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Abstract

The correlation gap of a real-valued set function f : 2N → R+ [ADSY10] measures the worst-case ratio
between two continuous extensions of f over all points in the unit cube; informally the gap measures the
worst-case benefit of correlations between the variables.

This notion plays an important role in several areas including algorithms for constrained submodular
function maximization via contention resolution schemes, mechanism design, and stochastic optimization.
The correlation gap of any monotone submodular set function is known to be at least (1 − 1/e), and this
bound is tight even for the rank function of a uniform matroid of rank 1. Via a connection established in
[CVZ14], this yields an optimal contention resolution scheme for rounding in a matroid polytope.

In this paper, we study the correlation gap of the rank function of the ℓ-fold union of a matroid M, denoted
by Mℓ, defined as the (matroid) union of ℓ-copies of M. We prove that the correlation gap of Mℓ, for any

matroid M, is at most 1 − ℓℓe−ℓ

ℓ!
; this bound behaves as 1 − 1√

2πℓ
as ℓ grows. This generalizes the results

in [Yan11, BFGG22, KS23]. They established this gap for the uniform matroid of rank ℓ which can be viewed
as the ℓ-fold union of a uniform matroid of rank 1; moreover this bound is tight even for this special case. The
correlation gap yields a corresponding contention resolution scheme for Mℓ which was the initial motivation
for this work.

1 Introduction

This paper is concerned with the correlation gap of the rank function of matroids, and its applications, in
particular, to contention resolution schemes. We start with basics of matroids which can be skipped by a reader
familiar with them. A matroid is a pair M = (N, I) where N is a finite ground set and I ⊆ 2N is a collection
of independent sets that satisfy the following properties: (i) ∅ ∈ I (non-triviality), (ii) ∀I ∈ I; J ⊂ I ⇒ J ∈ I
(down-closedness), and (iii) ∀I, J ∈ I; |I| < |J | ⇒ ∃j ∈ J \ I; I + j ∈ I (exchange property). The rank function
rM : 2N → Z+ of M = (N, I) is defined as: rM(S) = max{|I| : I ⊆ S, I ∈ I}. rM(S) is the cardinality of
the largest independent set contained in S. The rank of a matroid is rM(N). It is well-known that the rank
function of a matroid is integer-valued, monotone, and submodular. A real-valued set function f is submodular
iff f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ N ; it is monotone if f(A) ≤ f(B) for all A ⊆ B. For a
matroid M, the convex hull of the characteristic vectors of its independent sets is the matroid polytope P(M).
From the work of Edmonds, P(M) = conv{1I : I ∈ I} = {x ∈ [0, 1]N :

∑
i∈S xi ≤ rM(S) for all S ⊆ N}; see

[Sch03]. In this paper we will assume that all matroids are loop-less, that is, for all i ∈ N , rM(i) = 1.
Matroids are fundamental objects in combinatorial optimization. They have many applications and rich

connections to a variety of areas. The uniform matroid of rank ℓ over n elements, denoted by Uℓ,n, is of particular
relevance to us. Its independent sets are all subsets of N with cardinality at most ℓ.

Correlation gap: This notion was introduced in [ADSY10] for non-negative real-valued set-functions. Since the
definition is technical, and our main interest is in matroid rank functions, we first define it for this special setting.
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Consider a fractional point x ∈ P(M) for some matroid M. The fractional value of this point is
∑

i xi. Suppose
we randomly round each i independently with probability xi to obtain a random set R(x). How does the expected
value of the rank of this random set, E[rM(R(x))], compare with

∑
i xi? We are interested in the worst-case

ratio between these two quantities. This is the unweighted setting and we can also consider the weighted setting
where each element i has a weight yi and we compare

∑
i xiyi with the expected weight of a maximum weight

independent set in R(x). We now give a formal definition for a set function.

Definition 1. For a set function f : 2N → R+, the correlation gap is defined as

κ(f) = inf
x∈[0,1]N

E[f(R(x))]

f+(x)
,

where R(x) is a random set containing each element i independently with probability xi, and

f+(x) = max{
∑
S

αSf(S) :
∑
S

αS1S = x,
∑
S

αS = 1, αS ≥ 0}

is the maximum, over all distributions with expectation x, of the expected value of f .

The quantity F (x) = E[f(R(x))] is the multilinear extension of f [CCPV07], and hence the correlation gap is the
worst-case ratio of two continuous extensions of f . See [Dug09] for more on continuous extensions of submodular
functions.

We are interested in the correlation gap of the weighted rank function of a matroid M. For a weight vector
y : N → R+, ry : 2N → R+ is defined as ry(S) = maxI⊆S,I∈I

∑
i∈I yi. In considering the correlation gap of ry it

suffices to restrict attention to points in the matroid polytope (see Lemma 4.7 in [CVZ14]). With this in mind,
the correlation gap of the weighted rank function is then defined as:

inf
y≥0

κ(ry) = inf
x∈P(M)

y≥0

E[maxS⊆R(x),S∈I
∑

i∈S yi]∑
i∈N xiyi

Note that the infimum is taken over all weight vectors y. By a relatively simple argument, due to the optimality
of the greedy algorithm for maximum independent set in a matroid, one can show that infy≥0 κ(ry) is achieved

for the unit weight vector, that is infy≥0 κ(ry) = κ(rM) = infx∈P(M)
E[r(R(x)]∑

i∈N xi
. This was formally shown in

[HKLV23]. Hence it suffices to focus on the unweighted case. We highlight that this is only for the sake of
simplicity and is not necessary in our analysis. Our proof still holds after substituting all unit rank functions by
weighted rank functions.

An important result is that κ(f) ≥ (1 − 1/e) for any monotone submodular function [CCPV07, Von07,
ADSY10]. This implies that κ(rM) ≥ (1−1/e) for allM; as a function of the number of elements n in the matroid,
one can obtain a slightly refined bound of (1− (1−1/n)n) [CVZ14]. Interestingly, this bound is tight even for the
uniform matroid of rank 1; that is κ(U1,n) = 1−(1−1/n)n. The bound improves substantially for uniform matroids

of rank ℓ as ℓ grows. Yan [Yan11], and subsequently others [BFGG22, KS23] showed that κ(Uℓ,n) ≥ 1 − ℓℓe−ℓ

ℓ! ,
and moreover this bound is tight as n → ∞. This latter bound behaves as (1 − 1√

2πℓ
) which tends to 1 as

ℓ → ∞. The setting of Uℓ,n arises two nice applications. The first is in prophet inequalities and mechanism
design involving selecting/selling ℓ identical items [Ala14]. Second is in the setting of improved approximation
algorithms for maximum multi cover [BFGG22]. Correlation gaps have several applications including the design
of contention resolution schemes, mechanism design, and stochastic optimization. A recent paper [HKLV23] gives
a nice overview of some of these applications.

ℓ-fold union of a matroid: Although simple, cardinality constraints play an important role in various settings
including prophet inequalities, mechanism design, and also in approximation. Partition matroids, which are
disjoint union of uniform matroids, further amplify the range of applications. As we saw, the correlation gap
improves towards 1 as ℓ → ∞. Matroids provide a rich and powerful way to model constraints. However, since
they contain the uniform matroid of rank 1 as a special case, the best CR scheme we have is limited to (1− 1/e).
In recent work Husic et al [HKLV23] ask whether this bound can be improved for interesting classes of matroids.
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They showed that improvements can be obtained by considering the girth1 γ of the matroid M. For a matroid
M with rank ρ and girth γ, they proved that

κ(rM) ≥ 1− 1/e− e−ρ

ρ

(
γ−2∑
i=0

(γ − 1− i)

[(
ρ

i

)
(e− 1)i − ρi

i!

])
> (1− 1/e).

As a corollary they prove that the uniform matroid of rank 1 is the worst-case example for matroids.
We ask a related but a different question. Is there a natural generalization of the cardinality constraint with

ℓ items to the matroidal setting? Our conceptual contribution is to suggest such a generalization via the classical
notion of matroid union that has several fundamental applications in combinatorial optimization [Sch03].

For a matroid M = (N, I) and integer ℓ ≥ 1 we consider the matroid obtained by taking the ℓ-fold union of
M.

Definition 2. (ℓ-fold matroid) For a matroid M = (N, I), its ℓ-fold union matroid is defined as

Mℓ = M∨M∨ · · · ∨M︸ ︷︷ ︸
ℓ times

= (N, Iℓ)

where
Iℓ = {I1 ∪ I2 ∪ · · · ∪ Iℓ | Ii ∈ I, 1 ≤ i ≤ ℓ}.

Alternatively, a set A ∈ Iℓ iff A can be partitioned into at most ℓ independent sets in I. We note that the uniform
matroid of rank ℓ can be viewed as the ℓ-fold union of the uniform matroid of rank 1.

Main result: We prove the following theorem.

Theorem 1.1. For any matroid M and any integer ℓ ≥ 1,

κ(rMℓ) ≥ 1− ℓℓe−ℓ

ℓ!
.

We briefly compare our theorem to that in [HKLV23]. We note that the girth of Mℓ is at least ℓ+1, however,
the rank ρ of Mℓ can be arbitrarily large when compared to ℓ. When the rank is large for a fixed girth γ, the
gap shown in [HKLV23] converges to (1− 1/e) and does not provide an improvement, while our bound does not
depend on the rank of Mℓ.

Motivation and and some applications: Our motivation came from the intuition that as ℓ increases, the
packing constraint imposed by the cardinality constraint becomes loose, and random rounding behaves well. This
phenomenon is well-known in several contexts where larger capacity allows better bounds — we refer the reader
to the notion of width used in approximating packing integer programs [BKNS12, KRTV18, CQT20], and also
improved bounds obtained in various routing problems [BS00, KPP08, HSS11]. It is not quite clear how one
makes the constraint imposed by a matroid ”loose”. We believe that considering Mℓ via matroid union is one
clean approach towards this. As far as we are aware, this question has not been explored previously.

Our focus in this paper is to formulate and prove Theorem 1.1. The applications of correlation gap are
well-known and we refer the reader to some past and recent papers for more detailed discussion [Yan11, ADSY10,
CVZ14, BFGG22, HKLV23]. Here we mention two of them briefly.

The first one is an application to contention resolution schemes (CR schemes). These are a class of randomized
rounding schemes that convert a fractional solution x in a polyhedral relaxation P for a constraint to an integer
solution. They were initially formalized [CVZ14] in the context of constrained submodular function maximization
and since then they have found several other applications. [CVZ14] established a tight connection between CR
schemes for a constraint imposed by an independence family I ⊆ N and the correlation gap of the weighted
rank function corresponding to I. Via this connection, they derived an optimal (1 − 1/e)-balanced CR scheme

for matroid polytopes. Theorem 1.1 implies that there is a (1 − ℓℓe−ℓ

ℓ! )-balanced CR scheme for Mℓ. One can
compose CR schemes for constraints when considering their intersections [CVZ14], and the scheme for Mℓ can
be used in a black-box fashion to derive further applications.

1The girth of a matroid is the smallest size of a circuit (a minimal dependent set) of M.
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The preceding application involves matroids as constraints. Another application is when one considers
weighted rank functions of matroids as a special case of submodular functions. Consider a submodular function
f : 2N → R+ where f =

∑h
j=1 gj where each gj is a weighted rank function of a matroid Mj on N . Maximum

k-Cover is a canonical example of such a function [CCPV07]; we are given n subsets S1, . . . , Sn of a universe X and
the goal is to pick k of these sets to maximize their union. Max k-Cover admits a tight (1− 1/e)-approximation
via several methods. Barman et al [BFGG22] considered the maximum multicover problem where each element

can be covered up to ℓ times and showed that it admits an improved (1 − ℓℓe−ℓ

ℓ! ) approximation. Their result
is obtained via the fractional relaxation framework following by pipage/swap rounding; a key difference between
this class of functions and general submodular functions is that one can solve an LP relaxation as opposed to
using the multilinear relaxation (see [CCPV07, BFGG22]). The key to the result in [BFGG22] is the correlation

gap for κ(Uℓ,n). Via Theorem 1.1, one can obtain a (1− ℓℓe−ℓ

ℓ! ) approximation for any submodular function of the

form
∑h

j=1 gj where each gj is a weighted rank function of a matroid Mℓj
j where ℓj ≥ ℓ for each j ∈ [h].

Our proof of Theorem 1.1 is short and intuitively simple. Via a submodularity inequality first shown in
[Von07], it reduces the general case to the setting when Mℓ = Uℓ,n. The original proof of the correlation gap
for a submodular set function [CCPV07, Von07] is based on a Poisson clock process, and this approach has been
dominant in several subsequent works as well. Our proof is akin to a different proof in [CVZ14]; [CL21] also
build upon this latter proof. We had formulated Theorem 1.1 a few years ago following the work of Barman et al
[BFGG22]. Our initial attempts at a proof were based on using Karger’s matroid base sampling approach [Kar98]
while the proof we provide here follows a simpler and direct approach via a reduction to the cardinality case.
Since the paper is short, we do not give a separate high-level overview. A reader who is somewhat familiar with
prior work on correlation gaps may directly go to the proof of Theorem 3.1 and work backwards to see the utility
of the supporting lemmas in Section 3.

2 Preliminaries

We need a characterization of the rank function of Mℓ in terms of the rank function of M.

Lemma 2.1. (see [Sch03]) Let M = (N, I) be a matroid and let Mℓ = (N, Iℓ) be its ℓ-fold union. Then, for
S ⊆ N ,

rMℓ(S) = min
T⊆S

(|S \ T |+ ℓ · rM(T )) .

We provide some mathematical results required for proving our main theorem. In the following, we use Ber(·)
and Poi(·) to denote Bernoulli and Poisson random variables.

Definition 3. (c.f. [SS07]) Let X and Y be two random variables. X is said to be smaller that Y in the convex
order (denoted as X ≤cx Y ) if

E[f(X)] ≤ E[f(Y )] for any convex function f : R → R,

which is equivalent to
E[f(X)] ≥ E[f(Y )] for any concave function f : R → R.

Lemma 2.2. ([BFGG22]) For any p ∈ [0, 1], we have

Ber(p) ≤cx Poi(p),

Lemma 2.3. (Theorem 3.A.12(d) in [SS07]) Let X1, X2, . . . , Xm be a set of independent random variables and
let Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤cx Yi for 1 ≤ i ≤ m, then

m∑
i=1

Xi ≤cx

m∑
i=1

Yi.

That is, the convex order is closed under convolutions.

We need the following inequality which is probably known in the literature but we give a proof for the sake
of completeness.
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Lemma 2.4. Let a1

b1
, . . . , an

bn
be n fractions and c1, . . . , cn be n numbers such that ai, ci ∈ R≥0, bi ∈ R>0 for i ∈ [n].

Suppose a1

b1
≥ · · · ≥ an

bn
and c1 ≥ · · · ≥ cn, then∑n

i=1 ciai∑n
i=1 cibi

≥
∑n

i=1 ai∑n
i=1 bi

.

Proof. After rearranging terms, we want to prove

n∑
i=1

ci

ai

n∑
j=1

bj − bi

n∑
j=1

aj

 ≥ 0.

Considering the coefficient of the term aibj , we have

n∑
i=1

ci

ai

n∑
j=1

bj − bi

n∑
j=1

aj


=

n∑
i=1

n∑
j=1

aibj(ci − cj)

=

n∑
i=1

n∑
j=i+1

aibj(ci − cj) + ajbi(cj − ci)

=

n∑
i=1

n∑
j=i+1

(cj − ci)(ajbi − aibj) ≥ 0.

The last inequality follows from cj ≥ ci and
aj

bj
≥ ai

bi
for j > i.

3 Proof of the Correlation Gap

We start with a lemma that enables us to make parallel copies of elements safely.

Lemma 3.1. Let M = (N, I) a matroid and let e ∈ N . Let M′ = (N ′ = N − e + {e1, e2}, I ′) be obtained from
M by replacing e with two copies e1, e2 and defining I ′ as below:

I ′ = {I : e ̸∈ I, I ∈ I} ∪ {I − e+ e1 : e ∈ I, I ∈ I} ∪ {I − e+ e2 : e ∈ I, I ∈ I}.

Then M′ is a matroid. Further, for any x ∈ P(Mℓ), let x′ ∈ [0, 1]N
′
be such that x′

i = xi for i ∈ N \ e and
x′
e1 + x′

e2 = xe. We have x′ ∈ P(M′ℓ) and

E[rMℓ(R(x))] ≥ E[rM′ℓ(R(x′))].

Proof. It is straightforward to check that M′ is a matroid. For ease of notation, let r(·) = rMℓ(·) be the rank
function of Mℓ and r′(·) = rM′ℓ(·) be that of M′ℓ. By Lemma 2.1, it is clear that for any S ⊆ N−e, r(S) = r′(S)
and r(S + e) = r′(S + e1) = r′(S + e2). Hence, it is easy to check that x′ ∈ P(M′ℓ).

Let Y be a random subset of N − e obtained by picking each e′ ∈ N − e independently with probability
xe′ . Let R(x) = Y + e with probability xe and R(x) = Y with probability 1 − xe. We analyze E[r(R(x))] and
E[r′(R(x′))] conditioned on Y = T . Note that r(T ) = r′(T ) and r(T + e) = r′(T + e1) = r′(T + e2). Hence,

E[r(R(x)) | Y = T ] = (1− xe)r
′(T ) + xer

′(T + e) = (1− xe)r
′(T ) + xer

′(T + e1)

and

E[r′(R(x′)) | Y = T ] = (1− x′
e1)(1− x′

e2)r
′(T )

+ (x′
e1(1− x′

e2) + x′
e2(1− x′

e1))r
′(T + e1)

+ x′
e1x

′
e2r

′(T + e1 + e2).
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Since x′
e1 + x′

e2 = xe,

E[r(R(x)) | Y = T ]−E[r′(R(x′)) | Y = T ]

= x′
e1x

′
e2

(
2r′(T + e1)− r′(T )− r′(T + e1 + e2)

)
= x′

e1x
′
e2

((
r′(T + e1)− r′(T )

)
−
(
r′(T + e1 + e2)− r′(T + e2)

))
.

By the submodularity of the rank function, we have

r′(T + e1)− r′(T ) ≥ r′(T + e1 + e2)− r′(T + e2).

Thus, E[r(R(x)) | Y = T ]−E[r′(R(x′)) | Y = T ] ≥ 0, and by unconditioning we obtain the desired claim.

The following lemma plays an important role in the proof.

Lemma 3.2. ([Von07]) Let f : 2N → R+ be a monotone submodular function, and let A1, . . . , Am ⊆ N . For
each i ∈ [m] independently, sample a random subset Ai(pi) which contains each element of Ai with probability pi.
Let J be a random subset of [m] containing each element i ∈ [m] independently with probability pi. Then

E

f
 ⋃

i∈[m]

Ai(pi)

 ≥ E

[
f

(⋃
i∈J

Ai

)]
.

We will use Lemma 3.2 for f(·) = rMℓ(·); recall that the rank functions of matroids are monotone submodular.
For the RHS of the inequality, consider the scenario that {Ai}i∈[m] are disjoint independent sets in M and

the set Ai appears with probability pi for i ∈ [m]. Then we can regard each Ai as an element with “weight”
rMℓ(Ai) = |Ai| and rMℓ(

⋃
i∈J Ai) means that we can choose at most ℓ elements among {Ai}i∈[m] to form an

independent set in Mℓ. This is very similar to the cardinality constraint case.
The preceding observation inspires us to decompose x ∈ P(Mℓ) into several disjoint independent sets in M.

Then we can reduce the problem to the case with cardinality constraint ℓ, i.e. rank-ℓ uniform matroid, and follow
the proof techniques used in [Yan11, BFGG22, KS23]. We will show in the following formally how the reduction
step is performed and provide a clean proof of the cardinality constraint case for the sake of completeness.

Lemma 3.3. For a matroid M = (N, I), let r(·) be the rank funtion of Mℓ and let A1, . . . , Am ∈ I be disjoint
independent sets of M. For each i ∈ [m] independently, sample a random subset Ai(pi) which contains each
element of Ai with probability pi. If

∑m
i=1 pi = ℓ, then

E

r
 ⋃

i∈[m]

Ai(pi)

 ≥
(
1− ℓℓe−ℓ

ℓ!

) m∑
i=1

pir(Ai).

Proof. By Lemma 3.2, we only need to show

E

[
r

(⋃
i∈J

Ai

)]
≥
(
1− ℓℓe−ℓ

ℓ!

) m∑
i=1

pir(Ai).

Assume without loss of generality that r(A1) ≥ r(A2) ≥ · · · ≥ r(Am). We remark that r(Ai) = |Ai| since
each Ai is an independent set in M, however we use r(Ai) to indicate that the proof can be easily generalized
to the weighted setting without an explicit reduction to the unweighted setting. Let Xi ∼ Ber(pi) be a random
variable indicating whether i ∈ J . Consider the first ℓ elements appearing in J , the corresponding sets are ℓ
independent sets in M. Hence the union of them is an independent set in Mℓ. Since they are disjoint, we have

E

[
r

(⋃
i∈J

Ai

)]
≥

m∑
i=1

pi Pr

i−1∑
j=1

Xj < ℓ

 r(Ai).
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After rearranging terms, we want to prove that

∑m
i=1 pi Pr

[∑i−1
j=1 Xj < ℓ

]
r(Ai)∑m

i=1 pir(Ai)
≥ 1− ℓℓe−ℓ

ℓ!
.

We note that we have essentially reduced the problem to the cardinality case. One can appeal to previous work
here but we give a self-contained proof.

Since both Pr
[∑i−1

j=1 Xj < ℓ
]
and r(Ai) are decreasing in i, plugging

ai = pi Pr

i−1∑
j=1

Xj < ℓ

 , bi = pi, ci = r(Ai)

into Lemma 2.4 gives

∑m
i=1 pi Pr

[∑i−1
j=1 Xj < ℓ

]
r(Ai)∑m

i=1 pir(Ai)
≥

∑m
i=1 pi Pr

[∑i−1
j=1 Xj < ℓ

]
∑m

i=1 pi
.

Hence it suffices to show that

m∑
i=1

pi Pr

i−1∑
j=1

Xj < ℓ

 ≥
(
1− ℓℓe−ℓ

ℓ!

) m∑
i=1

pi =

(
1− ℓℓe−ℓ

ℓ!

)
ℓ.

To see this, note that

m∑
i=1

pi Pr

i−1∑
j=1

Xj < ℓ

 =

m∑
i=1

ℓ−1∑
k=0

pi Pr

i−1∑
j=1

Xj = k


=

ℓ−1∑
k=0

m∑
i=1

pi Pr

i−1∑
j=1

Xj = k


=

ℓ∑
k=1

Pr

 m∑
j=1

Xj ≥ k


= E

min

 m∑
j=1

Xj , ℓ

 .

For 1 ≤ j ≤ m, since Xj ∼ Ber(pj), we have Xj ≤cx Poi(pj) by Lemma 2.2. Then by Lemma 2.3 we have

m∑
j=1

Xj ≤cx

m∑
j=1

Poi(pj) = Poi

 m∑
j=1

pj

 = Poi(ℓ).
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Since f(x) = min(x, ℓ) is a concave function, by the definition of convex order, we have

E

min

 m∑
j=1

Xj , ℓ

 ≥ E[min(Poi(ℓ), ℓ)]

=

ℓ∑
k=0

k · ℓ
ke−ℓ

k!
+

∞∑
k=ℓ+1

ℓ · ℓ
ke−ℓ

k!

= e−ℓ

(
ℓ∑

k=0

k · ℓk

k!
+

∞∑
k=ℓ+1

ℓ · ℓk

k!

)

= e−ℓℓ

(
ℓ−1∑
k=0

ℓk

k!
+

∞∑
k=ℓ+1

ℓk

k!

)

= e−ℓℓ

(
eℓ − ℓℓ

ℓ!

)
=

(
1− ℓℓe−ℓ

ℓ!

)
ℓ.

Theorem 3.1. For any matroid M = (N, I) and integer ℓ ≥ 1, κ(rMℓ) ≥ 1− ℓℓe−ℓ

ℓ! .

Proof. As discussed in Section 1, it suffices to show that

inf
x∈P(Mℓ)

E[rMℓ(R(x))]∑
i∈N xi

≥ 1− ℓℓe−ℓ

ℓ!
.

Fix x ∈ P(Mℓ). It can be written as the convex combination x =
∑

S∈Iℓ αS1S such that
∑

S∈Iℓ αS = 1,

αS ≥ 0. Each S ∈ Iℓ can be further decomposed into ℓ disjoint independent sets IS1 , I
S
2 , . . . , I

S
ℓ in I, that is,

1S =

ℓ∑
i=1

1IS
i
.

Let IS = {IS1 , IS2 , . . . , ISℓ }. Let (Ai, βi)i∈[m] denote the independent sets in M where Ai ∈ I and

βi =
∑

S∈Iℓ,Ai∈IS

αS ≤ 1.

We have

x =
∑
S∈Iℓ

αS1S =
∑
S∈Iℓ

αS

ℓ∑
i=1

1IS
i
=

m∑
i=1

βi1Ai

and
m∑
i=1

βi =

m∑
i=1

∑
S∈Iℓ,Ai∈IS

αS =
∑
S∈Iℓ

ℓ · αS = ℓ.

Since {Ai}i∈[m] may not be disjoint, in order to apply Lemma 3.3, we build a new matroid M′, x′ ∈ P(M′ℓ) and
{A′

i, βi}i∈[m] such that x′ =
∑m

i=1 βi1A′
i
. We will ensure that {A′

i}i∈[m] are disjoint.

Let r(·) be the rank function of Mℓ and r′(·) be that of M′ℓ. At the start, set Ai = A′
i for i ∈ [m]. For an

element e ∈ N , suppose it is contained in Ai1 , Ai2 , . . . , Aik . Then we make k copies e1, e2, . . . , ek of e in M′. We

assign x′
ej = βij and let ej be the replacement of e in A′

ij
for 1 ≤ j ≤ k. Since xe =

∑k
j=1 x

′
ej , by iteratively

using Lemma 3.1, we have x′ ∈ P(M′ℓ) and

E[r(R(x))] ≥ E[r′(R(x′))].
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After performing this procedure to every element in N , clearly we get disjoint {A′
i}i∈[m]. Now we are able to

apply Lemma 3.3 on M′, (A′
i, βi)i∈[m]. Since

∑m
i=1 βi = ℓ, we have

E[r′(R(x′))] = E

r′
 ⋃

i∈[m]

A′
i(βi)

 ≥
(
1− ℓℓe−ℓ

ℓ!

) m∑
i=1

βir
′(A′

i).

Note that r′(A′
i) = |A′

i| here. By the construction ofM′ and x′, we see that
∑

i∈N xi =
∑

i∈N ′ x′
i =

∑m
i=1 βir

′(A′
i).

Therefore

E[r(R(x))] ≥ E[r′(R(x′))]

≥
(
1− ℓℓe−ℓ

ℓ!

) m∑
i=1

βir
′(A′

i)

=

(
1− ℓℓe−ℓ

ℓ!

) ∑
i∈N ′

x′
i

=

(
1− ℓℓe−ℓ

ℓ!

)∑
i∈N

xi.

This finishes the proof.

We obtain the following corollary via the connection between correlation gap and CR schemes [CVZ14].

Corollary 3.1. For any matroid M and integer ℓ ≥ 1, there exists a
(
1− ℓℓe−ℓ

ℓ!

)
-balanced CR scheme for Mℓ.

There has been substantial work on prophet inequalities and secretary problems with matroid constraints,
and on various special cases of matroids such as Uℓ,n and others. It would be interesting to see which of the
results for Uℓ,n can be ported over to matroids of the form Mℓ.

Acknowledgements: CC thanks Vasilis Livanos and Kent Quanrud for discussions on this topic.
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