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A GRAPH REDUCTION STEP PRESERVING
ELEMENT-CONNECTIVITY AND PACKING STEINER TREES AND

FORESTS∗

CHANDRA CHEKURI† AND NITISH KORULA‡

Abstract. Given an undirected graph G = (V, E) and a subset of vertices called terminals T ⊆
V , the element-connectivity κ′

G(u, v) of two terminals u, v ∈ T is the maximum number of u-v paths
that are pairwise element-disjoint, that is, disjoint in both edges and nonterminals V \ T . (Element-
connectivity was first (implicitly) defined by Frank, Ibaraki, and Nagamochi in [J. Graph Theory,
17 (1993), pp. 275–281].) (Element-disjoint paths need not be disjoint in terminals.) Hind and
Oellermann [Congr. Numer., 113 (1996), pp. 179–204] gave a graph reduction step that preserves the
global element-connectivity of the terminals. We show that one can also apply such a reduction step
while preserving local connectivity, that is, all the pairwise element-connectivities of the terminals.
We illustrate the usefulness of this more general reduction step by giving applications to packing
element-disjoint Steiner trees and forests: Given a graph G and disjoint terminal sets T1, T2, . . . , Th,
we seek a maximum number of element-disjoint Steiner forests where each forest connects each Ti.
We prove that if each Ti is k-element-connected, then there exist Ω( k

log |T | logh
) element-disjoint

Steiner forests, where T =
⋃

i Ti. If G is planar (or has fixed genus), we show that there exist Ω(k)
Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these
are the first nontrivial algorithms for packing element-disjoint Steiner forests.

Key words. element-connectivity, Steiner trees, Steiner forests, element-disjoint, packing
Steiner trees and forests
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1. Introduction. Menger [29] proved the following fundamental min-max rela-
tion on vertex-connectivity: Given an undirected graph G(V,E) and two nonadjacent
nodes u, v, the maximum number of internally vertex-disjoint paths in G between u
and v is equal to the minimum number of vertices whose deletion separates u from v.
Similarly, the maximum number of edge-disjoint paths connecting u and v is equal to
the minimum number of edges whose deletion separates u from v. These are special
cases of the well-known max-flow/min-cut theorem.

Hind and Oellermann [18] considered a natural generalization of Menger’s theorem
to more than two vertices: Given a graph G(V,E) and a set of vertices T ⊆ V
called terminals, what is the maximum number of disjoint trees that connect T ? As
all such trees contain T , the question is meaningful if one asks for trees that are
disjoint in elements, which consist of both the edges E and vertices of V \ T (the
nonterminals). In an equivalent formulation of the question, one may assume that
T forms a stable set in G by subdividing any edge between terminals and ask for
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578 CHANDRA CHEKURI AND NITISH KORULA

a set of trees that contain T but are disjoint in V \ T . Thus, the question of Hind
and Oellermann can be stated as follows: What is the maximum number of element-
disjoint trees connecting a set of terminals T ? Here, the natural upper bound is the
minimum number of elements whose deletion separates T ; analogous to the definitions
of vertex-connectivity and edge-connectivity, this number is referred to as the element-
connectivity of T .

One might wish to check if a min-max relation analogous to Menger’s theorem
holds, i.e., if the number of element-disjoint trees connecting T is equal to the element-
connectivity of T . Similarly, one might conjecture that the maximum number of edge-
disjoint trees spanning T is equal to the edge-connectivity of T . However, neither of
these conjectures is true even when |T | = 3: Consider K4, the complete graph on
four vertices, and let T be any set of three vertices. It is easy to see that the edge-
connectivity and element-connectivity of T are 3, but there are only two edge-disjoint
or element-disjoint trees connecting T . Hind and Oellermann [18] considered the
case when |T | ≤ 4 and showed that if T is k-element-connected, then there exist

� 1
|T |−1�

|T |k
2 �� element-disjoint trees connecting T ; moreover, this bound is tight and

generalizes Menger’s theorem when |T | = 2. They established their result via a useful
graph reduction step. Subsequently, Cheriyan and Salavatipour [7] independently
studied this question, calling this the problem of packing element-disjoint Steiner
trees;1 crucially using the same graph reduction step (which they rediscovered), they
showed that if k is the element-connectivity of T , there always exist Ω(k/ log |T |)
element-disjoint Steiner trees. Moreover, this bound is tight (up to constant factors)
in the worst case when |T | is large.

Another motivation for studying element-connectivity comes from network design
problems. Jain et al. [22] first studied element-connectivity in this domain as a way to
generalize some results in edge-connectivity network design. This approach has proved
fruitful; results on element-connectivity network design have been crucially used in
obtaining breakthroughs on vertex-connectivity network design [12, 8, 4, 30, 9].

The motivating applications and the discussion above show that element-connect-
ivity is a useful bridge between edge-connectivity and vertex-connectivity. In this
paper we make two contributions. We consider the graph reduction step for element-
connectivity introduced by Hind and Oellermann [18] and prove that it preserves all
local element-connectivities and not just the global element-connectivity. We then
demonstrate the applicability of this new Reduction Lemma (with additional ideas)
to pack element-disjoint Steiner forests, a generalization of the problem of packing
element-disjoint Steiner trees. We discuss each of these in turn and formally state our
results.

1.1. A graph reduction step preserving element connectivity. The well-
known splitting-off operation introduced by Lovász [27] is a standard tool in the study
of (primarily) edge-connectivity problems. Given an undirected multigraphG and two
edges su and sv incident to s, the splitting-off operation replaces su and sv by the
single edge uv. Lovász proved the following theorem on splitting off to preserve global
edge-connectivity.

Theorem 1.1 (Lovász). Let G = (V ∪ {s}, E) be an undirected multigraph in
which V is k-edge-connected for some k ≥ 2 and the degree of s is even. Then for
every edge su there is another edge sv such that V is k-edge-connected after splitting
off su and sv.

1A Steiner tree is simply a tree connecting all vertices of T .
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A GRAPH REDUCTION PRESERVING ELEMENT-CONNECTIVITY 579

Mader strengthened the above theorem to show the existence of two edges inci-
dent to s that, when split off, preserve the local edge-connectivity (that is, pairwise
connectivity of all pairs of vertices) of the graph.

Theorem 1.2 (Mader [28]). Let G = (V ∪ {s}, E) be an undirected multigraph,
where deg(s) 
= 3 and s is not incident to a cut edge of G. Then s has two neighbors
u and v such that the graph G′ obtained from G by replacing su and sv by uv satisfies
λG′(x, y) = λG(x, y) for all x, y ∈ V \ {s}.

Generalizations to directed graphs are also known [28, 13, 20]. The splitting-off
theorems have numerous applications in graph theory and combinatorial optimization;
see [27, 14, 24, 21, 5, 26, 25, 23] for various pointers. Although splitting-off techniques
can sometimes be used in the study of vertex-connectivity, their use is limited, and
no generally applicable theorem akin to Theorem 1.2 is known. On the other hand,
Hind and Oellermann [18] proved an elegant theorem on preserving global element-
connectivity.

Given a graph G(V,E), with its vertex set partitioned into a set T of terminals
and a set V \ T of nonterminals, we define the element-connectivity between two
terminals u, v, denoted by κ′

G(u, v), as the minimum number of elements (i.e., edges
and nonterminals) whose deletion separates u from v. (Note that one could equiva-
lently define κ′

G(u, v) as the maximum number of element-disjoint paths between u
and v.) We use κ′

G(T ) = minu,v∈T κ′
G(u, v) to denote the minimum number of ele-

ments whose deletion separates some terminals from others. We use G/pq to denote
the graph obtained from G by contracting the edge pq.

Theorem 1.3 (Hind and Oellermann [18]). Let G = (V,E) be an undirected
graph and T ⊆ V be a terminal-set such that κ′

G(T ) ≥ k. Let (p, q) be any edge where
p, q ∈ V \ T . Then κ′

G1
(T ) ≥ k or κ′

G2
(T ) ≥ k, where G1 = G− pq and G2 = G/pq.

We generalize this theorem to show that either deleting an edge or contracting
its endpoints preserves the local element-connectivity of every pair of terminals.

Reduction Lemma. Let G = (V,E) be an undirected graph and T ⊆ V be a
terminal set. Let (p, q) be any edge where p, q ∈ V \ T , and let G1 = G − pq and
G2 = G/pq. Then one of the following holds:

(i) ∀u, v ∈ T , κ′
G1

(u, v) = κ′
G(u, v).

(ii) ∀u, v ∈ T , κ′
G2

(u, v) = κ′
G(u, v).

Remark 1. The Reduction Lemma, applied repeatedly, transforms a graph into
another graph in which the nonterminals form a stable set. Moreover, the reduced
graph is a minor of the original graph.

Theorem 1.3 has been useful in the study of element-connectivity and found appli-
cations in [7, 23]. The stronger Reduction Lemma, which preserves local connectivity,
increases its applicability; we demonstrate applications (using additional ideas) to
problems on packing Steiner trees and forests that we have briefly alluded to already;
we discuss these below.

1.2. Packing element-disjoint Steiner trees and forests. There has been
much interest in the recent past in algorithms for (integer) packing of disjoint Steiner
trees in both the edge- and element-connectivity settings [24, 21, 26, 25, 6, 7, 5]. A
Steiner tree is simply a tree containing the entire terminal set T . We do not explicitly
mention the terminal set unless needed. See [17] for applications of Steiner tree
packing to VLSI design. An important and motivating conjecture is the following.

Conjecture 1 (Kriesell). Let G = (V,E) be an undirected graph and T ⊆ V
be a set of terminals that are 2k-edge-connected in G. Then there are k edge-disjoint
Steiner trees in G.
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580 CHANDRA CHEKURI AND NITISH KORULA

Note that if T = V , then the conjecture is a corollary of the well-known theorem
of Tutte and Nash-Williams on the maximum number of edge-disjoint spanning trees
in a graph. Lau [26] proved that if T is 24k-edge-connected, then there exist k edge-
disjoint Steiner trees; previously it was not known if ck-connectivity for T implied
k edge-disjoint Steiner trees for any fixed constant c. West and Wu improved the
connectivity requirement to 6.5k [32]. Recall that for packing element-disjoint Steiner
trees, Cheriyan and Salavatipur [7] showed that if T is k-element-connected, then
there exist Ω(k/ log |T |)-element-disjoint Steiner trees, and this is tight (up to constant
factors) in the worst case. The algorithm in [7] to obtain the trees is randomized; a
deterministic algorithm is given in [10]. It is also known that the problem of packing
element-disjoint Steiner trees is hard to approximate to within an Ω(logn) factor [6].

We consider the problem of packing Steiner forests. Given several disjoint termi-
nal sets T1, T2, . . . Th ⊆ V (G), a Steiner forest is a forest such that each Ti (1 ≤ i ≤ h)
is contained in a single component of the forest. Lau extended his results in [25]
to show that if each set Ti is 32k-edge-connected in the graph G, then G contains
k edge-disjoint Steiner forests. We remark that Mader’s splitting-off theorem plays
an important role in Lau’s work. In this paper we consider the problem of pack-
ing element-disjoint Steiner forests that was posed by [7]. The input consists of a
graph G = (V,E) and disjoint terminal sets T1, T2, . . . , Th, such that κ′

G(Ti) ≥ k for
1 ≤ i ≤ h. What is the maximum number of element-disjoint forests such that in
each forest, Ti is connected for 1 ≤ i ≤ h? Our local connectivity reduction step
is primarily motivated by this question. For general graphs we prove the following
theorem.

Theorem 1.4. Let T1, . . . , Th be disjoint terminal sets in a graph G = (V,E), and
let κ′

G(Ti) ≥ k for 1 ≤ i ≤ h. Then there exist Ω(k/(log |T | logh)) element-disjoint
Steiner forests, where T =

⋃
i Ti. Moreover, there is a polynomial-time algorithm to

output the Steiner forests.
We also study the packing problem in planar graphs and graphs of fixed genus

and prove a stronger result.
Theorem 1.5. Let T1, . . . , Th be disjoint terminal sets in a planar graph G =

(V,E), and let κ′
G(Ti) ≥ k for 1 ≤ i ≤ h. Then there is a polynomial-time algorithm

to find �k/5�−1 element-disjoint Steiner forests. If G has genus g ≥ 1, then there is a
polynomial-time algorithm to find Ω(k/g) element-disjoint Steiner forests. Moreover,
the degree of each nonterminal in each of the forests is 2.

These are the first nontrivial bounds for packing element-disjoint Steiner forests
in general graphs or planar graphs. Since element-connectivity generalizes edge-
connectivity, our bounds in planar graphs are stronger than those given by Lau
[26, 25] for edge-connectivity. Our proof is also simple; this simplicity comes from
thinking about element-connectivity (using the Reduction Lemma) instead of edge-
connectivity!

Corollary 1.6. Let T1, . . . , Th be disjoint terminal sets in a planar graph G =
(V,E), and let λG(Ti) ≥ k for 1 ≤ i ≤ h. Then there exists a polynomial-time
algorithm to find �k/5� − 1 edge-disjoint Steiner forests.

Other related work. Aazami, Cheriyan, and Jampani [1] showed that in planar
graphs, if T is k-element-connected, then there always exist k/2− 1 element-disjoint
Steiner trees. They complement their upper bound by showing that in planar graphs,
for any fixed ε > 0, it is NP-hard to obtain a (1/2+ ε)-approximation to the problem
of finding the maximum number of element-disjoint Steiner trees. They also gener-
alized their result on planar graphs; if G excludes an H-minor, then there are Ω(k)
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A GRAPH REDUCTION PRESERVING ELEMENT-CONNECTIVITY 581

element-disjoint Steiner trees where the constant depends on the size of H . These
results are based on the use of Theorem 1.3 and a result of Frank, Király, and Kriesell
[16] on packing spanning trees in hypergraphs. The approach in [1] via [16] leads to
stronger results than ours for packing Steiner trees in planar and minor-free graphs;
however, it does not (appear to) apply to packing Steiner forests even with our new
Reduction Lemma for preserving local connectivity. Our work on planar graphs was
done independently of [1], although we were inspired to study these graphs by a
question of Joseph Cheriyan.

Organization. We prove the Reduction Lemma in section 2 and use it to get
a polylogarithmic approximation for packing element-disjoint Steiner forests in sec-
tion 3. Finally, in section 4, we obtain better approximations for packing Steiner
trees and forests in graphs with simpler structure, such as planar, low-genus, or low-
treewidth graphs.

2. The Reduction Lemma. LetG(V,E) be a graph, with a given set T ⊆ V (G)
of terminals. For ease of notation, we subsequently refer to terminals as black vertices
and nonterminals (also called Steiner vertices) as white. The elements of G are white
vertices and edges; two paths are element-disjoint if they have no white vertices or
edges in common. Recall that the element-connectivity of two black vertices u and v,
denoted by κ′

G(u, v), is the maximum number of element-disjoint (that is, disjoint in
edges and white vertices) paths between u and v in G. We omit the subscript G when
it is clear from the context.

For this section, to simplify the proof, we will assume without loss of generality
that G has no edges between black vertices; any such edge can be subdivided, with a
white vertex inserted between the two black vertices. It is easy to see that two paths
are element-disjoint in the original graph iff they are element-disjoint in the modified
graph. Thus, we can say that paths are element-disjoint if they share no white vertices
or that u and v are k-element-connected if the smallest set of white vertices whose
deletion separates u from v has size k.

Recall that our lemma generalizes Theorem 1.3 on preserving global connectivity.
We remark that our proof is based on a cutset argument unlike the path-based proofs
in [18, 7] for the global case.

Reduction Lemma. Given G(V,E) and T , let pq ∈ E(G) be any edge such that
p and q are both white. Let G1 = G − pq and G2 = G/pq be the graphs formed from
G by deleting and contracting pq, respectively. Then,

(i) ∀u, v ∈ T, κ′
G1

(u, v) = κ′
G(u, v), or

(ii) ∀u, v ∈ T, κ′
G2

(u, v) = κ′
G(u, v).

Proof. Consider an arbitrary edge pq between two white nodes. Deleting or con-
tracting an edge can reduce the element-connectivity of a pair by at most 1. Suppose
the lemma were not true; there must be pairs s, t and x, y of black vertices such that
κ′
G1

(s, t) = κ′
G(s, t) − 1 and κ′

G2
(x, y) = κ′

G(x, y) − 1. The pairs have to be distinct
since it cannot be the case that κ′

G1
(u, v) = κ′

G2
(u, v) = κ′

G(u, v) − 1 for any pair
u, v. (To see this, if one of the κ′

G(u, v) u-v paths uses pq, contracting the edge will
not affect that path and will leave the other paths untouched. Otherwise, no path
uses pq, and so it can be deleted.) Note that one of s, t could be the same vertex as
one of x, y; for simplicity, we consider this case later and focus first on the case that
{s, t}∩{x, y} = ∅. We show that our assumption on the existence of s, t and x, y with
the above properties leads to a contradiction. Let κ′

G(s, t) = k1 and κ′
G(x, y) = k2.

We use the following facts several times.
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582 CHANDRA CHEKURI AND NITISH KORULA

1. Any cutset of size less than k1 that separates s and t in G1 cannot include p
or q. (If it did, it would also separate s and t in G.)

2. κ′
G1

(x, y) = k2 since κ′
G2

(x, y) = k2 − 1.
We define a vertex tripartition of a graph G as follows: (A,B,C) is a vertex

tripartition of G if A,B, and C partition V (G), B contains only white vertices, and
there are no edges between A and C. (That is, removing the white vertices in B
disconnects A and C.)

Since κ′
G1

(s, t) = k1 − 1, there is a vertex tripartition (S,M, T ) in G1 such that
|M | = k1 − 1 and s ∈ S and t ∈ T . From fact 1 above, M cannot contain p or q. For
the same reason, it is also easy to see that p and q cannot both be in S (or both be
in T ); otherwise M would be a cutset of size k1 − 1 in G. Therefore, assume without
loss of generality that p ∈ S, q ∈ T .

Similarly, since κ′
G2

(x, y) = k2 − 1, there is a vertex tripartition (X,N ′, Y ) in G2

with |N ′| = k2 − 1 and x ∈ X and y ∈ Y . We claim that N ′ contains the contracted
vertex pq, for otherwise N ′ would be a cutset of size k2− 1 in G. Therefore, it follows
that (X,N, Y ) where N = N ′∪{p, q}−{pq} is a vertex tripartition in G that separates
x from y. Note that |N | = k2 and N includes both p and q. For the latter reason we
note that (X,N, Y ) is a vertex tripartition also in G1.

Subsequently, we work with the two vertex tripartitions (S,M, T ) and (X,N, Y )
in G1 (we stress that we work in G1 and not in G or G2). Recall that s, p ∈ S, and
t, q ∈ T , and M has size k1 − 1; also, N separates x from y and p, q ∈ N . Figure
2.1(a) shows these vertex tripartitions. Since M and N contain only white vertices,
all terminals are in S or T and in X or Y . We say that S ∩X is diagonally opposite
from T ∩ Y , and S ∩ Y is diagonally opposite from T ∩ X . Let A,B,C,D denote
S ∩ N,X ∩M,T ∩ N , and Y ∩ M , respectively, with I denoting N ∩ M ; note that
A,B,C,D, I partition M ∪N .

S M T

X

N

Y

A

B

C

D

Ip q

(a)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

t

(b)

N

M

A

B

C

D

Ip q

S ∩X T ∩X

S ∩ Y T ∩ Y

x

s y

t

(c)

Fig. 2.1. Part (a) illustrates the vertex tripartitions (S,M, T ) and (X,N, Y ). In parts (b) and
(c), we consider possible locations of the terminals s, t, x, y.

Claim 1. Neither s nor t can be diagonally opposite from either x or y.
Proof. Suppose, for contradiction, that x and t are diagonally opposite; the other

cases are similar. Then, we have x ∈ S ∩X and t ∈ T ∩ Y . Figure 2.1(b) illustrates
this case. Observe that A∪ I ∪B separates x from y (regardless of whether y ∈ S ∩Y
or y ∈ T ∩ Y ); since x and y are k2-connected in G1 and A ∪ I ∪ C (which is the set
N) has size k2, it follows that |B| ≥ |C|. Similarly, C ∪ I ∪D separates t from s, and
since C contains q, fact 1 implies that |C ∪ I ∪ D| ≥ k1. But M = B ∪ I ∪ D and
|M | = k1 − 1. Therefore, |C| > |B|, yielding a contradiction.
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Claim 1 restricts possible locations of the four vertices. We assume without loss
of generality that x ∈ S, and hence x ∈ S ∩X . Since t cannot be diagonally opposite
from x, t ∈ T ∩ X . Similarly, we cannot have y diagonally opposite from t, and so
y ∈ T ∩ Y . And s and y cannot be diagonally opposite, so we have s ∈ S ∩ Y . Figure
2.1(c) shows the required positions of the vertices. Now, N separates s from t and
contains p, q; therefore, from fact 1, |N | ≥ k1 > |M |. But M separates x from y, and
fact 2 implies that x, y are k2-connected in G1; therefore, |M | ≥ k2 = |N |, and we
have a contradiction.

Recall that we have focused on the case that s, t, x, y represent four distinct ver-
tices. Suppose one of {s, t} is the same vertex as one of {x, y}; without loss of
generality, let x = s. This vertex is in S ∩ X ; by Claim 1, neither y (because of s)
nor t (because of x) can be in T ∩ Y . Therefore, y ∈ S ∩ Y and t ∈ T ∩X ; but this
makes them diagonally opposite, again giving a contradiction.

3. Packing Steiner trees and forests in general graphs. Consider a graph
G(V,E), with its vertex set V partitioned into T1, T2, . . . Th,W . We refer to each
Ti as a group of terminals and to W as the set of Steiner or white vertices; we use
T =

⋃
i Ti to denote the set of all terminals. A Steiner forest for this graph and this

partition is a forest that is a subgraph of G, such that each Ti is entirely contained
in a single tree of this forest. (Note that Ti and Tj can be in the same tree.) For any
group Ti of terminals, we define κ′(Ti), the element-connectivity of Ti, as the largest
k such that for every u, v ∈ Ti, the element-connectivity of u and v in the graph G is
at least k.

We say two Steiner forests for G are element-disjoint if they share no edges or
Steiner vertices. (Every Steiner forest must contain all the terminals.) The Steiner
forest packing problem is to find as many element-disjoint Steiner forests for G as
possible. By inserting a Steiner vertex between any pair of adjacent terminals, we can
assume that there are no edges between terminals, and then the problem of finding
element-disjoint Steiner forests is simply that of finding Steiner forests that do not
share any Steiner vertices. A special case is when h = 1, in which case we seek a
maximum number of element-disjoint Steiner trees.

Proposition 3.1. If k = mini κ
′
G(Ti), there are at most k element-disjoint

Steiner forests in G.
Proof. Let S be a set of k white vertices that separates vertices u and v in Ti.

Any tree that contains both u and v must contain a vertex of S. Hence, we can pack
at most k trees that contain all of Ti.

Cheriyan and Salavatipour [7] proved that if there is a single group T of terminals,
with κ′(T ) = k, then there always exist Ω(k/ log |T |) Steiner trees. Their algorithm
proceeds by using Theorem 1.3, the global element-connectivity reduction of [18], to
delete and contract edges between Steiner vertices, while preserving κ′(T ) = k. Then,
once we obtain a bipartite graph G′ with terminals on one side and Steiner vertices
on the other side, we randomly color the Steiner vertices using k/6 log |T | colors;
they show that with high probability, each color class connects the terminal set T ,
giving k/6 log |T | trees. The bipartite case can be cast as a special case of packing
bases of a polymatroid, and a variant of the random coloring idea is applicable in this
more general setting [10]; a derandomization is also provided in [10], thus yielding a
deterministic polynomial-time algorithm to find Ω(k/ log |T |) element-disjoint Steiner
trees.

In this section, we give algorithms for packing element-disjoint Steiner forests,
where we are given h groups of terminals T1, T2, . . . , Th. The approach of [7] encounters
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584 CHANDRA CHEKURI AND NITISH KORULA

two difficulties. First, we cannot reduce to a bipartite instance, using only the global-
connectivity version of the Reduction Lemma. In fact, our strengthening of the Re-
duction Lemma to preserve local connectivity was motivated by this; using it allows
us once again to assume that we have a bipartite graph G′(T ∪ W,E). Second, we
cannot apply the random coloring algorithm on the bipartite graph G′ directly; we
give an example in section A.1 to show that this approach does not work. One reason
for this is that, unlike the Steiner tree case, it is no longer a problem of packing bases
of a submodular function. To overcome this second difficulty we use a decomposi-
tion technique followed by the random coloring algorithm to prove that there always
exist Ω(k/(log |T | logh)) element-disjoint forests. We believe that the bound can be
improved to Ω(k/ log |T |).

In order to pack element-disjoint Steiner forests, we borrow the basic idea from
[5] in the edge-connectivity setting for Eulerian graphs; this idea was later used by Lau
[25] in the much more difficult non-Eulerian case. The idea at a high level is as follows:
If all the terminals are k-connected, then we can treat the terminals as forming one
group and reduce the problem to that of packing Steiner trees. Otherwise, we can
find a cut (S, V \ S) that separates some groups from others. If the cut is chosen
appropriately, we may be able to treat one side, say, S, as containing a single group
of terminals and pack Steiner trees in them without using the edges crossing the cut.
Then we can shrink S and find Steiner forests in the reduced graph; unshrinking S
is possible since we have many trees on S. In [5, 25] this scheme works to give Ω(k)
edge-disjoint Steiner forests. However, the approach relies strongly on properties
of edge-connectivity as well as the properties of the packing algorithm for Steiner
trees. These do not generalize easily for element-connectivity. Nevertheless, we show
that the basic idea can be applied in a slightly weaker way (resulting in the loss of an
O(log h) factor over the Steiner tree packing factor). We remark that the reduction to
a bipartite instance using the Reduction Lemma plays a critical role. A key definition
is the notion of a good separator given below.

Definition 3.2. Given an graph G(V,E) with terminal sets T1, T2, . . . Th, such
that for all i, κ′(Ti) ≥ k, we say that a set S of white vertices is a good separator
if (i) |S| ≤ k/2 and (ii) there is a component of G − S in which all terminals are
k/(2 logh)-element-connected.

Note that the empty set is a good separator if all terminals are k/(2 logh)-element-
connected.

Lemma 3.3. For any instance of the Steiner forest Packing problem, there is a
polynomial-time algorithm that finds a good separator.

Proof. Let G(V,E) be an instance of the Steiner forest packing problem, with
terminal sets T1, T2, . . . Th such that each Ti is k-element-connected. If T is k

2 log h -

element connected (which can be easily checked in polynomial time), the empty set
S is a good separator.

Otherwise, there is some set of white vertices of size less than k
2 log h that separates

some of the terminals from others. Let S1 be a minimal such set, and consider the
two or more components of G − S1. Note that each Ti is entirely contained in a
single component, since Ti is at least k-element-connected, and |S1| < k. Among
the components of G− S1 that contain terminals, consider a component G1 with the
fewest sets of terminals; G1 must have at most h/2 sets from T1, . . . Th. If the set of
all terminals in G1 is k

2 log h connected, we stop; otherwise, we find in G1 a set of white

vertices S2 with size less than k
2 log h that separates terminals of G1. Again, we find a

component G2 of G1−S2 with fewest sets of terminals and repeat this procedure until
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A GRAPH REDUCTION PRESERVING ELEMENT-CONNECTIVITY 585

we obtain some subgraph G� in which all the terminals are k
2 log h -connected. We can

always find such a subgraph, since the number of sets of terminals is decreasing by a
factor of 2 or more at each stage, so we find at most log h separating sets Sj . Now, we

observe that the set S =
⋃�

j=1 Sj is a good separator. It separates the terminals in

G� from the rest of T , and its size is at most log h× k
2 log h = k/2; it follows that each

set of terminals Ti is entirely within G� or entirely outside it. By construction, all
terminals in G� are k

2 log h -connected. To see that this algorithm runs in polynomial
time, it suffices to observe that if the sets of white vertices S1, S2, . . . exist, they can
be found in polynomial time via min-cut algorithms. Once no such set S� exists in
G�−1, we have found the desired separator.

We can now prove our main result of this section, which is that we can always
find a packing of Ω( k

log |T | log h ) Steiner forests.

Theorem 3.4. Given a graph G(V,E), with terminal sets T1, T2, . . . Th, such that
for all i, κ′(Ti) ≥ k, there is a polynomial-time algorithm to pack Ω(k/ log |T | logh)
element-disjoint Steiner forests in G.

Proof. The proof is by induction on h. The base case of h = 1 follows from [7, 10];
G contains at least k

6 log |T | element-disjoint Steiner trees, and we are done.

We may assume G is bipartite by using the Reduction Lemma. Find a good
separator S, and a component G� of G−S in which all terminals are k

2 log h -connected.

Now, since the terminals in G� are k
2 log h -connected, use the algorithm of [7] to find

k
12 log h log |T | element-disjoint Steiner trees containing all the terminals in G�; none of

these trees uses vertices of S. Number these trees from 1 to k
12 log h log |T | ; let Tj denote

the jth tree.
The set S separates G� from the terminals in G−G�. If S is not a minimal such

set, discard vertices until it is. If we delete G� from G and add a clique between the
white vertices in S to form a new graph G′, it is clear that the element-connectivity
between any pair of terminals in G′ is at least the element-connectivity they had
in G. The graph G′ has h′ ≤ h − 1 groups of terminals; by induction, we can find

k
12 log |T | log h < k

12 log |T | log h′ element-disjoint Steiner forests for the terminals in G′.
As before, number the forests from 1 to k

12 log h log |T | ; we use Fj to refer to the jth

forest. These Steiner forests may use the newly added edges between the vertices of S;
these edges do not exist in G. However, we claim that the Steiner forest Fj of G′,
together with the Steiner tree Tj in G�, gives a Steiner forest of G. The only way this
might not be true is if Fj uses some edge added between vertices u, v ∈ S. However,
by the minimality of S, every vertex in S is adjacent to a terminal in G�, and all the
terminals of G� are in every one of the Steiner trees we generated. Therefore, there
is a path from u to v in Tj . Hence, deleting the edge between u and v from Fj still
leaves each component of Fj ∪ Tj connected.

Therefore, for each 1 ≤ j ≤ k
12 log h log |T | , the vertices in Fj ∪ Tj induce a Steiner

forest for G. To see that this algorithm runs in polynomial time, note that we can find
a good separator S in polynomial time, and we then recurse on the graph G′. As G′

has h′ ≤ h− 1 groups of terminals, there are at most h ≤ n levels of recursion.

4. Packing Steiner trees and forests in planar graphs. We now prove
much improved results for restricted classes of graphs, in particular planar graphs.
If G is planar, we show the existence of �k/5� − 1 element-disjoint Steiner forests.2

2Note that in the special case of packing Steiner trees, the paper of Aazami, Cheriyan, and
Jampani [1] shows that there are �k/2� − 1 element-disjoint Steiner trees.
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The (simple) technique extends to graphs of fixed genus to prove the existence of
Ω(k) Steiner forests where the constant depends mildly on the genus. We believe
that there exist Ω(k) Steiner forests in any H-minor-free graph where H is fixed;
it is shown in [1] that there exist Ω(k) Steiner trees in H-minor-free graphs. Our
technique for planar graphs does not extend directly, but generalizing this technique
allows us to make partial progress; by using our general graph result and some related
ideas, in section 4.2, we prove that in graphs of any fixed treewidth, there exist Ω(k)
element-disjoint Steiner trees if the terminal set is k-element-connected.

The intuition and algorithm for planar graphs are easier to describe for the Steiner
tree packing problem, and we do this first. We achieve the improved bound by observ-
ing that planarity restricts the use of many white vertices as “branch points” (that is,
vertices of degree ≥ 3) in forests. Intuitively, even in the case of packing trees, if there
are terminals t1, t2, t3, . . . that must be in every tree, and white vertices w1, w2, w3 . . .
that all have degree 3, it is difficult to avoid a K3,3-minor.3 Note, however, that
degree 2 white vertices behave like edges and do not form an obstruction. We capture
this intuition more precisely by showing that there must be a pair of terminals t1, t2
that are connected by Ω(k) degree 2 white vertices; we can contract these “parallel
edges” and recurse.

We describe below an algorithm for packing Steiner trees. Throughout the rest
of this section, we assume k > 10; otherwise, �k/5� − 1 ≤ 1, and we can always find
one Steiner tree in a connected graph.

Given an instance of the Steiner tree packing problem in planar graphs, we con-
struct a reduced instance as follows: Use the Reduction Lemma to delete and contract
edges between white vertices to obtain a planar graph with vertex set T ∪ W , such
that W is a stable set. Now, for each vertex w ∈ W of degree 2, connect the two
terminals that are its endpoints directly with an edge, and delete w. (All edges have
unit capacity.) We now have a planar multigraph, though the only parallel edges are
between terminals, as these were the only edges added while deleting degree 2 vertices
in W . Note that this reduction preserves the element-connectivity of each pair of ter-
minals; further, any set of element-disjoint trees in this reduced instance corresponds
to a set of element-disjoint trees in the original instance.

Lemma 4.1. In a reduced instance of the planar Steiner tree packing problem,
if each vertex in T has degree at least k, there are two terminals t1, t2 with at least
�k/5� − 1 parallel edges between them.

We defer a complete proof of this lemma, which is somewhat intricate, to sec-
tion A.2, but at the end of this subsection, we present a much simpler argument to
show that there exist terminals t1, t2 with �k/10� edges between them. First, though,
we show that Lemma 4.1 allows us to pack �k/5� − 1 disjoint trees.

Theorem 4.2. Given an instance of the Steiner tree packing problem on a planar
graph G with terminal set T , if κ′(T ) ≥ k, there is a polynomial-time algorithm to
find at least �k/5�− 1 element-disjoint Steiner trees in G. Moreover, in each tree, the
white (nonterminal) vertices all have degree 2.

Proof. We prove this theorem by induction on |T |; if |T | = 2, there are k disjoint
paths in G from one terminal to the other, so we are done (including the guarantee
of degree 2 for white vertices).

Otherwise, apply the Reduction Lemma to construct a reduced instance G′, pre-
serving the element-connectivity of T . Now, from Lemma 4.1, there exists a pair of
terminals t1, t2 that have �k/5�−1 parallel edges between them (note that the parallel

3Strictly speaking, this is not true, though the intuition is helpful.
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edges between t1 and t2 may have nonterminals on them in the original graph, but
they have degree 2). Contract t1, t2 into a single terminal t, and consider the new
instance of the Steiner tree packing problem with terminal set T ′ = T ∪{t}−{t1, t2}.
It is easy to see that the element-connectivity of the terminal set is still at least k; by
induction, we can find �k/5�− 1 Steiner trees containing all the terminals of T ′, with
the property that all nonterminals have degree 2. Taking these trees together with
�k/5� − 1 edges between t1 and t2 gives �k/5� − 1 trees in G′ that span the original
terminal set T .

It now remains only to prove Lemma 4.1, which we do in section A.2; here, we
show the weaker, but considerably easier, result that there are two terminals with
�k/10� parallel edges between them. We need the following technical result.

Theorem 4.3 (Borodin [2]). If G is a planar graph with minimum degree 3, it
has an edge of weight at most 13, where the weight of an edge is the sum of the degrees
of its endpoints.

We do not provide a proof of this well-known theorem; it is easy to verify using
a straightforward discharging argument. (The proof of Lemma A.1 in section A.2 is
similar, and that is what we use to obtain the stronger result guaranteeing �k/5� − 1
parallel edges.)

Proof of Lemma 4.1 (weaker version). Let G be the planar multigraph of the
reduced instance; every terminal has degree at least k in G. Construct a planar graph
G′ from G by keeping only a single copy of each edge. We argue below that some
terminal t1 ∈ T has degree at most 10 in G′; it follows that G must contain at least
�k/10� copies of some edge incident to t1, as t1 has degree at least k in G. These
edges must be incident to another terminal t2, completing the proof.

To see that some terminal t1 has degree at most 10 in G′, we first assume that
no terminal has degree ≤ 2, or we are already done. Now, as every nonterminal in a
reduced instance has degree at least 3, we may use Theorem 4.3; this implies that G′

has an edge e, such that the sum of the degrees of the endpoints of e is at most 13.
The edge e must be incident to a terminal t1, as the nonterminals are a stable set.
The other endpoint of e has degree at least 3, so the degree of t1 is at most 10.

4.1. Packing Steiner forests in planar graphs. For the planar Steiner for-
est packing problem, we use an algorithm very similar to that for packing Steiner
trees above. Now, as input, we are given sets T1, . . . Tm of terminals that are each
internally k-connected, but some Ti and Tj may be poorly connected. The algorithm
described above for packing Steiner trees encounters a technical difficulty when we
try to extend it to Steiner forests. Lemma 4.1 can be used at the start to merge some
two terminals. Precisely as before, as long as each Ti contains at least two terminals,
it is internally k-element-connected, and hence all terminals have degree at least k.
Therefore, Lemma 4.1 is true, and we can contract some pair of terminals t1, t2 that
have �k/5� − 1 parallel edges between them. Note that if t1, t2 are in the same Ti,
after contraction, we have an instance in which Ti contains fewer terminals, and we
can apply induction. If t1, t2 are in different sets Ti, Tj, then, after contracting, all
terminals in Ti and Tj are pairwise k-connected, so we can merge these two groups
into a single set.

However, as the algorithm proceeds it may get stuck in the following situation:
it merges all terminals from some group Ti into a single terminal. Now this terminal
does not require any more connectivity to other terminals, although other groups are
not yet merged together. In this case we term this terminal as dead. In proving the
crucial Lemma 4.1, we argued that in the multigraph G of the reduced instance, every
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588 CHANDRA CHEKURI AND NITISH KORULA

terminal has degree at least k (since it is k-element-connected to other terminals), and
in the graph G′ in which we keep only a single copy of each edge, some terminal has
degree at most 10; therefore, there are �k/10� copies of some edge. However, in
the Steiner forest problem, some Ti may contain only a single dead terminal t (after
several contraction steps). The terminal t may be poorly connected to the remaining
terminals; therefore, it may have degree less than k in the multigraph G. If t is the
unique low-degree terminal in G′, we may not be able to find a pair of terminals
with a large number of edges between them. Thus, in the presence of dead terminals,
Lemma 4.1 no longer applies; we illustrate this with a concrete example at the end of
section A.1.

We solve this problem by eliminating a set Ti when it has only a single dead
terminal t. One cannot simply delete this terminal or replace it by a single white
vertex, as several paths connecting other terminals may pass through t. Instead, we
replace the dead terminal t with a “well-linked” collection of white vertices so that
distinct paths through t can now use disjoint white vertices from this collection. It
might be most natural to replace t by a clique of white vertices, but this would not
preserve planarity; instead, we replace a dead terminal t with a grid of white vertices,
which ensures that the resulting graph is still planar. We then apply the Reduction
Lemma to remove edges between the newly added white vertices and proceed with
the merging process. We formalize this intuition in the following lemma.

Lemma 4.4. Let G(V,E) with a given T ⊆ V be a planar graph and t ∈ T be an
arbitrary terminal of degree d. Let G′ be the graph constructed from G by deleting t
and inserting a d × d grid of white vertices, with the edges incident to t in G made
incident to distinct vertices on one side of the new grid in G′. Then the following
hold:

1. G′ is planar.
2. For every pair u, v of terminals in G′, κ′

G′(u, v) = κ′
G(u, v).

3. Any set of element-disjoint subgraphs of G′ corresponds to a set of element-
disjoint subgraphs of G.

Proof. See Figure 4.1, showing this operation; it is easy to observe that given a
planar embedding of G, one can construct a planar embedding of G′. It is also clear
that a set of element-disjoint subgraphs in G′ corresponds to such a set in G; every
subgraph that uses a vertex of the grid can contain the terminal t.

It remains only to argue that the element-connectivity of every other pair of
terminals is preserved. Let u, v be an arbitrary pair of terminals; we show that their
element-connectivity in G′ is at least their connectivity κ′(u, v) in G. Fix a set of
κ′(u, v) paths in G from u to v; let P be the paths that use the terminal t, and let
� = |P|. We locally modify these � ≤ d paths in P by routing them through the grid,
so we obtain κ′(u, v) element-disjoint paths in G′.

t t

Fig. 4.1. Replacing a terminal by a grid of white vertices preserves planarity and element-
connectivity.
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A GRAPH REDUCTION PRESERVING ELEMENT-CONNECTIVITY 589

Let Pu denote the set of prefixes from u to t of the � paths in P , and let Pv denote
the suffixes from t to v of these paths. Let H denote the d × d grid that replaces t
in G′; we use P ′

u and P ′
v to denote the corresponding paths in G′ from u to vertices

of H , and from vertices in H to v, respectively. Let I and O denote the vertices of H
incident to paths in P ′

u and P ′
v. It is not difficult to see that there is a set of disjoint

paths in the grid H connecting the � distinct vertices in I to those in O; using the
paths of P ′

u, together with the paths through H and the paths of P ′
v, gives us a set

of disjoint paths in G′ from u to v.
Extensions. Our result for planar graphs can be generalized to graphs of fixed

genus; Ivančo [19] generalized Theorem 4.3 to show that a graph G of genus g has an
edge of weight at most 2g + 13 if 0 ≤ g ≤ 3 and an edge of weight at most 4g + 7
otherwise. This allows us to prove that there exist �k/c� forests where c ≤ 4g + 8;
we have not attempted to optimize this constant c. Aazami, Cheriyan, and Jampani
[1] also give algorithms for packing Steiner trees in these graph classes and graphs
excluding a fixed minor. We thus make the following natural conjecture.

Conjecture 2. Let G = (V,E) be an H-minor-free graph, with terminal sets
T1, T2, . . . Tm, such that for all i, κ′(Ti) ≥ k. There exist Ω(k/c) element-disjoint
Steiner forests in G, where c depends only on the size of H.

We note that Lemma 4.1 fails to hold forH-minor-free graphs and in fact fails even
for bounded treewidth graphs. Thus, our approach cannot be directly generalized.
However, instead of attempting to contract together just two terminals connected
by many parallel edges, we may be able to contract together a constant number
of terminals that are “internally” highly connected. Using Theorem 3.4 and other
ideas, we prove in the next section that this approach suffices to pack many trees in
graphs with small treewidth. We believe that these ideas together with the structural
characterization of H-minor-free graphs by Robertson and Seymour [31] should lead
to a positive resolution of Conjecture 2.

4.2. Packing trees in graphs of bounded treewidth. Let G(V,E) be a
graph of treewidth ≤ r − 1, with terminal set T ⊆ V such that κ′(T ) ≥ k. In this
section, we give an algorithm to find, for any fixed r, Ω(k) element-disjoint Steiner
trees in G. Our approach is similar to that for packing Steiner trees in planar graphs,
where we argued in Lemma 4.1 that there exist two terminals t1, t2 with Ω(k) parallel
edges between them, so we could contract them together and recurse on a smaller
instance. In graphs of bounded treewidth, this is no longer the case; see the end
of the appendix for an example in which no pair of terminals is connected by many
parallel edges. However, we argue that there exists a small set of terminals T ′ ⊂ T
that is highly “internally connected,” so we can find Ω(k) disjoint trees connecting all
terminals in T ′ without affecting the connectivity of terminals in T −T ′. We can then
contract together T ′ and the white vertices used in these trees to form a single new
terminal t and again recurse on a smaller instance. The following lemma captures
this intuition.

Lemma 4.5. If G(V,E) is a bipartite graph of treewidth at most r − 1, with
terminal set T ⊂ V such that T ≥ 2r, κ′(T ) ≥ k, there exists a set S ⊆ V − T
such that there is a component G′ of G−S containing k/12r2 log(3r) element-disjoint
Steiner trees for the (at least two) terminals in G′. Moreover, these trees in G′ can
be found in polynomial time.

Given this lemma, we prove below that for any fixed r, we can pack Ω(k) element-
disjoint trees in graphs of treewidth at most r − 1. The proof combines ideas of
Theorems 4.2 and 3.4.
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590 CHANDRA CHEKURI AND NITISH KORULA

Theorem 4.6. Let G(V,E) be a graph of treewidth at most r − 1. For any
terminal set T ⊆ V with κ′

G(T ) ≥ k, there exist Ω(k/12r2 log(3r)) element-disjoint
Steiner trees on T .

Proof. As for Theorem 4.2, we prove this theorem by induction. Let G be a graph
of treewidth at most r−1, with terminal set T . If |T | ≤ 2r, we have k/6 log |T | ≥ k/6r
element-disjoint trees from the tree-packing algorithm of Cheriyan and Salavatipour
[7] in arbitrary graphs.

Otherwise, we use the Reduction Lemma to ensure that G is bipartite. Let S be
a set of white vertices guaranteed to exist from Lemma 4.5. If S is not a minimal
such set, discard vertices until it is. Now, find k/12r2 log(3r) element-disjoint trees
containing all terminals in some component G′ of G− S; note that each vertex of S
is incident to some terminal in G′ and hence to every tree. (This follows from the
minimality of S and the fact that G is bipartite.) Modify G by contracting all of G′

to a single terminal t, and make it incident to every vertex of S. It is easy to see that
all terminals in the new graph are k-element-connected; therefore, we now have an
instance of the Steiner tree packing problem on a graph with fewer terminals. The new
graph has treewidth at most r − 1, so by induction, we have k/12r2 log(3r) element-
disjoint trees for the terminals in this new graph; taking these trees together with the
k/12r2 log(3r) trees of G′ gives k/12r2 log(3r) trees of the original graph G.

We devote the rest of this section to proving the crucial Lemma 4.5. Subsequently,
we may assume without loss of generality (after using the Reduction Lemma) that
the graph G is bipartite; we may further assume that k ≥ 12r2 log(3r) and |T | ≥ 2r.
First, observe that G has a small cutset that separates a few terminals from the rest.

Proposition 4.7. G has a cutset C of size at most r such that the union of
some components of G− C contains between r and 2r terminals.

Proof. Fix a (rooted) tree-decomposition T of G. Every nonleaf node of T
corresponds to a cutset, and each node of T contains at most r vertices of G. Let v
be a deepest node in T such that the subtree rooted at each child of v has no more
than 2r terminals. The nodes of G contained in v clearly form a cutset C of size
at most r. If any subtree of T rooted at a child of v contains at least r terminals
not contained in C, we are done. Otherwise, greedily select children of v until the
total number of terminals in the associated subtrees not contained in C is between r
and 2r.

We find the set S and component of G−S in which we contract together a small
number of terminals by focusing on the cutset C and components of G − C that are
guaranteed to exist from the previous proposition. We introduce some notation before
proceeding with the proof.

1. Let C be a cutset of size at most r, and let V ′ be the vertices of the union
of some components of G− C containing between r and 2r terminals in total.

2. Since terminals in V ′ are k-connected to the terminals in the rest of the
graph, and |C| ≤ r � k, C contains at least one black vertex. Let C′ be the set of
black vertices in C.

3. Let G′ = G[V ′ ∪ C′] be the graph induced by V ′ and C′.
We omit a proof of the following straightforward proposition; the second part

of the statement follows from the fact that each terminal in V ′ is k-connected to
terminals outside G′, and these paths to terminals outside G′ must go through the
cutset C of size at most r.

Proposition 4.8. The graph G′ contains between r and 3r terminals (as C′ may
contain up to r terminals), and each terminal in V ′ is at least k/r-connected to some
terminal in C′.
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Let T ′ be the set of terminals in G′. If κ′
G′(T ′) ≥ k/2r2, we can easily find a

set of white vertices satisfying Lemma 4.5: Let S be the set of vertices of G that are
adjacent (in G) to vertices of G′. It is obvious that S separates G′ from the rest of G,
and all terminals in T ′ are highly connected; from the tree packing result of [7], we
can find the desired disjoint trees in G′. Finally, note that all vertices of S are white,
as the only neighbors of G′ are either white vertices of the cutset C or the neighbors
of the black vertices in C, all of which are white as G is bipartite.

However, it may not be the case that all terminals of T ′ are highly connected in
G′. In this event, we use the following simple algorithm (very similar to that in the
proof of Lemma 3.3) to find a highly connected subset of T ′: Begin by finding a set
S1 of at most k/2r2 white vertices in G0 = G′ that separates terminals of T ′. Among
the components of G0 − S1, pick a component G1 with at least one terminal of V ′.
If all terminals of G1 are k/2r2 connected, stop; otherwise, find in G1 a set S2 of at
most k/2r2 white vertices that separates terminals of G1, pick a component G2 of
G1 − S2 that contains at least one terminal of V ′, and proceed in this manner until
finding a component G� in which all terminals are k/2r2-connected.

Claim 2. We perform at most r iterations of this procedure before we stop, having
found some subgraph G� in which all the (at least two) terminals are k/2r2 connected.

Proof. At least one terminal of C′ must be lost every time we find such a set
Si; if this is true, the claim follows. To see that this is true, consider each iteration
i ≥ 0 before iteration r. Observe that when we find a cutset Si+1 in Gi, there is a
component that we do not pick that contains a terminal t. If this terminal t is in C′,
we are done; otherwise, it must be in V ′. But from Proposition 4.8 all terminals in V ′

were initially k/r-connected to some terminal in C′, and we have deleted only i+1 ≤ r
sets of white vertices, each of which contained at most k/2r2 vertices. Therefore, some
terminal of C′ must be in the same component as t. When we stop with the subgraph
G�, it contains at least one terminal t′ ∈ V ′ and at least one terminal of C′ to which
t′ is highly connected; therefore, G� contains at least two terminals.

All terminals in the subgraph G� are k/2r2-connected, and there are at most 3r
of them, so we can find k/12r2 log(3r) disjoint trees in G� that connect them, using
the tree packing result of [7]. Let S be the set of vertices of G that are adjacent
(in G) to vertices of G�; obviously, S separates G� from the rest of G, and to satisfy
Lemma 4.5, it merely remains to verify that S contains only white vertices. Every
terminal in G′−G� was separated from G� by white vertices in some Si, and terminals
in G−G′ can only be incident to white vertices of the cutset C, which are not in G′,
let alone G�. This completes the proof of Lemma 4.5.

5. Conclusions. We showed that the reduction step of [18] applies to local
element-connectivity and demonstrated applications of this stronger Reduction Lemma
to packing element- (and edge-) disjoint Steiner trees and forests. We close with sev-
eral open questions:

(i) We believe that our bound on the number of element-disjoint Steiner forests
in a general graph can be improved from Ω(k/(log |T | logh)) to Ω(k/ log |T |).

(ii) It should be possible to prove Conjecture 2, on packing disjoint Steiner
forests in graphs excluding a fixed minor. Chekuri and Ene [3] extended the techniques
of this paper to show that one can pack Ω(k) element-disjoint Steiner forests in graphs
of fixed treewidth, providing further evidence for the conjecture.

(iii) In a natural generalization of the Steiner forest packing problem, each non-
terminal or white vertex has a capacity, and the goal is to pack forests subject to
these capacity constraints. In general graphs it is easy to reduce this problem to
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592 CHANDRA CHEKURI AND NITISH KORULA

the uncapacitated/unit-capacity version (for example, by replacing a white vertex of
capacity c by a clique of size c), but this is not necessarily the case for restricted
classes of graphs. In particular, it would be interesting to pack Ω(k) forests for the
capacitated planar Steiner forest problem. An obvious first step is to prove this for
packing element-disjoint Steiner trees in planar graphs. It is likely that this is pos-
sible, as one can fractionally pack Ω(k) element-disjoint Steiner trees in capacitated
planar graphs; this follows from the work of Demaine, Hajiaghayi, and Klein [11].

Appendix. Packing element-disjoint trees and forests.

A.1. A counterexample to the random coloring algorithm for packing
Steiner forests. We first define a graph Hk, which we use subsequently. Hk has two
black vertices, x and y, and k white vertices, each incident to both x and y. (That is,
there are k disjoint paths of white vertices from x to y.) Given a graph G, we define
the operation of inserting Hk along an edge pq ∈ E(G) as follows: Add the vertices
and edges of Hk to G, delete the edge pq, and add edges from p to x and q to y. (If
we collapsed Hk to a single vertex, we would have subdivided the edge pq.) Figure
A.1 shows H4 and the effect of inserting H4 along an edge.

x y
p q p qx y

Fig. A.1. On the left, the graph H4. On the right, inserting it along a single edge pq.

We now describe the construction of our counterexample. We begin with two
black vertices, s and t, and k vertex-disjoint paths between them, each of length
k + 1; there are no edges other than those just described. Each of the k2 vertices
other than s and t is white. It is obvious that s and t are k-element-connected in this
graph. Now, to form our final graph Gk, insert a copy of Hk along each of the k(k−1)
edges between a pair of white vertices. Figure A.2 shows the construction of G3.

s t s t

H3

H3

H3

H3

H3

H3

Fig. A.2. The construction of G3.

The following claims are immediate:
(i) The vertices s and t are k-element-connected in Gk.
(ii) For every copy of Hk, the vertices x and y are k-white connected in Gk.
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(iii) The graph Gk is bipartite, with the white vertices and the black vertices
forming the two parts.

We use Gk as an instance of the Steiner forest packing problem; s and t form one
group of terminals, and for each copy of Hk, the vertices x and y of that copy form a
group. From our claims above, each group is k-element-connected.

If we use the algorithm of Cheriyan and Salavatipour, there are no edges between
white vertices to be deleted or contracted, so we move directly to the coloring phase.
If colors are assigned to the white vertices randomly, it is easy to see that no color
class is likely to connect s and t. The probability that a white vertex is given color

i is c log |T |
k for some constant c. The vertices s and t can be connected iff the same

color is assigned to all the white vertices on one of the k paths from s to t in the
graph formed from Gk by contracting each Hk to a single vertex. The probability

that every vertex on such a path will receive the same color is ( c log |T |
k )k; using the

union bound over the k paths gives us the desired result.
A counterexample to Lemma 4.1 for planar Steiner forest. Recall that in sec-

tion 4.1, we pointed out that in the presence of dead terminals (after all terminals in
some Ti have been contracted to a single vertex), Lemma 4.1 may no longer apply.
As a concrete example, consider the graph Gk defined at the beginning of this ap-
pendix. (See also Figure A.1, and note that Gk is planar.) We have one terminal set
T1 = {s, t} and other sets Ti containing the two terminals of each copy of Hk. After
several contraction steps, each copy of Hk may have been contracted together to form
a single terminal; each such terminal is only 2-connected to the rest of the graph. In
the reduced instance, there is only a single copy of each edge, and Lemma 4.1 does
not hold.

A.2. A tighter bound for planar graphs.
Lemma A.1. Let G(T ∪W,E) be a planar graph with minimum degree 3, in which

W is a stable set. There exists a vertex t ∈ T of degree at most 10, with at most five
neighbors in T .

Proof. Our proof uses the discharging technique. Assume, for the sake of con-
tradiction, that every vertex t ∈ T has degree at least 11 or has at least 6 neigh-
bors in T . By multiplying Euler’s formula by 4, we observe that for a planar graph
G(V,E) with face set F , (2|E| − 4|V |) + (2|E| − 4|F |) = −8. We rewrite this as∑

v∈V (d(v) − 4) +
∑

f∈F (l(f)− 4) = −8, where d(v) and l(f) denote the degree of
vertex v and length of face f , respectively.

Now, in our given graphG, assign d(v)−4 units of charge to each vertex v ∈ T∪W ,
and assign l(f) − 4 units of charge to each face f : Note that the net charge on the
graph is negative (it is equal to −8). We describe rules for redistributing the charge
through the graph such that after redistribution, if every terminal t ∈ T has degree
at least 11 or has at least 6 neighbors in T , the charge at each vertex and face will be
nonnegative. But no charge is added or removed (it is merely rearranged), and so we
obtain a contradiction.

We use the following rules for distributing charge:
1. Every terminal t ∈ T distributes 1/3 unit of charge to each of its neighbors

in W .
2. Every terminal t ∈ T distributes 1/2 unit of charge to each triangular face f

it is incident to, unless the face contains 3 terminals. In this case, it distributes 1/3
unit of charge to the face.

We now observe that every vertex of W and every face has nonnegative charge.
Each vertex u ∈ W has degree at least 3 (the graph has minimum degree 3), so its
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594 CHANDRA CHEKURI AND NITISH KORULA

initial charge was at least −1. It did not give up any charge, and rule 1 implies that it
received 1/3 from each of its (at least 3) neighbors, all of which are in T . Therefore,
u has nonnegative charge after redistribution. If a face f has length 4 or more, it
already had nonnegative charge, and it did not give up any. If f is a triangle, it starts
with charge −1. It is incident to at least 2 terminals, since W is a stable set; we argue
that it gains one unit of charge, to end with charge 0. From rule 2, if f is incident to
two terminals, it gains 1/2 unit from each of them, and if it is adjacent to 3 terminals,
it gains 1/3 unit from each of them.

It remains only to argue that each terminal t ∈ T has nonnegative charge after
redistribution. Consider a terminal of degree d; let b denote its number of terminal
neighbors, Δ the number of triangular faces it is incident to, and Δ3 the number of
triangular faces containing 3 terminals. The charge that t has after redistribution is
equal to

d− 4− d− b

3
− Δ

2
+

Δ3

6
,

where d− b is the number of neighbors in W , and we subtract Δ/2 for every incident
triangular face; the last term compensates for the fact that triangular faces with 3
terminals receive only 1/3 units of charge from t.

To simplify these expressions, we will use the fact that since every neighbor in
b can participate in at most 2 triangular faces with t, we have b ≥ �Δ/2�. Also, we
(trivially) have Δ ≤ d. To see that the charge left on t is always nonnegative, we
consider a few cases.

First, suppose d ≥ 12. The total charge left on t is equal to

2d

3
− 4 +

b

3
− Δ

2
+

Δ3

6
≥ 2d

3
− 4 +

Δ

6
− Δ

2

=
2d

3
− 4− Δ

3
≥ d

3
− 4 ≥ 0,

where the first inequality follows from b ≥ Δ/2, the second from Δ ≤ d, and the final
one from d ≥ 12.

Now, suppose d = 11. If Δ ≤ 10, the same analysis gives a charge of at least
2d/3−4−10/3 = 0. Therefore, we must consider the case when Δ = 11. Now, we use
the fact that b ≥ �Δ/2� = 6, and since at least 6 out of t’s 11 neighbors are terminals,
there exists at least one triangle containing 3 terminals; that is, Δ3 ≥ 1. Hence, the
total charge left on t is at least

2d

3
− 4 +

b

3
− Δ

2
+

Δ3

6
≥ 22

3
− 4 +

6

3
− 11

2
+

1

6
= 0.

Finally, we consider the case d ≤ 10. Recall that from the hypothesis, t has at least
6 terminal neighbors, that is, b ≥ 6. We use the following claim: Δ3 ≥ 2b−2d+Δ. To
see that this is true, consider the b terminal neighbors of t arranged around t. Moving
around t, how could each of the b consecutive pairs not be part of a triangular face
with t, and thus not contribute to Δ3? There are only two possibilities: Either a
consecutive pair of terminal neighbors is part of a nontriangular face with t, or the
two vertices are not part of a face with t at all; in the latter case, there must be a
neighbor w ∈ W of t “in between” this pair of vertices. Figure A.3 illustrates these
cases. In the former case, each of the d − Δ nontriangular faces incident to t can
decrease Δ3 by 1. In the latter case, each of the d − b neighbors in W can decrease
Δ3 by 1. Therefore, Δ3 ≥ b − (d−Δ)− (d− b) = 2b− 2d+Δ.
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Fig. A.3. Lower bounding the number of triangular faces with 3 terminals. Vertices of T are
in black, and vertices of W are in white. Two “consecutive” terminals around t do not form a
triangular face with t if they are part of a larger face, or if a vertex of W appears “between” them.

Recall that we have b ≥ 6 and that the charge left on t is equal to

2d

3
− 4 +

b

3
− Δ

2
+

Δ3

6
≥ 2d

3
− 4 +

b

3
− Δ

2
+

2b− 2d+Δ

6

≥ 2d

3
− Δ

2
+

Δ− 2d

6
=

d

3
− Δ

3
≥ 0,

where the first inequality follows from our claim above, the following inequality from
b ≥ 6, and the final inequality from Δ ≤ d.

Proof of Lemma 4.1. Our argument is very similar to that of the proof in section 4
in that there are two terminals with at least �k/10� edges between them, except that
here we use Lemma A.1 instead of Theorem 4.3.

Let G be the planar multigraph of the reduced instance; every terminal has degree
at least k in G. Construct a planar graph G′ from G by keeping a single copy of each
edge; from Lemma A.1 above, some terminal t has degree at most 10 and at most 5
black neighbors. Let w denote the number of white neighbors of t and b the number
of black neighbors. Since each white vertex is incident to only a single copy of each
edge in G, there must be at least �(k − w)/b� copies in G of some edge between t and
a black neighbor. But b ≤ 5 and b+w ≤ 10; it is easy to verify that since k ≥ 10, the
smallest possible value of �(k − w)/b� is �(k − 5)/5� = �k/5� − 1.

A.3. A counterexample to the existence of two terminals connected
by Ω(k) “parallel edges”. Recall that in the case of planar graphs (or graphs of
bounded genus), we argued that there must be two terminals t1, t2 with Ω(k) “parallel
edges” between them. (That is, there are Ω(k) degree-2 white vertices adjacent to t1
and t2.) This is not necessarily the case even in graphs of treewidth 3: The graph
K3,k, the complete bipartite graph with three vertices on one side and k on the other,
has treewidth 3. If the three vertices on one side are the terminal set T and the k
vertices of the other side are nonterminals, it is easy to see that κ′(T ) = k, but every
white vertex has degree 3.

In this example, there are only three terminals, so the tree packing algorithm
of Cheriyan and Salavatipour [7] would allow us to find Ω(k/ log |T |) = Ω(k) trees
connecting them. Adding more terminals incident to all the white vertices would
raise the treewidth, so this example does not immediately give us a low-treewidth
graph with a large terminal set such that there are few parallel edges between any
pair of terminals. However, we can easily extend the example by defining a graph Gm

as follows: Let T1, T2, . . . , Tm be sets of two terminals each, let W1,W2, . . . ,Wm−1

each be sets of k white vertices, and let all the vertices in each Wi be adjacent
to both terminals in Ti and both terminals in Ti+1. (See Figure A.4.) The graph
Gm has 2m terminals, T =

⋃
i Ti is k-element-connected, and it is easy to verify
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596 CHANDRA CHEKURI AND NITISH KORULA

that Gm has treewidth 4. However, every white vertex has degree 4, so there are
no “parallel edges” between terminals. (One can modify this example to construct
a counterexample graph Gm with treewidth 3 by removing one terminal from each
alternate Ti.)

T1 W1 T2 W2 T3 W3 T4 W4 T5

Fig. A.4. A graph of treewidth 4 with many terminals but no “parallel edges.”
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