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1 Algorithmic Mechanism Design and Auctions

We saw definition of strategic games, defined the notion of equilibria and studied PoA and PoS for
several games. However, in those game with predefined rules, what we could do was only to see
what kind of behavior arose with strategic players. In ”Mechanism Design,” the problem is inverse.
We make rules in order to induce certain desired behaviors from the agents behaving selfishly and
independently.

Mechanism Design has close connections to auction theory since it primarily arose in that
context. In computer science, we focus on ”Algorithmic” Mechanism Design in the following sense.

• computational aspects such as tractability in terms of computational time and communication
will be considered as important

• the new point would also be somewhat worst-case oriented. Economists are primarily inter-
ested in the Bayesian(distributional) setting.

Read Chapter 9 for more details.

1.1 Auctions

Auctions have a long history and have been an important part of economic activity since antiquity.
They have gained prominence in economics since the landmarking work of Vickrey and others who
put their formal study on a sound mathematical and game theoretic footing. Also, they have gained
prominence in a practical sense due to the privatization of public assets on a large scale.
There are many types and models for auctions and we will only cover a few. See the references on
the course webpage for more reading.

1.1.1 Single Item Private Value Auctions

Let us state with a simple setting

• single item to be sold.

• n bidders/players

• each player i has private value vi(≥ 0) for the item



Figure 1: relation between auctions

By private value we mean that player i’s value vi does not depend on what other players’ values
are for the item. This is an important assumption and is not valid for all items. It is most suitable
for items that are to be consumed privately by each player (ex. art works, though things will be
different if we think of resale)

We consider four types of auctions for this setting

1. Dutch or Descending Auction

• price starts at infinity and comes down
• first player to raise hand gets the item at current price

2. English or Ascending Auction

• price starts at zero and goes up
• bidders drop and once they do, cannot come in
• last person to remain gets the item at a price just above the price at which the previous

person drops out

3. Sealed-bid First Price Auction

• all bidders submit their bids to auctioneer in a sealed envelope
• highest bidder wins and pays his/her bid

4. Sealed-bid Second Price Auction

• all bidders submit their bids to auctioneer in a sealed envelope
• highest bidder wins and pays the second highest bid

We can see a rough equivalence between the English and second-price auction and between the
Dutch and first-price auction,

One can informally see that the bidding strategies are the same for a player in the Dutch and
First-price auctions. In both auctions, no information about losing bidders is revealed. Moreover,
although the Dutch auction is an open auction, it ends as soon as the winner is determined. (It
can be shown more formally that the two auctions are ”strategically equivalent”.)
The equivalence between English and second-price auction is less strong. The bidding strategies
for a player are the same in both forms but this requires the strong private value assumption. This
is because the ascending auction reveals information about losing bidder’s valuations.
Vickrey formalized the sealed-bid second-price auction and analyzed its strategic and game theoretic
properties and hence it is also often called the Vickrey auction.(he won the Nobel prize for his
auction work.)
We will now prove several simple but important properties of the second-price auction under the
following setting.



• bi: bid of player of i

• vi: value of player i for item (not necessarily bi = vi)

• pi: payment of player i

• ui = vi − pi: utility of player i

Assumption 1.1 (for second-price auction)

1. each bidder has a quasi-linear utility function wants to maximize ui = vi − pi

2. No collusion among players

3. valuations are private (vi is not influenced by vj)

The following lemma is the most important property of Vickrey auction.

Lemma 1.2 For each player i and for set of bids {bj}j 6=i of players other than i, utility maximizing
bid for i is bi = vi

Proof: Fix i and bids {bj}j 6=i. Let B = maxj 6=i bj . Consider the following cases.

1. vi < B: For bi = vi, ui = 0, since i does not win and pays nothing. Suppose bi 6= vi.

(a) bi ≤ B: ui = 0

(b) bi > B: ui = vi −B < 0, since i wins and pays B

So bi = vi is utility maximizing

2. vi > B: If bi = vi, ui = vi −B > 0. If bi 6= vi

(a) bi ≤ B: ui = 0

(b) B < bi < vi or vi < bi: ui = vi −B

3. vi = B: If bi = vi, this case depends on auction rule. If i wins, i pays second highest B. So
ui = vi −B = 0. If the other wins, i pays nothing, still ui = 0. If bi 6= vi,

(a) bi < vi = B: i loses, ui = 0

(b) bi > vi = B: i wins, ui = vi −B = 0
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Note that is i’s strategy will remain the same whether i knows B or not. This relies on private
value assumption. So i’s utility does not get influenced by knowledge of B.

Lemma says that for rational players a best strategy is to bid truthfully i.e. bi = vi. The
mechanism is said to be strategy proof. In game theory words, bi = vi is a ”dominant” strategy for
i.



Definition 1.3 (Dominant strategy) A strategy si ∈ Si is a dominant strategy if ui(si, s−i) =
maxa∈Si ui(a, s−i) for all s−i i.e. choosing si is a utility maximizing strategy whatever the other
players do.

Definition 1.4 (Strongly Dominant strategy) A strategy si ∈ Si is a strongly dominant strat-
egy if si is dominant and ∃s−i s.t. ∀s′i 6= si ui(si, s−i) > ui(s

′
i, s−i)

Definition 1.5 (Weakly Dominant strategy) Dominant but not strongly dominant strategy

Now we prove that bidding bi = vi is a dominant strategy for each player i.

Lemma 1.6 For each player i, if bi 6= vi, then there is a set of bids {bj}j 6=i s.t. utility of i is less
than that of bidding vi.

Proof: Suppose bi 6= vi. Set bj = bi+vi
2 for ∀j 6= i.

1. bi < vi: i loses and ui = 0, while bidding vi would get positive utility equal to vi − bi+vi
2

2. bi > vi: ui = vi − bi+vi
2 < 0, while bidding vi would yield utility 0.
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Proposition 1.7 Truthful bidders receive non-negative utility.

A mechanism with above property is said to have the individually rational property. Also
sometimes referred to as having voluntary participation property.

Proposition 1.8 Vickrey auction maximizes the social welfare. i.e. Vickrey auction allocates
the item to the player that values it the most.

A mechanism is called efficient if it maximizes the social welfare of the allocation. The social
welfare objective which is also called the utilitarian objective sometimes will become clearer in the
context of combinatorial auctions and the generalization of Vickrey auction mechanism to the VCG
mechanism.
Vickrey auction can be implemented in polynomial time and works with generalized valuation.(no
assumption on the range of the numbers)

1.2 Mechanism design and Payments

One can view Vickrey Auction as a mechanism to allocate the item to the player who values it the
most. To achieve it, we charged bidders with some money. The prices were basically a ”way” to
enforce truthfulness which results in the item being given to the one who values it the most. But
can we make the goal without payments? In general, the answer is No because of impossibility
results of Arrow, Gibbard and Satterthwaite.

Before studying Arrow’s results on elections, it is worth asking why a simple majority voting
rule commonly used can be problematic. If we have only two candidates, there is no problem. But
with three candidates, things become not that simple. Consider three candidates a, b, and c and



three voters with the following preferences- a Â1 b Â1 c, b Â2 c Â2 a and c Â3 a Â3 b(a Â1 b means
that voter i perfers a to b). A majority (1 and 3) prefers a to b, 1 and 2 prefers b to c and 2, 3
prefers c to a. So in the joint majority choice, we have a Â b Â c Â a, which is not consistent. This
example is called as Condorcet’s Paradox.

This tells us we need more complicated voting method for a desirable social choice. But it turns
out that it is impossible, whatever voting rule is adopted. To describe Arrow’s theorem, we need
the following notations and definitions.

• A: Set of candidates

• L: Set of all preference relation over A (aka permutation)

• f : Ln → L: A voting rule called as social welfare function

Definition 1.9

1. Unanimity: f(≺,≺, · · · ,≺) =≺
2. f is a dictator to i if f(≺1,≺2, ...,≺i, ...,≺n) =≺i

3. f is said to satisfy independence of irrelevant alternatives if ∀a, b ∈ A, f ’s ordering of a, b
depends only on how each player orders a, b. Formally, for ∀a, b ∈ A and every ≺1, ...,≺n,≺′

1

, ... ≺′
n∈ L, if we denote ≺= f(≺1, ... ≺n) and ≺′

= f(≺′
1, ... ≺

′
n) then a ≺i b ⇔ a ≺′

i b for all
i implies that a ≺ b ⇔ a ≺′

b.

Theorem 1.10 (Arrow) If |A| ≥ 3, then any welfare function satisfying unanimity and indepen-
dence of irrelevant alternatives is a dictatorship


