Multiway Cut Problem

Given undirected graph $G = (V, E)$

Edge weights $w: E \rightarrow \mathcal{R}^+$

Terminals: $T = \{t_1, t_2, \ldots, t_k\} \subseteq V$

Goal: find minimum weight set of edges E' such removing E' separates all terminals

That is, no connected component of $G(V,E-E')$ has two terminals from T
Facts

\(k = 2 \), standard s-t cut problem, polynomial time solvable

Multiway Cut is NP-hard and also APX-hard even for \(k = 3 \)

Multiway Cut can be solved exactly for fixed \(k \) in planar graphs
Isolating Cuts

For $t_i \in T$, $E' \subseteq E$ is an isolating cut if removing edges in E' separates t_i from all other terminals.

Minimum weight isolating cut can be computed in polynomial time (How?)

Let $C_1, C_2, ..., C_k$ be min weight isolating cuts for $t_1, t_2, ..., t_k$.
Isolating Cut Heuristic

Let C_1, C_2, \ldots, C_k be min weight isolating cuts for t_1, t_2, \ldots, t_k

Assume wlog that $w(C_1) \leq w(C_2) \leq \ldots \leq w(C_k)$

Output $C = C_1 \cup C_2 \cup \ldots \cup C_{k-1}$

Claim: C is a feasible multiway cut
Analysis

Theorem: \(w(C) \leq 2(1-1/k) \text{OPT} \)

Consider some optimum cut \(A \)
Let \(G[V_i] \) be the connected component in \(G(V,E-A) \)
that contains terminal \(t_i \)

\[A_i = \delta(V_i) : \text{edges with exactly one end point in } V_i \]
Analysis

Consider some optimum cut A
Let \(G[V_i] \) be the connected component in \(G(V,E-A) \) that contains terminal \(t_i \)
\(A_i = \delta(V_i) : \) edges with exactly one end point in \(V_i \)

Claim: \(2w(A) = \sum_{i=1}^{k} w(A_i) \)

Each edge in \(A \) is counted twice
A and A_1, A_2, ..., A_k

e counted in A_1 and A_4
Analysis

Claim: \(2\text{OPT} = \sum_{i=1}^{k} w(A_i)\)

\(A_i\) is an isolating cut for \(t_i\) therefore for \(1 \leq i \leq k\)
\(w(A_i) \geq w(C_i)\) since \(C_i\) was min-wt isolating cut for \(t_i\)
implies
\[\sum_{i=1}^{k} w(A_i) \geq \sum_{i=1}^{k} w(C_i)\]
Analysis

\[w(C) = w(C_1) + \ldots + w(C_{k-1}) \]

\[\leq (1 - \frac{1}{k}) (w(C_1) + \ldots + w(C_k)) \quad \text{(since } C_k \text{ is the heaviest cut)} \]

\[\leq (1 - \frac{1}{k}) (w(A_1) + \ldots + w(A_k)) \]

\[\leq 2(1 - \frac{1}{k}) \, w(A) \]
A Tight Example

Blue: opt cut of value 3

Yellow: algorithm’s cut of value 4-2ε

Example can be generalized to large k to reach ratio of (2-2/k)
A Greedy Splitting Algorithm

Start with G
Split into two components such that each contains a terminal
Split *one* of the two components such that each of the three components has a terminal
Split *one* of the three components such that each of the four components has a terminal
... till k components each with terminal

At each step choose a cheapest cut among components
Greedy Splitting Algorithm

Theorem: Greedy splitting also a $2 - \frac{2}{k}$ approximation algorithm for multiway cut

Proof: Exercise
The k-Cut Problem

Given undirected $G=(V,E)$

$w: E \rightarrow \mathcal{R}^+$

integer k

Goal: find minimum weight set of edges to remove such that G is partitioned into k connected components
Facts

\(k=2 \) is the global mincut problem, can be solved in polynomial time (near linear time using randomization)

Can be solved in \(O(n^{k^2}) \) time – hence polynomial time solvable for fixed \(k \)

NP-hard for arbitrary \(k \)
A Greedy Splitting Algorithm

Start with G
Split into two components
Split into three components by splitting one of the two components

...

Choose cheapest split at each stage
Greedy Splitting

Theorem: Greedy splitting is a $2 - \frac{2}{k}$ approximation

Proof is complicated

We do an alternate proof using Gomory-Hu trees
Cut Structure of Undirected Graphs

Given undirected graph $G = (V, E)$
$w: E \rightarrow \mathbb{R}^+$

Let $mc(ab)$ denote weight of min a-b cut in G

There are $n(n-1)/2$ pairs of vertices so potentially $n(n-1)/2$ different min-cut values

However ...
Cut Structure of Undirected Graphs

There are $n(n-1)/2$ pairs of vertices so potentially $n(n-1)/2$ different min-cut values. However only $n-1$ distinct cut-values.

Moreover magical Gomory-Hu tree!
Gomory-Hu tree for \(G \)

\(G = (V, E) \) with edge weights \(w \)

Gomory-Hu tree \(T = (V, E_T) \)

\(u : E_T \rightarrow \mathbb{R}^+ \)

same vertex set as \(G \)

\(u : \) weights on edges of \(T \)

For each pair \((a, b)\) of vertices of \(G\), their min-cut value \(mc(ab) \) in \(G \) is \textit{equal to} min cut value in \(T \)!
Gomory-Hu tree for G

For each pair (a, b) of vertices of G, their min-cut value $mc(ab)$ in G is *equal to* min cut value in T!

Min-cut in T is min-weight edge in *unique* path connecting a and b in T

In particular for an edge ab in E_T we have $u(ab) = mc(ab)$
Gomory-Hu Tree for G

Can be computed using $O(n)$ s-t cut computations

With each edge ab in E_T we can also associate a min a-b cut C_{ab} of value $u(ab)$
Removing edges in C_{ab} disconnects a from b
k-Cut alg using Gomory-Hu trees

Run Greedy Splitting on T instead of G

Equivalent to picking the $k-1$ lightest edges in T

Let e_1, e_2, ..., e_{k-1} be the chosen edges (from T)

Output $C = C_{e_1} \cup C_{e_2} \cup ... \cup C_{e_{k-1}}$
Analysis

Claim: Removing \(C \) results in \(k \) components

Easy exercise
Analysis

Theorem: \(w(C) \leq 2\left(1-\frac{1}{k}\right) \text{OPT} \)

Let \(A \) be an optimum cut and let \(V_1, V_2, \ldots, V_k \) be the connected components
\[A_i = \delta(V_i) \]

As before assume wlog \(w(A_1) \leq w(A_2) \ldots \leq w(A_k) \)
and we have \(w(A_1) + \ldots + w(A_k) = 2w(A) = 2\text{OPT} \)
Analysis

Lemma: \(\sum_{i=1}^{k-1} u(e_i) \leq \sum_{i=1}^{k-1} w(A_i) \)

Assuming lemma we have

\[
\begin{align*}
 w(C) &= u(e_1) + \ldots + u(e_{k-1}) \\
 &\leq (1-1/k)(w(A_1) + \ldots + w(A_k)) \\
 &\leq 2(1-1/k) \text{ OPT}
\end{align*}
\]
Proof of Lemma

We identify distinct edges $f_1, f_2, \ldots, f_{k-1}$ of T s.t $w(A_i) \geq u(f_i)$ for $1 \leq i \leq k-1$

Since algorithm picks lightest $k-1$ edges we have the lemma

Note that f_1, \ldots, f_{k-1} are not necessarily related to e_1, \ldots, e_{k-1}
Proof of Lemma

We identify edges $f_1, f_2, \ldots, f_{k-1}$ of T s.t $w(A_i) \geq u(f_i)$ for $1 \leq i \leq k-1$

Obtain tree T' from T as follows:
- shrink each V_i to a single vertex
- throw out parallel edges between vertices in T'

T' is connected since T is connected
Proof of Lemma

Let \(t_1, t_2, \ldots, t_k \) be vertices of \(T' \) with \(t_i \) corresponding to \(V_i \).

Root \(T' \) at \(t_k \) (recall \(A_k \) was the heaviest cut).

Orient edges in \(T' \) towards the root.

Let \(f_i \) be the unique edge directed from \(t_i \) towards the root in the orientation.
Proof of Lemma

Root T' at t_k (recall A_k was the heaviest cut)
Orient edges in T' towards the root
Let f_i be the unique edge out of t_i in the orientation

Remark: f_i is an edge of T

Let $f_i = ab$ where $a \in V_i$, $b \notin V_i$
Proof of Lemma

Root T' at t_k (recall A_k was the heaviest cut)
Orient edges in T' towards the root
Let f_i be the unique edge out of t_i in the orientation

Let $f_i = ab$ where $a \in V_i$, $b \notin V_i$

From Gomory-Hu tree property $mc(ab) = u(f_i)$
Also A_i is a cut that separates a from b hence $w(A_i) \geq mc(ab) = u(f_i)$
Tight Example

Same as that for multiway cut
The Steiner k-Cut problem

Generalizes Multiway Cut and k-Cut

Given $G = (V, E)$, $w: E \rightarrow \mathbb{R}^+$
$T \subseteq V$: terminals
integer k, $k \leq |T|

Goal: find min-wt set of edges to remove such that G is partitioned into k components each of which contains at least one terminal from T
The Steiner k-Cut problem

Given $G = (V, E)$, $w: E \rightarrow \mathbb{R}^+$

$T \subseteq V$: terminals

integer k, $k \leq |T|$

Goal: find min-wt set of edges to remove such that G is partitioned into k components each of which contains at least one terminal from T

$k = |T|$ gives multiway cut problem

$T = V$ gives k-Cut problem
Greedy Splitting/Gomory-Hu tree algs

Greedy splitting naturally defined for the problem
Difficult to analyze directly but yields $2 - \frac{2}{k}$ approximation

Gomory-Hu tree based algorithm
Pick $e_1, e_2, ..., e_{k-1}$ from T iteratively such that each new edge creates a new component with a terminal. Among possible edges choose one of min weight

Theorem: $2 - \frac{2}{k}$ approx for Steiner k-Cut
More general problem

Now instead of edges we allow arbitrary submodular functions

Given V and a function $f : 2^V \rightarrow \mathcal{R}^+$

$T \subseteq V$

integer $k \leq |T|$

Goal: partition V into V_1, V_2, \ldots, V_k such that $V_i \cap T \neq \emptyset$ for $1 \leq i \leq k$ so as to minimize $\sum_i f(V_i)$
More general problem

Given V and a function $f : 2^V \rightarrow \mathcal{R}^+$

$T \subseteq V$

integer $k \leq |T|$

Goal: partition V into V_1, V_2, \ldots, V_k such that $V_i \cap T \neq \emptyset$ for $1 \leq i \leq k$ so as to minimize $\sum_i f(V_i)$

Theorem: If f is submodular and symmetric

Greedy splitting yields a $2\cdot 2/k$ approximation

(also for some other cases of f)
More general problem

Theorem: If f is *submodular* and *symmetric*

Greedy splitting yields a $2-2/k$ approximation

(also for some other cases of f)

If G is a graph or a hypergraph then the cut function $f(V_i) = w(\delta(V_i))$ is a symmetric submodular function

Hence Steiner k-cut is a special case
Why does it work?

Direct proof using submodularity [Zhao-Nagamochi-Ibaraki’05]

Another proof:
If f is submodular and symmetric then it also admits a Gomory-Hu tree!

In other words, Gomory-Hu tree exists because cut-functions in graphs are submodular and symmetric
Greedy Splitting for Steiner k-Cut

We adapt proof of [Zhao-Nagamochi-Ibaraki’05] for submodular splitting problems and simplify it for the Steiner k-Cut problem.

Some notation
Greedy generations vertex partitions $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{k-1}$ starting with $\mathcal{P}_0 = \{V\}$

\mathcal{P}_i is a refinement of \mathcal{P}_{i-1} with one of the components of \mathcal{P}_{i-1} split into two components.
Greedy Splitting for Steiner k-Cut

Some notation
Greedy generations vertex partitions $P_1, P_2, \ldots, P_{k-1}$ starting with $P_0 = \{V\}$

P_i is a refinement of P_{i-1} with one of the components of P_{i-1} split into two components.

We are interested only in partitions that are valid: that is each component contains a terminal.
Analysis of Greedy Splitting

Let $w(P_i)$ the cost of edges cut in the partition P_i

We prove the following by induction on i

Lemma:
For any valid partition $P = \{V_1, V_2, ..., V_i\}$

\[w(P_{i-1}) \leq w(\delta(V_1)) + w(\delta(V_2)) + ... + w(\delta(V_{i-1})) \]

(note that rhs doesn’t depend on V_i)
Analysis of Greedy Splitting

For any valid partition \(\mathcal{P} = \{V_1, V_2, \ldots, V_i\} \)
\[
w(\mathcal{P}_{i-1}) \leq w(\delta(V_1)) + w(\delta(V_2)) + \ldots + w(\delta(V_{i-1}))
\]

Suppose above is true: consider an optimum solution for problem \(\{A_1, A_2, \ldots, A_k\} \) where the ordering is chosen s.t
\[
w(\delta(A_k)) \geq w(\delta(A_i)) \text{ for } 1 \leq i \leq k-1
\]
Analysis of Greedy Splitting

Suppose above is true: consider an optimum solution for problem \(\{A_1, A_2, \ldots, A_k\} \) where the ordering is chosen s.t

\[
w(\delta(A_k)) \geq w(\delta(A_i)) \text{ for } 1 \leq i \leq k-1
\]

From the lemma with \(i = k-1 \),

\[
w(P_{k-1}) \leq (1-1/k) (w(\delta(A_1)) + \ldots + w(\delta(A_k))) \leq 2(1-1/k) \text{ OPT}
\]
Proof of the lemma

Base case $i = 1$ is easy to check

Assume hypothesis holds for $i=1$
Let $\mathcal{P} = (V_1, V_2, \ldots, V_i)$ be an arbitrary valid partition into i components

Consider \mathcal{P}_{i-2}:
There must be some component $W \in \mathcal{P}_{i-2}$ and two indices $h < l$ with $W \cap V_h$ and $W \cap V_l$ both containing a terminal (Why?)
Proof of the lemma

Therefore splitting W into $W \cap V_h$ and $W - V_h$

would be considered in the Greedy Splitting algorithm when refining P_{i-2} into P_{i-1}

Since Greedy chose a cheapest split

$$w(P_{i-1}) - w(P_{i-2}) \leq \text{increase in cost if Greedy chose to split } W \text{ as above}$$

We claim that splitting W as above increases cost by at most $w(\delta(V_h))$
Proof of the lemma

We claim that splitting W as above increases cost by at most $w(\delta(V_h))$

Any new edge e induced by the split of W is from $(V_h \cap W)$ to $(W - V_h)$ so must be in $\delta(V_h)$
Proof of lemma

Therefore $w(P_{i-1}) - w(P_{i-2}) \leq w(\delta(V_h))$

Apply induction hypothesis on $i-1$ to the partition

$P' = \{V_1, \ldots, V_{h-1}, V_{h+1}, \ldots, V_{i-1}, V_h \cup V_i\}$

(we removed V_h and merged it with V_i, use the fact that $h < l \leq i$)
Proof of lemma

Therefore \(w(P_{i-1}) - w(P_{i-2}) \leq w(\delta(V_h)) \)

Apply induction hypothesis on \(i-1 \) to the partition
\(P' = \{V_1, \ldots, V_{h-1}, V_{h+1}, \ldots, V_{i-1}, V_h \cup V_i\} \)

\[w(P_{i-2}) \leq \left(\sum_{j=1}^{i-1} w(\delta(V_j)) \right) - w(\delta(V_h)) \quad \text{(since } V_h \text{ is no longer there in } P') \]

Combining above two inequalities proves the hypothesis for \(i \)
Exercises/Reading

Read about Gomory-Hu tree construction in Vazirani’s book, Chapter 4 exercise

Prove that the Greedy Split algorithm is optimal when G is a tree

Try to extend the analysis of the Gomory-Hu tree based algorithm for k-Cut to the algorithm for the Steiner k-Cut problem