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We give the first nontrivial approximation algorithms for the Steiner tree
problem and the generalized Steiner network problem on general directed graphs.
These problems have several applications in network design and multicast routing.
For both problems, the best ratios known before our work were the trivial
Ž .O k -approximations. For the directed Steiner tree problem, we design a family of

Ž . 1r i Ž i 2 i.algorithms that achieves an approximation ratio of i i y 1 k in time O n k
Ž e .for any fixed i ) 1, where k is the number of terminals. Thus, an O k approxi-

mation ratio can be achieved in polynomial time for any fixed e ) 0. Setting
Ž 2 .i s log k, we obtain an O log k approximation ratio in quasi-polynomial time.

For the directed generalized Steiner network problem we give an algorithm that
Ž 2r3 1r3 .achieves an approximation ratio of O k log k , where k is the number of pairs

of vertices that are to be connected. Related problems including the group Steiner
tree problem, the set TSP problem, and several others in both directed and
undirected graphs can be reduced in an approximation preserving fashion to the
directed Steiner tree problem. Thus, we obtain the first nontrivial approximations
to those as well. All these problems are known to be as hard as the Set cover
problem to approximate. Q 1999 Academic Press

Key Words: approximation algorithm; directed graph; Steiner tree problem.

1. INTRODUCTION

Ž .The Steiner tree problem is defined as follows: given a graph G s V, E
Žwith a cost function c on the edges, and a subset of vertices X : V called

.terminals , the goal is to find a minimum cost tree that includes all the
vertices in X. The cost of the tree is defined as the sum of the costs of the
edges in the tree. Note that the tree may include vertices not in X as well
Ž .these are known as Steiner vertices . The Steiner tree problem is NP-

w xComplete even when the graph is induced by points in the plane 10 , and
w xis MAX SNP-hard 3 for general graphs. The undirected version has been

very well studied and algorithms achieving constant factors have been
w xgiven by several authors 17, 23, 26, 2, 19 .

The directed version of the Steiner tree problem is a natural extension
of the undirected version and is defined as follows. Given a directed

Ž .weighted graph G s V, A , a specified root r g V, and a set of terminals
Ž < < .X : V X s k , the objective is to find the minimum cost arborescence

Žrooted at r and spanning all the vertices in X in other words r should
.have a path to every vertex in X . The Steiner tree problem and its

variants have several applications in network design and network routing.
For example, multicasting involves the distribution of the same data from a
central server to several nodes in the network and the problem is to

Ž .choose a set of edges or communication links of minimum cost for the
server to route the data. The connection between this problem and the
Steiner tree problem is clear. For a general survey on the use of Steiner

w xtree problems in networks, see 25 . Most of the theoretical work till now
has focused on the undirected versions of the Steiner problems. However,



APPROXIMATING DIRECTED STEINER PROBLEMS 75

there are many networks in practice where the communication links are
asymmetric and cannot be modeled by undirected edges. The problem of
multicast routing in asymmetric networks has received considerable atten-

w xtion recently 21, 22 .
From a theoretical point of view, the directed Steiner tree problem is

very useful for the following reason. A wide variety of problems involving
connectivity and covering, in both directed and undirected graphs, can be
reduced to this problem in approximation preserving ways. These include

w xthe group Steiner tree problem 20 , node weighted Steiner tree problem
w x14, 18 , several interesting problems in connected domination, namely

Ž .edge weighted connected dominating sets, group or set TSP, node
Ž w xweighted Steiner connected domination, and others see 13 for some of

.the reductions . These problems arise in several different applications and
no nontrivial approximation algorithms were known for any of these. All of
the above problems are known to be hard to approximate within a
logarithmic factor from reductions via Set cover. Our result on directed
Steiner tree gives a unified approximation algorithm for these problems. In
addition, our result gives some evidence that these problems are in the
class of problems approximable to within polylogarithmic factors in poly-
nomial time. In fact for the group Steiner tree problem on undirected

w xgraphs, Garg et al. 12 have very recently obtained a polylogarithmic
approximation.

We also consider the directed generalized Steiner network problem
where instead of a root and a set of terminals, we are given a set of k pairs
of vertices, and the objective is to find a minimum cost subgraph which
connects each pair. In the undirected case, it is easy to see that the optimal
solution is a forest but that is not necessarily true in the directed case. The
general version has several applications in network design and network
reliability, though it is only recently that progress has been made in terms
of obtaining good approximation algorithms even in the undirected case.
The first constant factor algorithms for the undirected case were given in
w x w x Ž .1, 24 . Agrawal et al. 1 also give O log R approximations for the more

Žgeneral case, where each pair has a connectivity requirement r thei j
Ž ..number of edge disjoint paths required for the pair i, j and R is the
w xmaximum connectivity requirement. Very recently, Jain 15 gave a factor 2

approximation algorithm for this problem. In this paper we restrict our-
selves to the case where r s 1 for all pairs.i j

A fairly easy reduction from the Set cover problem shows that it is hard
to approximate directed Steiner tree to a factor better than ln k, where k

w OŽlog log n.x w xis the number of terminals, unless NP : DTIME n 9 . It is also
easy to obtain an approximation factor of k, by connecting every terminal
to the root via a shortest path. The only known polynomial time approxi-

w xmation algorithm, even for a special case, is due to Zelikovsky 27 , where
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Žhe gives an approximation algorithm which achieves a ratio of 2 q
. iy1 1r iln k k for any i ) 0 for directed acyclic graphs. Zelikovsky further

conjectures that no subpolynomial approximation guarantees are possible
unless P s NP. There is a simple reduction from arbitrary directed graphs
to acyclic graphs, therefore Zelikovsky’s result carries over to the general

Ž . 1r icase. In this paper, we present a factor i i y 1 k approximation algo-
Ž i 2 i.rithm which runs in time O n k for any i ) 0 for the directed Steiner

w xtree problem. Our approach is simpler compared to that of Zelikovsky 27 .
Ž 2 .Further, setting i s log k, we obtain an O log k approximation in

Ž 3 log k .O n time. Our result gives evidence that the problem can be approxi-
mated to within polylogarithmic factors in polynomial time, contrary to
Zelikovsky’s conjecture. This is our main contribution. Many of the prob-
lems we mentioned earlier which reduce to the Steiner tree problem are
also hard to approximate to within a logarithmic factor. Thus, our results
have implications for the complexity of those problems as well. For the
directed generalized Steiner tree problem we present an algorithm which

Ž 2r3 1r3 .achieves an approximation ratio of O k log k , where k is the
number of pairs that need to be connected.

Related work. Closely related to our work is the paper of Kortsarz and
w xPeleg 16 on approximating shallow-light trees in undirected graphs that

w xpredates the conference version of this paper 5 . Such trees have applica-
tions in multicast routing with bounded path lengths. Our greedy algorithm

w xfor the directed Steiner tree problem is very similar to that in 16 for
undirected shallow light trees. The reason for this is the close connection
between the two problems that was first noticed by the authors of this

Ž 2 .paper. Kortsarz and Peleg claim a O log n -approximation in quasi-poly-
nomial time for their algorithm. However, the analysis of their algorithm is
incorrect for a subtle technical reason. Our analysis, though similar to
theirs, differs in that technical detail and we provide a correct analysis that
yields our claimed bound.

Our contribution is the correct analysis, and generalizing the algorithm
to the directed Steiner tree problem and related problems. We also
provide the first approximation algorithm for the directed generalized
Steiner network problem.

The rest of the paper is organized as follows. In Section 2 we introduce
notation and prove some basic lemmas. Sections 3 and 4 describe the
algorithms for the directed Steiner tree and the generalized versions,
respectively. In Section 5, we briefly sketch the reductions of some related
problems to the directed Steiner tree problem.
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2. PRELIMINARIES

In this section we will give some basic definitions and lemmas concern-
ing partial solutions and l-level trees. We define a slightly more general
version of the directed Steiner tree problem below. We are given a

Ž . Ž .directed graph G V, A with costs associated with edges. Let c e denote
the cost of edge e. We assume without loss of generality that between

Ž .every pair of vertices u and ¨ , there exists an edge u, ¨ of cost equal to
the shortest path distance from u to ¨ in G.

Ž .DEFINITION 1. Given root r g V G , an integer k and a set X : V of
< < Ž .terminals with X G k, the problem D-STEINER k, r, X is to construct a

tree rooted at r, spanning any k terminals in X, and of minimum possible
cost.

Ž . 1r i Ž .We give an i i y 1 k approximation to the D-STEINER k, r, X prob-
lem for any i ) 1. This then implies the same approximation ratio for the
directed Steiner tree problem. Our approach gives similar approximation
ratios for connectivity problems, where it is sufficient to connect any k of a
given set of terminals. For example, we can solve the generalization of the

w xk-MST problem 4, 11 to directed graphs, where the objective is to find an
arborescence on k vertices of G of minimum cost.

Ž .Let c T denote the cost of a tree T , or the sum of the costs of the
Ž .edges in T. Let k T denote the number of terminals in T ; in other words

Ž .k T s T l X.

Ž .DEFINITION 2. Define d T , the density of tree T to be the ratio of the
Ž .cost of the tree to the number of terminals in T ; in other words d T s

Ž . Ž .c T rk T .

We will assume without loss of generality that all terminals are at the
leaves of any Steiner tree. We can arrange this by connecting a dummy
terminal to the real terminal with a zero cost edge. Our algorithm is based
on repeatedly finding trees with good density each spanning only a subset
of the terminals. The final solution is the union of all these trees. The
following definition of a partial approximation procedure and the next
lemma relate the quality of the final solution to the density of the trees
found at each step.

Ž .DEFINITION 3. Define an f k -partial approximation procedure for
Ž .D-STEINER k, r, X to be a procedure which constructs a tree T 9 rooted at

Ž . Ž .r, spanning 1 F k9 F k terminals in X such that d T 9 F f k ? C rk,OPT
Ž .where C is the cost of an optimal solution to D-STEINER k, r, X .OPT

Ž .If AA k, r , X is a partial approximation procedure for D-
Ž .STEINER k, r, X , we can apply AA repeatedly to obtain an approximation
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Ž . Ž . Ž .algorithm BB k, r, X for D-STEINER k, r, X as follows. BB k, r, X first
Ž .calls AA k, r, X . Suppose this returns a tree T spanning k terminals. If1 1

Ž .k s k, T is returned. Otherwise, BB k, r, X returns the union of T and1 1 1
Ž .the tree returned by a recursive call to BB k y k , r, X y X , where X is1 1 1

the set of terminals spanned by T .1

Ž . Ž .LEMMA 1. Gï en AA k, r, X , an f k -partial approximation for D-
Ž . Ž .STEINER k, r, X , where f x rx is a decreasing function of x, the algorithm

Ž . Ž . Ž .BB k, r, X gï es a g k -approximation algorithm for D-STEINER k, r, X
Ž . kŽ Ž . .where g k s H f x rx dx.0

Proof. We will prove the claim by induction on k. The base case k s 1
Ž . 1Ž Ž . . Ž Ž . .follows as f 1 F H f x rx dx by the decreasing property of f x rx .0

Suppose the claim is true for all values less than k. We will prove it for k.
Ž .Let T be an optimal solution to D-STEINER k, r, X . Suppose the callO PT

Ž .to AA k, r, X returns tree T rooted at r spanning k terminals, i.e.1 1
Ž .k T s k :1 1

c T c TŽ . Ž .1 OPT
d T s F f k 1Ž . Ž . Ž .1 k k1

f kŽ .
c T F k ? ? c T 2Ž . Ž . Ž .1 1 OPTk

f xŽ .k
F dx c T , 3Ž . Ž .H OPTž /xkyk1

Ž .where the last inequality follows from the decreasing property of f x rx.
Ž . Ž . Ž .If k s k, the algorithm returns T . For this case, c T F g k ? c T ,1 1 1 OPT

Ž .proving that the algorithm gives a g k -approximation.
Suppose k - k. Let X be the set of terminals spanned by T . Let T1 1 1 2

Ž .be the tree returned by the recursive call to BB k y k , r, X y X . Since1 1
T spans k terminals in X, it spans at least k y k terminals in X y X .OPT 1 1
Hence, the minimum cost tree on k y k terminals in X y X has cost at1 1

Ž . Ž . Ž . Ž .most c T . By the inductive hypothesis, c T F g k y k ? c T ; i.e.OPT 2 1 OPT

f xŽ .kyk1c T F dx c T . 4Ž . Ž . Ž .H2 OPTž /x0

Ž . Ž .Adding 3 and 4 , we get

c T q c T F g k c T .Ž . Ž . Ž . Ž .1 2 OPT

Ž .This proves that for this case, too, the algorithm gives a g k -approxima-
tion.
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DEFINITION 4. An l-level tree is a tree where no leaf is more than l
edges away from the root.

w xThe following Lemma from 27 is crucial for our algorithm.

Ž w x.LEMMA 2 Zelikovsky 27 . For all l G 1 there exists an l-le¨el tree that
1r l Ž .pro¨ides a k approximation to D-STEINER k, r, X .

3. DIRECTED STEINER TREE PROBLEM

Before we describe our algorithm formally, we will provide some intu-
ition and an outline of our techniques. The density of a tree can be
interpreted as the average cost of connecting a terminal to the root.
Lemma 1 shows that a partial approximation procedure, which finds a tree
with density close to that of the optimal tree, leads to a good approxima-
tion algorithm. Our algorithm to find trees of good density is motivated by
the following.

A trivial algorithm for the problem is to compute shortest paths from
each of the terminals to the root and combine them. It is instructive to
consider an example for which this algorithm gives a ratio of k. Consider a
graph where there is path of cost C from the root to a vertex ¨ , andOPT
zero cost edges from ¨ to each of the terminals. In addition, there are
paths of cost C y e from the root to each of the terminals. The naiveOPT
algorithm picks each of the shortest paths and does not use the path

Ž .through ¨ , thus incurring a cost k C y e .OPT
Motivated by the above extreme example, we can think of finding

subtrees of good density which have the following structure. The tree
consists of a path from the root r to an intermediate node ¨ , and ¨ is
connected to some set of terminals using a shortest path to each of them.
For obvious reasons, we call such a structure a bunch. The advantage of
choosing such a simple structure is that we can compute, in polynomial
time, a bunch with the best density. It is not difficult to see that a 2-level
tree can be decomposed into disjoint bunches. Therefore, we can use

'Lemma 2 to claim that the best bunch has density no more than k times
'the density of the optimal tree. This immediately gives us a simple k

approximation.
An obvious way to improve the result is to find structures which are

more general than bunches and approximate the optimal tree more closely.
We obtain a much improved ratio using this approach but the simplest way
to describe it is via recursion, which we proceed to do next. We will define

Ž . Ž . 1r ia sequence of algorithms A k, r, X such that A gives a i i y 1 k -i i
Ž . OŽ i.approximation for D-STEINER k, r, X and runs in time n . We can set

Ž 2 .i s log k to obtain an O log k algorithm in quasi-polynomial time.
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Ž . Ž .Let T k, r, X refer to the tree returned by A k, r, X . Leti i
Ž i. Ž . Ž .T k, r, X denote the optimum i-level tree for D-STEINER k, r, X withOPT

Ž i. Ž . Ž i. Ž . Ž i. Ž .cost C k, r, X , and let d k, r, X s C k, r, X rk be its den-OPT OPT OPT
sity.

Ž .A k, r, X is simple to describe}it finds the k terminals which are1
closest to the root and connects them to the root using shortest paths.
Ž .A k, r, X repeatedly finds a vertex ¨ and a number k9, 1 F k9 F k, suchi

Ž . �Ž .4that the density of the tree T k9, ¨ , X j r, ¨ is the least amongiy1
Ž .all trees of this form. The algorithm A k, r, X is described formally ini

Fig. 1.
We now prove the following lemma for arbitrary i. Recall that we are

working with the transitive closure of the original graph.

LEMMA 3. The trees T chosen by the algorithm A , i G 2, in step 7BEST i
Ž . Ž . Ž i. Ž .ha¨e the property: d T F i y 1 ? d k, r, X , where k and X refer toBEST OPT

the current ¨alues being used by the algorithm A .i

Ž .Proof. The proof is by induction on i. Since A k, r, X actually finds2
the best density 2 level tree, the lemma holds for i s 2. We now assume
that the lemma holds for all j less than i.

Ž . Ž i. Ž .Consider an outgoing edge r, ¨ in the tree T k, r, X . Let aOPT ¨
Ž .denote the cost of the edge r, ¨ , and let T represent the subtree of¨

Ž i. Ž .T k, r, X rooted at ¨ . Notice that T has no more than i y 1 levels.OPT ¨
We can always add zero cost edges and assume that T is exactly an i level¨
tree. Notice that this is why the algorithm does not exclude the vertex
while finding its best ratio subtree of lower level. Let b be the cost of T ,¨ ¨

Ž .and k - k be the number of terminals in T see Fig. 2 . Let ¨ be the¨ ¨

Ž .FIG. 1. Algorithm A k, r, X .i
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FIG. 2. The optimum i level tree.

Ž .child of r which minimizes the quantity d s a q b rk . It is easy to¨ ¨ ¨ ¨
Ž i. Ž .see that d can be no more than d k, r, X .¨ OPT

Ž .Now consider the behavior of the algorithm A k , ¨ , X . Let siy1 ¨ j
Ž .denote the total number of terminals picked up by A k , ¨ , X at theiy1 ¨

Ž .end of the jth iteration of the while loop. Since A k , ¨ , X eventuallyiy1 ¨
Ž .picks at least k terminals, there is an l such that s - k r i y 1 and¨ l ¨

Ž .s G k r i y 1 . Let k s s and k s s and let T and T denote thelq1 ¨ 1 l 2 lq1 1 2
Ž .corresponding trees constructed by A k , ¨ , X at end of iterations liy1 ¨

Ž .and l q 1 , respectively. At the end of iteration l we observe that
< < Ž . Ž . Ž .T l X G k y k G k G k r i y 1 s k i y 2 r i y 1 . Thus, since so¨ ¨ 1 ¨ ¨ ¨
many terminals are left and there exists a tree of cost at most b to¨
connect them, the density of the optimal i y 1 level tree rooted at ¨

Ž . Ž .before the start of the l q 1 th iteration can be no more than b rk ?¨ ¨
Ž . Ž .i y 1 r i y 2 .

From our inductive hypothesis it follows that the density of the tree
Ž . Ž . Ž .found in the l q 1 th iteration can be no worse than b rk ? i y 1 .¨ ¨

Ž .Also notice that the density of the best i y 1 level tree rooted at ¨ can
be bounded by the same quantity for the first l iterations as well.
Therefore, it follows that the density of the tree T at the end of iteration2
Ž . Ž . Ž .l q 1 is at most b rk ? i y 1 and, further, the number of terminals¨ ¨

Ž .in T is k which is at least k r i y 1 .2 2 ¨
Ž .Notice that the algorithm A k , ¨ , X would produce exactly the treeiy1 2

Ž . Ž .T described above. When A k, r, X invokes A k , ¨ , X , it would get2 i iy1 2
Ž .back a tree satisfying k G k r i y 1 terminals. Taking into account the2 ¨

connection cost from r to ¨ , the density of this tree would be at most
Ž . Ž . Ž . Ž i. Ž .a rk q b rk ? i y 1 F i y 1 d . Recall that d F d k, r, X .¨ 2 ¨ ¨ ¨ ¨ OPT

This completes the proof of the inductive hypothesis.
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Ž . Ž . 1r iTHEOREM 4. For i ) 1, A k, r, X pro¨ides an i i y 1 k approxima-i
Ž . Ž i 2 i.tion to D-STEINER k, r, X in time O n k .

Ž .Proof. We divide the execution of A k, r, X into stages. Each stagei
Ž .corresponds to one iteration of the outer loop line 2, Fig. 1 . Let k be thej

number of terminals that still need to be satisfied at the beginning of stage
j, and let X be the set of unsatisfied terminals. Using Lemma 3, we canj

Ž .claim that the density d of A during stage j is no worse than i y 1 ?j i
Ž i. Ž .C k , r, X rk . We can now invoke Lemma 2 to claim thatOPT j j j
Ž i. Ž . 1r i Ž . 1r iC k , r, X F k C . Therefore, d F i y 1 ? C ? k . NoticeOPT j j j OPT j OPT j

Ž . 1r ithat each stage behaves like an i y 1 ? k -partial approximation toj
Ž .D-STEINER k , r, X . Using Lemma 1 we obtain the bound on the cost ofj j

Ž .the solution produced by A k, r, X ,i

y1r i dyk l r icost T k , r , X F i y 1 ? C s i i y 1 k ? C .Ž . Ž . Ž .Ž . Hi OPT OPTy0

We observe that A invokes A at most nk 2 times and the running timei iy1
bound follows.

Ž . Ž 2 .THEOREM 5. A k, r, X pro¨ides an O log k approximation to theu log k v

Ž 3 log k .directed Steiner tree problem in time O n .

Proof. Follows from Theorem 4.

w xZelikovsky conjectures in 27 that the directed Steiner tree problem
cannot have a subpolynomial approximation guarantee unless P s NP.
Contrary to his conjecture, Theorem 5 gives some evidence that polyloga-
rithmic approximation in polynomial time is possible.

For many applications of multicasting there is a restriction on the
Žnumber of hops the number of edges used in the path from the root to

.each of the terminals . This problem, where the number of hops are
w xbounded by d, has been studied by Kortsarz and Peleg in 16 in the

undirected setting where they refer such trees ‘‘shallow-light trees.’’ They
prove a lemma very similar to Lemma 3. However, their proof is incorrect.

Ž 2 1r i.They claim an O i log k ? k approximation for shallow-light trees in
OŽ1r i. Ž i 1r i.time n , but in fact their results only guarantee an O 2 k approxi-

mation in time nŽOŽ1r i.. For fixed d their algorithm will only yield a
Ž d . Ž i 1r i.O 2 log n approximation and an O 2 k approximation in the general

case. This does not lead to a polylogarithmic approximation in quasi-poly-
nomial time. Our proof of lemma 3 can be used to get an algorithm that

w xachieves the bounds claimed in 16 . The algorithm repeatedly contracts
Ž . Ž .the tree A k, r, X in the first case and A k, z, X in the second. Basedd i

on this we can prove the following theorem for shallow-light trees.
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THEOREM 6. For any fixed d ) 0, there is an algorithm which runs in time
OŽd. Ž .n and gï es a tree of cost at most O d log k times the cost of the best

Steiner tree with path lengths bounded by d. Furthermore for arbitrary d, there
Ž . 1r iis an algorithm which achië es an approximation ratio of i i y 1 k and

OŽ i. Ž 2 .runs in time n for all i ) 1. Setting i s log k we obtain an O log k
approximation in quasi-polynomial time.

We briefly explain the technical difference between our analysis and
w xthat of Kortsarz and Peleg 16 . In our algorithm, the recursive procedure

Ž . ŽA k, r, X returns a tree with at least k terminals if there are ki
.reachable from r in the first place , but it could have many more than k

terminals. However, the guarantee we make is that the density, or in other
words the cost per terminal, of the tree returned is no worse than a certain

Ž .factor away from the optimal tree’s with k terminals density. The analysis
w xof 16 does not make use of this subtlety. This results in an exponential

dependence on the number of levels.

4. DIRECTED GENERALIZED STEINER
NETWORK PROBLEM

Ž .Formally the problem is the following. Given a directed graph G V, A
�Ž .4and a set X s a , b of k node pairs, find the minimum cost subgraphi i

Ž .H of G such that for each node pair a , b g X there exists a directedi i
path from u to ¨ in H. The cost of the subgraph H is the sum of the costi i
of all the edges in H. This problem has been well studied in undirected

wgraphs and constant factor approximation algorithms are presented in 1,
x24 . However, the primal-dual algorithm does not extend because the cuts

do not define a submodular function due to asymmetry; for definition of
w xthe submodular function see 24 .

As before, we work with a slightly more general problem we call
Ž .DG-STEINER k, X which is the problem of finding a minimum cost

subgraph H of G that satisfies at least k node pairs from the set X.
Clearly, directed generalized Steiner tree is a special case of DG-

Ž . Ž 2r3 1r3 .STEINER k, X . In this section, we present an O k log k approxima-
Ž .tion to the DG-STEINER k, X problem.

Ž . Ž .Let H* k, X denote an optimal solution to DG-STEINER k, X and let
Ž .C denote its cost. Define k H to be the minimum of k and theOPT

Ž .number of node pairs in X that get satisfied by H. Further, let c H
Ž . Ž . Ž .denote the cost of H, and let d H s c H rk H be the density of H.

Ž .We will omit the parameters k, X , where their values are clear from the
Ž . Ž .context. An f k partial approximation to DG-STEINER k, X can be

Ž .defined in a manner similar to that for D-STEINER k, X .
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Ž .FIG. 3. Algorithm CC k, X .

Ž .Recall that between every pair of vertices u, ¨ , there exists an edge of
cost equal to the shortest path distance from u to ¨ in G. The main idea
of the algorithm is to repeatedly find good bunches, where a bunch is
defined as follows.

�Ž . Ž .4DEFINITION 5. Let Y s a , b , . . . , a , b be a subset of X contain-1 1 p p
Ž .ing p F k node pairs. For vertices u and ¨ of G, a bunch B s u, ¨ , Y is

� 4defined as a graph with the vertex set u, ¨ , a , a , . . . , a , b , b , . . . , b . B1 2 p 1 2 p
Ž . Ž .has an edge u, ¨ of cost identical to that of the edge u, ¨ in the graph

Ž . Ž .G. B also has edges a , u and ¨ , b , with costs identical to those in G.i i

Figure 4 illustrates the structure of a bunch. The density of a bunch is
defined to be the ratio of its cost to the number of pairs it connects. In Fig.

Ž .3 we give an algorithm CC k, X that finds a bunch of minimum density.
Ž .We then prove the existence of a bunch B k, X that has density

Ž Ž Ž .. 2r3 1r3 .O d H* k, X ? k log k . This allows us to claim that CC provides an

Ž .FIG. 4. The bunch u, ¨ , Y .
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Ž 2r3 1r3 . Ž .O k log k partial-approximation to DG-STEINER k, x . We then
Ž .apply Lemma 1 to obtain an approximation to DG-STEINER k, x .

Finding the best bunch is straightforward}we find the lowest cost
bunch for all possible values of u, ¨ , and p and then choose the minimum

Ž 2 .density bunch out of these at most n k lowest cost bunches. The proof of
the following lemma is quite simple and hence we omit it.

Ž .LEMMA 7. The algorithm CC k, X finds a minimum density bunch.

We now prove the existence of low-density bunches. For convenience,
Ž . 2r3 1r3 Ž .we define h k , k ) 1 to be the quantity 6k log k. Also, let h 1 s 1.

Ž . Ž . Ž .THEOREM 8. There exists a bunch B k, X such that d B F C rk ?OPT
Ž .h k .

Ž .Proof. Suppose there exists a node pair a, b g X such that the
Ž . Ž .distance between a and b is no more than C rk ? h k . ThenOPT

Ž �Ž .4.a, b, a, b is the required bunch, and we are done. Notice that if k s 1
then such a node pair always exists. Therefore we will implicitly assume
k G 2 for the rest of the proof.

Ž .If there exists no such node pair, then in the optimal solution H* k, X
Ž . Ž .each node pair must be separated by a distance of at least C rk ? h k .OPT

Also, no node pair can be separated by more than C . For i G 1, let XOPT i
Ž .denote the set of node pairs a, b such that the distance from a to b in

Ž . w iy1 Ž .Ž . i Ž ..Ž .xH* k, X lies in the range 2 ? h k C rk , 2 ? h k C rk . LetOPT OPT
I denote the maximum value of i for which X is nonempty. Sincemax i

< <k G 2, I F log k. Therefore, there exists an i9 such that X G krlog k.max i9
Let HU be a minimum cost subgraph of H* satisfying all node pairs ini9

Ž . Ž .UX . For each node pair a, b g X , let P a, b be the shortest pathi9 i9 H i9

between a and b in HU. If there are multiple shortest paths between ai9
and b, choose one of them arbitrarily.

The sum of the shortest paths between all the node pairs in X isi9
i9y1 Ž . Ž . Ž . Ugreater than 2 h k ? C rk ? krlog k . But the cost of H is noOPT i9

more than C . Thus, there has to be an edge which is shared by at leastOPT
Ž Ž . . i9y1 Ž .h k rlog k ? 2 paths. Let this edge be e s u, ¨ , and let X be thee

Ž . Ž .Uset of node pairs a, b such that P a, b passes through e. Each of theseXH i
Ž . Ž . Ž .paths can be split into three parts, P a, u , the edge u, ¨ , and P ¨ , b .

Ž . ŽLet H be the union of paths of the form P a, u i.e. the first compo-1
. Ž . Žnents and H be the union of paths of the form P ¨ , b i.e. the third2

. Ž . Ž .components . Clearly c H F C and c H F C . Let T be a1 OPT 2 OPT 1
Ž .shortest-incoming-path tree rooted at u in the graph H and T be a1 2
Ž .shortest-outgoing-path tree rooted at ¨ in the graph H .2

Ž . Ž .Let dist a, u be the cost of the path from a to u in T ; dist ¨ , b isT 1 T1 2
Ž Ž . Ž ..defined similarly. Let D s max dist a, u q dist ¨ , b . By defi-Ža, b.g X T Te 1 2

Ž . Ž . i9nition of the sets X , D is no more than C rk h k ? 2 . Let ci OPT
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Ž .1r3represent the quantity krlog k . We now divide the trees T and T1 2
into at most c segments, each of depth C rc. Node a belongsOPT

Ž . w Ž . xto segment i G 1 of T if dist a, u g i ? C rc, i q 1 ? C rc .1 T OPT OPT1
Ž .Similarly, node b belongs to segment j G 1 of T if dist ¨ , b g2 T2w Ž . xj ? C rc, j q 1 ? C rc . If a node is within a distance C rc ofOPT OPT OPT

the root, it is still said to belong to segment 1.

Ž .DEFINITION 6. We define k 1 F i, j F c to be the number of nodei j
Ž .pairs a, b g X such that a belongs to segment i of T and b belongs toe 1

Ž1. Ž .segment j of T . Also, let n i G 2 be the number of nodes a9 in a2 i
segment s9 G i y 1 of T which satisfy the properties:1

1. There exists no vertex a / a9 in the segment i y 1 of T such1
that a lies on the path from a9 to u.

2. There exists a vertex a in some segment s G i of T such that a91
lies on the path from a to u.

Define nŽ1. to be 1. The quantities nŽ2. are similarly defined on the tree T .1 i 2
Let n be the product of nŽ1. and nŽ2..i j i j

Informally, nŽ1. represents the number of branches of the tree T thati 1
completely cross segment i y 1 of T .1

ŽŽ Ž . ..LEMMA 9. There exist 1 F i, j F c such that k rn G h k rlog ki j i j
i9y1. 22 rc .

Proof. Each node pair that belongs to X contributes to k for somee i j
Ž . Ž Ž . . i9y1 Ž1.pair i, j . Therefore, Ý k G h k rlog k ? 2 . Now notice that Ý ni, j i j i i

Ž Ž2..and also Ý n is bounded by c, since the number of branches that crossj j
Žan entire segment of depth C rc can be no more than c remember thatOPT

. Ž Ž1..the cost of T can be no more than C . Now, Ý n F Ý n ?1 OPT i, j i j i i
Ž Ž2.. 2 Ž .Ý n F c . Therefore, we are guaranteed that there exists a pair i, j ,j j
1 F i, j F c, which satisfies the required condition.

Using Lemma 9, we can claim the existence of nodes a9 g T and1
< < Ž Ž . . i9y1. 2b9 g T and a set X 9 : X, X 9 G h k rlog k 2 rc such that the2

Ž .following properties hold for all a, b g X 9:

1. a9 lies on the path from a to u in T and b9 lies on the path from1
¨ to b in T .2

Ž . Ž .2. dist a, a9 F 2C rc and dist b9, b F 2C rc.T OPT T OPT1 2

Ž . Ž .Let the bunch B9 be defined as a9, b9, X 9 . Let k9 s k B9 be the
Ž Ž Ž . . i9y1. 2 .number of node pairs satisfied by this bunch k9 G h k rlog k 2 rc .

Ž .Also, let c B9 be the cost of this bunch. The shortest path from any first
component of X 9 to a9 is at most 2C rc, by construction. The shortestOPT
path from a9 to b9 is at most D. The shortest path from b9 to any second
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Ž .component of X 9 is also at most 2C rc. Therefore, c B9 F D q 4k9 ?OPT
Ž . Ž . i9 Ž .1r3 Ž .C rc. Recall that D F C rk h k ? 2 , c s krlog k , and h kOPT OPT

2r3Ž .1r3 Ž .s 6k log k . Substituting these values, we obtain d B9 F
Ž . Ž .C rk h k .OPT

Ž .THEOREM 10. CC k, X can be used to obtain a polynomial time algorithm
Ž 2r3 1r3 .which gï es an approximation ratio of O k log k for the directed

generalized Steiner network problem.

Ž .Proof. From Theorem 8 and Lemma 7 it follows that CC k, X produces
Ž . Ž .an h k partial approximation to DG-STEINER k, x . We can now invoke

Lemma 1 to obtain the desired result.

We give a graph on which the algorithm constructs a solution whose cost
'Ž .is V k times the optimal cost. Consider the graph in Fig. 5. The vertices

are divided into two sets of blocks. There are k pairs in all. The k nodes at
which the directed paths are required to start are called source nodes. The
nodes at which the paths end are destinations. These vertices are disjoint

'from the source nodes. The source vertices are present in k blocks, each
'block having k vertices in turn. The nodes in a block are connected to a

'Ž .vertex one separate vertex for each block with zero cost edges. These k
vertices are connected to a special vertex u with edges of cost 1. A source

'Ž .vertex is indexed by the ordered pair i, j , where 1 F i, j F k and the
node is the jth node in ith block. The destination nodes are numbered

Ž . Ž .similarly. The source node i, j and the destination node j, i are the
pairs.

FIG. 5. Lower bound for algorithm.
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The figure depicts the optimal solution. The cost of the optimal solution
'is 2 k . But it is easy to observe that there exists no bunch of density less

than 1. Therefore, the cost of the solution produced by the algorithm is at
least k. This shows that the algorithm cannot achieve an approximation

'guarantee better than k r2.

Ž 2 .Remark 1. Since k could be Q n , the approximation ratio we guaran-
Ž .tee is v n . We can use our result on directed Steiner trees to obtain a

Ž � 2r3 1r3 1qe 4.O min k log k, n algorithm for the generalized version. Obtain-
Ž .ing an O n approximation for all k seems nontrivial.

Ž 1qe .The O n result follows if one solves a directed Steiner tree instance
� Ž .for each possible root vertex u with the set of terminals ¨ N u, ¨ is a

4 w xspecified pair . Recently, Dodis and Khanna 8 showed that, unless
Ž polylogŽn.. Ž log1y e n .NP : DTIME n , there is no polynomial time O 2 -ap-

proximation algorithm for the DG-STEINER problem. The generalized
problem thus appears to be much harder than the rooted version. Interest-

w xingly, the hardness reduction in 8 uses a graph in which no path has more
than three edges. Thus it is unlikely that an analog of Zelikovsky’s Lemma
2 can be extended to the DG-STEINER problem.

5. RELATED PROBLEMS

In this section we show how the results in Section 3 can be used to
Ž e .obtain O k -approximations for several related problems which are at

least as hard as Set cover.

THE GROUP STEINER TREE PROBLEM. The group Steiner tree problem
Ž .is the following: Given an undirected graph G V, E , a root r, and a

� 4collection of groups X s g , g , . . . , g , g : V, find the minimum cost1 2 k i
tree T that connects at least one vertex in each of the groups g to thei

w xroot. This problem arises in wire routing in VLSI design 20 . There is also
Ž .a directed version of this problem. The undirected as well as directed

group Steiner tree problem reduces to the directed Steiner tree problem as
follows: For each group g , introduce a new dummy vertex x and connecti i
x using zero cost directed edges to each of the vertices in g . Thesei i
dummy vertices are the terminals in a directed Steiner tree instance with
the same root. Some other related problems like set TSP on undirected
graphs can also be reduced similarly. For the group Steiner tree problem

w xon undirected graphs, Garg et al. 12 have recently obtained a polyloga-
rithmic approximation.
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Node-weighted ¨ariants. There is a simple approximation preserving
reduction between the node-weighted and the edge-weighted cases when
the graph is directed. Therefore, all our results carry over to the node-
weighted cases as well.

THE STRONGLY CONNECTED STEINER SUBGRAPH PROBLEM. Given a
Ž . < <digraph G V, E and V : V, where V s k, find a minimum cost sub-s s

graph S such that the vertices in V are strongly connected in S. It can bes
Ž . 1r iapproximated to a factor of 2 i i y 1 k by a simple reduction to directed

Steiner tree.

6. CONCLUSIONS

Our work leaves several interesting open problems. The most important
of them is to obtain a polynomial time algorithm with a polylogarithmic
approximation ratio for the directed Steiner tree problem. Our results give
some evidence of the existence of such an algorithm. For the group Steiner

w x Ž 2problem on undirected graphs Garg et al. 11 give an O log n log log n
. Ž 2 .log k approximation in polynomial time. Our result gives an O log k

approximation in quasi-polynomial time. It would be interesting to improve
w xthe results in 11 to obtain a ratio that depends polylogarithmically only

on k and not on n. For the Steiner network problem, we are able to prove
'Ž .a lower bound of V k on the performance of our algorithm; however,

Ž 2r3 1r3 .the upper bound we can guarantee is only O k log k . We would like
to see the gap bridged. Improving the approximation guarantee for this
problem is an interesting open problem, though the best we can hope for,

w xin light of the hardness result in 8 , is a polynomial factor. There is also
the general case, where each pair specifies a connectivity requirement ri j
which gives the number of edge disjoint paths required between i and j.
No nontrivial upper bound is known for this problem.
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