Dual-fitting analysis of Greedy for Set Cover

We showed earlier that the greedy algorithm for set cover gives a H_n approximation.

We will show that greedy produces a solution of cost at most $H_n \cdot \text{OPT}_{LP}$.

Note that $\text{OPT}_{LP} \leq \text{OPT}$.

For this we need the dual of the LP for set cover.
Primal and Dual for Set cover

Primal: \(\min_{i=1}^{m} \sum c(i) x(i) \)
\[\sum_{i: e \in S_i} x(i) \geq 1 \quad \text{for each } e \in U \]
\[x(i) \geq 0 \quad 1 \leq i \leq m \]

Dual: \(\max \sum_{e \in U} y(e) \)
\[\sum_{e \in S_i} y(e) \leq c(i) \quad \text{for } 1 \leq i \leq m \]
\[y(e) \geq 0 \quad e \in U \]
Dual-fitting

Recall the analysis of H_n approximation for greedy. Essentially dual-fitting in disguise as we see now.

Let h_j be the index of set picked by Greedy in iteration j

Let S'_{h_j} be the new elements covered by S_{h_j}: that is those elements covered in iteration j

for each e in S'_{h_j} we set $p(e) = c(h_j)/|S'_{h_j}|$
Dual-fitting

Note that by construction $\sum_e p(e) = \text{cost of solution output by Greedy}$

Define $y'(e) = \frac{p(e)}{H_n}$

Lemma: y' is a *feasible* solution to the dual LP

Assuming lemma, $\sum_e y'(e) \leq \text{OPT}_{LP}$ (by weak duality).

Therefore cost of Greedy $\leq H_n \text{OPT}_{LP}$
Dual-fitting

Define $y'(e) = p(e)/H_n$

Lemma: y' is a *feasible* solution to the dual LP

Need to show that for any set S_i

\[\sum_{e \in S_i} y'(e) \leq c(i)\]

or in other words

\[\sum_{e \in S_i} p(e) \leq H_n c(i)\]

Renumber elements s.t. $e_1, e_2, ..., e_n$ are covered in that order
Dual-fitting

Renumber elements s.t. e_1, e_2, \ldots, e_n are covered in that order.

For a set S_i let its elements be $e_{i_1}, e_{i_2}, \ldots, e_{i_t}$ where $|S_i| = t$ for $l = 1$ to t we claim that $p(e_{i_l}) \leq c(i)/(t-l+1)$

for $l = 1$ to t we claim that $p(e_{i_l}) \leq c(i)/(t-l+1)$

This is because when e_{i_t} was covered, Greedy could have picked S_i at density $c(i)/(t-l+1)$
Dual-fitting

for $l = 1$ to t we claim that $p(e_{ij}) \leq \frac{c(i)}{(t-l+1)}$

This is because when e_{ij} was covered, Greedy could have picked S_i at density $\frac{c(i)}{(t-l+1)}$

Therefore $\sum_{e \in S_i} p(e) \leq \sum_{l=1}^{t} \frac{c(i)}{(t-l+1)} \leq c(i) H_t$

Remark: notice that the above analysis shows that Greedy’s cost is can be upper bounded by $H_k \OPT_{LP}$ where k is the size of the largest set
Primal Dual for Set Cover

Primal-dual method is a general paradigm - see Vazirani’s book for extensive discussion.

Here we apply it to obtain an f-approximation for Set Cover where f is the max # of sets that any element belongs to.

Vertex Cover is a special case with $f = 2$ and hence this yields a 2-approx for weighted vertex cover.
Primal Dual for Set Cover

We obtain a feasible integral primal solution x and a feasible dual solution y

The pair (x,y) satisfy primal complementary slackness condition

$x(i) > 0$ implies $\sum_{e \in S_i} y(e) = c(i)$

since x is an integral solution

$x(i) = 1$ implies $\sum_{e \in S_i} y(e) = c(i)$
Cost of solution

If we can find such a pair \((x, y)\) then cost of solution is
\[
\sum_i c(i) \, x(i) = \sum_i x(i) \sum_{e \in S_i} y(e)
\]

Changing the order of summation
\[
\leq \sum_e y(e) \sum_{i: e \in S_i} x(i)
\leq \sum_e y(e) \, f
\]

Since \(y\) is feasible \(\sum_e y(e) \leq \text{OPT}_{LP}\)

Therefore cost of solution \(\leq f \text{OPT}_{LP} \leq f \text{OPT}\)
Primal-Dual algorithm

Start with feasible dual $y = 0$ and infeasible primal $x = 0$
While some element is not covered

- increase $y(e)$ for all uncovered e uniformly until some constraint becomes tight (that is for some i, $\sum_{e \in S_i} y(e) = c(i)$)

- for all tight i, set $x(i) = 1$ and all elements in S_i are covered
Primal-Dual

By induction on while loop iterations it can easily be seen that

y remains a feasible solution throughout the algorithm
thus at end of algorithm all elements covered are covered
(by x) and y is feasible

by construction $x(i) = 1$ iff i is tight hence primal
complementary slackness is satisfied for pair (x, y)
Integral Polyhedra

A rational polyhedron given by a system of inequalities $Ax \leq b$ is \textit{integral} iff all its vertices have integer coords.

\textbf{Theorem:} The polyhedron $Ax \leq b$ is integral iff for each integral w, the optimum value of $\max wx \; s.t \; Ax \leq b$ is an integer if it is finite.
Totally Unimodular Matrices

A 0,1 matrix A is called totally unimodular (TUM) iff for each square submatrix A' of A, $	ext{det}(A') \in \{0,1,-1\}$

A simple consequence of the definition is the following

Theorem: For *any* integer vector b and TUM matrix A, the polyhedron $A \times x \leq b$ is an integral polyhedron
Totally Unimodular Matrices

Theorem: For any integer vector b and TUM matrix A, the polyhedron $A x \leq b$ is an integral polyhedron.

Proof: Any vertex of the polyhedron is given by the solution to the system $A' x' = b'$ for some square non-singular sub-matrix A' of A.

Therefore $x' = (A')^{-1} b' = ((A')^t/det(A')) b'$

Since A is TUM, $det(A') \in \{+1, -1\}$. Therefore x' is integral since both A' and b' are integral.
TUM matrices

Several operations preserve total unimodularity
For example we can add box constraints to $Ax \leq b$

The system $Ax \leq b, \; u \leq x \leq l$ for integer b, u, l is an integral polyhedron if A is TUM

The dual of $\max c x, \; A \leq b$ is $\min y b, \; y A = c$

If c, b are integer then both primal and dual are integer polyhedra
Examples of TUM matrices

Given a directed graph $G = (V, E)$ consider the adjacency matrix $A = \mathbb{V} \times E$ with

$A(u, e) = +1$ if $e = (u, v)$ for some $v \in V$

$A(u, e) = -1$ if $e = (v, u)$ for some $v \in V$

$A(u, e) = 0$ if u is not the head or tail of e

A is TUM

From above one can deduce integrality of single-commodity flows with integer capacities and also the maxflow-mincut theorem
Bipartite graphs

Bipartite graph $G = (U, V, E)$ with U, V as the vertex sets of the two partitions

Adjacency matrix $A = U \times V$ with

$A(u, v) = 1$ if $uv \in E$

$= 0$ otherwise

A is TUM

From above one can deduce Konig’s theorem and Hall’s theorems etc regarding matchings and vertex covers in bipartite graphs
Consecutive 1’s matrices

Let A be a 0,1 matrix such that the 1’s in each row occur consecutively. Then A is TUM.

From above one can solve various optimization problems on interval graphs
Network matrices

The previous three cases are examples of network matrices. A network matrix is obtained from a directed graph \(G=(V, E) \) and a directed tree \(T = (V, E') \) on the same vertex set. Note that the arcs of \(T \) can be oriented in any way. Given \(G, T \) we obtain a matrix \(A = E \times E' \) as follows:

For \(e = (u,v) \) in \(E \) let \(P_{uv} \) be the unique path from \(u \) to \(v \) in \(T \) (the path is simply a list of edges in \(E' \))

\[A(e, e') = \begin{cases} +1 & \text{if } e' \text{ occurs in the direction of traversal of } P_{uv} \text{ from } u \text{ to } v \\ -1 & \text{if } e' \text{ occurs in the opposite direction of traversal from } u \text{ to } v \\ 0 & \text{if } e' \text{ is not in } P_{uv} \end{cases} \]
Network matrices

Theorem: Network matrices are TUM

Not all TUM matrices are network matrices

Exercise: show how each of the three classes seen before are examples of network matrices

(difficult theorem of Seymour)

Theorem: Given a matrix A, poly-time algorithm to check if A is TUM
Integer decomposability of TUM matrices

Useful to know following.

Theorem: Let x be a *feasible* point in $Ax \leq b$ for some TUM A and integral b. Let kx be integral for some integer k. Then $kx = x_1 + x_2 + \ldots + x_k$ for integral vectors x_1, \ldots, x_k each of which is a feasible point in $Ax \leq b$.

Above also holds for system $Ax \leq b$, $l \leq x \leq u$ for integral bounds l, u.