to approximate an MDGC instance defined on a (1/ε)-height tree

spanning O(n1/ε) vertices. As a result of specializing Lemma 2.3 to rooted trees (see footnote on
page 7), such instances can be approximated to within a factor of O((1/ε) · log k). By combining
the latter observation with an additional O(kε) factor lost during our layering step, Lemma 3.3
follows.

Summary. Lemma 3.3, in conjunction with Lemma 3.1 and a standard repeated covering proce-
dure, immediately implies the main result of this section, formally stated in the following theorem.
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Theorem 3.5. The directed Steiner network problem can be approximated to within a factor of
O(k1/2+ε), for any fixed ε > 0.

Remark. The layering and path splitting ideas, combined with Zelikovsky’s height-reduction
lemma, give a reduction from the directed Steiner tree problem to the group Steiner problem.
This reduction leads to an O(`2k1/` log k) approximation in nO(`) time for the directed Steiner tree
problem and is an alternative to the greedy scheme in [5]. Although unpublished, this reduction
was known to several people.

3.3 A Tight Example for the Algorithm of Charikar et al.

The Õ(k2/3)-approximation proposed by Charikar et al. [5] repeatedly connects new pairs by min-
imum density “bunches” until all source-sink pairs are connected. A bunch is a subgraph formed
by joining the center of an in-star to that of an out-star using a single arc; Figure 4 provides a
schematic illustration for such subgraphs. Due to its very simple structure, a minimum density
bunch can be computed efficiently (see [5, Sec. 4]). Most of the effort in establishing the Õ(k2/3)
upper bound is devoted to proving the existence of a bunch whose density does not exceed that
of an optimal solution by a factor of more than O(k2/3 log1/3 k). However, the best possible lower
bound provided by Charikar et al. [5] for the density of bunches was Ω(

√
k); improving on this

bound had been posed as an open question. In what follows, we demonstrate that their analysis is
indeed tight up to poly-logarithmic factors, by proving the next theorem.

Theorem 3.6. There are instances of the directed Steiner network problem in which the density
of every bunch is Ω(k2/3/ log k) ·OPT/k.

The instance. To understand our construction, we advise the reader to consult Figure 4. The
underlying graph G = (V, E) is created by unifying the roots of two binary trees, Tin and Tout,
formally defined as follows:

1. Tin is a complete binary in-tree with k2/3 leaves, labeled u1, . . . uk2/3 in left-to-right order. All
arcs connecting nodes in level ` to nodes in level ` + 1 are endowed with a uniform cost of
k/2`.

2. Tout is a complete binary out-tree with k2/3 leaves, labeled v1, . . . vk2/3 in left-to-right order.
The arc costs have a structure similar to the one of Tin.

Now, for every 1 ≤ i ≤ k2/3, the node ui acts as a source in k1/3 pairs, with corresponding sinks
{v(i mod k1/3)+jk1/3 : 0 ≤ j ≤ k1/3−1}. Note that OPT/k = O(log k), since we can connect all input
pairs at a combined cost of O(k log k), as each level of Tin and Tout has a total cost of exactly 2k,
and the number of such levels is O(log k). The proof proceeds by arguing that a minimum density
bunch H in the transitive closure of G has a density of Ω(k2/3).

Preliminary assumptions. Suppose that H directly links A ⊆ {u1, . . . uk2/3} to a node α, picks
the junction arc (α, β), and directly links β to B ⊆ {v1, . . . vk2/3}. This configuration is illustrated
in Figure 4. Without loss of generality, we may assume that α ∈ V (Tin); otherwise, this node can be
replaced by the common root of Tin and Tout without increasing the cost of H. A similar argument
allows us to assume that β ∈ V (Tout). Furthermore, since every node in A ∪ B participates in at
least one pair connected by H, it follows that |D(H)| ≥ max{|A|, |B|}; we move on to consider two
scenarios, depending on whether the latter inequality is tight or not.
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Figure 4: The directed Steiner network instance.

Case I: |D(H)| = max{|A|, |B|}. We assume without loss of generality that |D(H)| = |A|. Since
each and every A-node resides in the subtree of Tin rooted at α, we must have k2/3/2`(α) ≥ |A|,
where `(α) denotes the level of Tin in which α appears. Therefore, the cost of linking a single
A-node to α is k/2`(α) ≥ |A|k1/3. It follows that

density(H) ≥ max{k, |A|2k1/3}
|D(H)| ≥ k1/2 · (|A|2k1/3)1/2

|A| = k2/3 .

Case II: |D(H)| > max{|A|, |B|}. We begin by proving 2`(β) ≤ 2k1/3|A|/|D(H)|, noting that
the inequality 2`(α) ≤ 2k1/3|B|/|D(H)| can be easily validated by exercising symmetrical arguments.
For a node u ∈ A, let φ(u) = {v ∈ B : (u, v) ∈ D}. In other words, φ(u) is the set of pairs connected
by H in which u participates. Note that

|D(H)| =
∑

u∈A
|φ(u)| ≤ |A| ·max

u∈A
|φ(u)| .

Now let Imin = min{i : vi ∈ B} and Imax = max{i : vi ∈ B}. The crucial observation is that for
every u ∈ A, we have |i′ − i′′| ≥ k1/3 for every pair of indices {i′, i′′} such that both vi′ and vi′′

belong to φ(u). Therefore, Imax − Imin ≥ k1/3(maxu∈A |φ(u)| − 1) ≥ k1/3 ·maxu∈A |φ(u)|/2, where
the last inequality holds since maxu∈A |φ(u)| ≥ 2, or otherwise |D(H)| = |A|. On the other hand,
as the subtree of Tout rooted at β has k2/3/2`(β) leaves, it follows that Imax− Imin ≤ k2/3/2`(β). By
combining these bounds on Imax − Imin, we have k1/3 ·maxu∈A |φ(u)|/2 ≤ k2/3/2`(β), so

2`(β) ≤ 2k1/3

maxu∈A |φ(u)| ≤
2k1/3|A|
|D(H)| .

We conclude the proof by observing that each A-node has a linking cost of k/2`(α), whereas B-nodes
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have individual linking costs of k/2`(β), implying that

density(H) ≥ max{k|A|/2`(α), k|B|/2`(β)}
|D(H)|

= max
{

k|A|
2k1/3|B| ,

k|B|
2k1/3|A|

}

=
k2/3

2
·max

{ |A|
|B| ,

|B|
|A|

}

≥ k2/3

2
.

4 A Poly-Logarithmic Approximation for the Set Connector Problem

The main result of this section is a poly-logarithmic performance guarantee for set connector. We
remind the reader that an instance of the latter problem consists of an undirected graph G = (V,E),
whose edges are associated with non-negative costs specified by c : E → R+. Given a collection
of divisions V1, . . . ,Vm, the objective is to construct a minimum cost subset of edges F ⊆ E that
simultaneously weakly connects all input divisions. Our principal finding in this context can be
briefly summarized as follows.

Theorem 4.1. The set connector problem admits an O(log2 n log2(mn)) approximation. Moreover
the integrality gap of a natural LP-relaxation is O(log3 n log2(mn)).

Prior to proving the above theorem, we demonstrate that a näıve reduction to generalized
connectivity, in which each division Vi = {X1, . . . , Xh} is replaced by a collection of demands
{(Xr, Xs) : 1 ≤ r < s ≤ h} is incorrect. To this end, consider a set connector instance defined on
a complete graph with vertex set {v1, v2, v3, v4}, and suppose that we are given a single division
V1 = {X1, X2, X3}, where X1 = {v1}, X2 = {v2} and X3 = {v3, v4}. It is not difficult to verify
that F = {(v1, v3), (v2, v4)} forms a feasible solution to this instance. However, F is infeasible for
the generalized connectivity instance that would result by the näıve reduction above, since F does
not contain a path with one endpoint in X1 and the other in X2.

Proof of Theorem 4.1. The proof proceeds by relating the approximability of set connector to
that of generalized connectivity. For a given set connector instance I, defined by a graph G = (V,E)
and a collection of divisions V1, . . . ,Vm, let β(I) =

∑m
i=1 |Vi|. Note that β(I) ≤ mn. We say that

X ∈ Vi is covered by an edge set F ⊆ E when the subgraph (V, F ) contains a path connecting a
vertex in X to a vertex in Y 6= X, for some Y ∈ Vi. Note that the optimal solution F ∗ covers every
set in

⋃m
i=1 Vi. In addition, given a set of edges F ⊆ E that covers at least half of the sets in

⋃m
i=1 Vi

(henceforth, a 1/2-cover), we create a new set connector instance I ′ on the same graph G as follows.
For each division Vi = {X1, . . . , Xh}, let Gi(F ) be a graph on the vertex set {1, . . . , h}, in which r
and s are joined by an edge when Xr and Xs are connected by F . Now, assuming that C1, . . . , C`

are the connected components of Gi(F ), we define V ′i = {Y1, . . . , Y`}, where Yt =
⋃

j∈Ct
Xj . Since

F is a 1/2-cover,
∑m

i=1 |V ′i| ≤ (3/4) ·∑m
i=1 |Vi|, or in other words, β(I ′) ≤ (3/4) · β(I). It is easy

to ascertain that F ∗ remains a feasible solution to the new instance I ′ induced by V ′1, . . . ,V ′m,
and furthermore, any feasible solution to this instance can be combined with F to form a feasible
solution with respect to V1, . . . ,Vm. Thus, given an α-approximation for finding a minimum weight
1/2-cover, we can use it to obtain an O(α log β(I)) approximation for a set connector instance I.
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We now reduce the problem of computing a minimum cost 1/2-cover to 1/2-generalized connec-
tivity, which is a variant of the latter problem asking to connect at least half of the given demands3.
For each division Vi = {X1, . . . , Xh}, we introduce a collection of h demands (X1, (

⋃h
j=1 Xj) \

X1), . . . , (Xh, (
⋃h

j=1 Xj) \ Xh). We observe that F ⊆ E is a 1/2-cover with respect to
⋃m

i=1 Vi

if and only if this edge set constitutes a feasible solution to the 1/2-generalized connectivity in-
stance obtained via the above reduction. Consequently, we attain a performance guarantee of
O(log2 n log2(mn)) for set connector.

We can prove an upper bound of O(log3 n log2(mn)) on the integrality gap of a natural LP-
relaxation for set connector by essentially following the same proof as above. The only difference
is that, when we use the algorithm for generalized connectivity, we replace it by an LP-based
algorithm and apply the integrality gap stated in Theorem 2.5. The details are straightforward,
yet tedious, and hence we omit them.

5 Conclusions

It is interesting to note that the following slight variant of the generalized connectivity problem
makes it very hard to approximate: For each demand (Si, Ti) we are also given a relation Ri ⊆
Si × Ti, and a subgraph F of G is now considered feasible if it connects some pair (s, t) ∈ Ri, for
every 1 ≤ i ≤ k. Using a reduction from the label cover problem very similar to the one described
in [8], one can establish that this variant is hard to approximate to within an O(2log1−ε n) factor,
unless NP ⊆ TIME(npolylog(n)).

Obvious open problems are to improve the approximation ratios for the problems considered
in this paper. For generalized connectivity, it may be possible to get a ratio that matches the one
known for the group Steiner problem; the ratio we give is worse by a logarithmic factor. It is also
of interest to prove an integrality gap bound that matches the approximation ratio.

Finally, it is possible to obtain a poly-logarithmic competitive ratio for generalized connectivity
in the online setting? Alon et al. [2] show an O(log m) competitive ratio for computing a fractional
solution to the relaxation LPGC of generalized connectivity. However, their framework requires a
specific kind of rounding procedure to convert a fractional solution to an integral one in an online
fashion. Although we prove a poly-logarithmic integrality gap for LPGC, our rounding procedure
is not directly applicable in the online setting.
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