k-Median problem

- **F**: facilities
- **D**: clients
- **integer** \(k \)

Feasible solution: \(k \) facilities \(S \) from \(F \), \(\sigma : D \rightarrow S \)

Goal: minimize \(\text{cost}(S, \sigma) = \sum_{j \in D} c_{\sigma(j)}, j \)
Local Search for k-Median

Start with S_0 any set of k facilities

Local search move: *swap a facility*

$$S' = S - l + i \text{ where } l \in S \text{ and } i \notin S$$

In each iteration pick best swap and STOP if no improvement possible

(can use approximate stopping condition)
Local Search for k-Median

Theorem: Local optima is 5-approximate

Improved local search: swap p facilities at a time

\[S' = S - A + B \]

where \(|A| = |B| = p \) and \(A \subset S \), \(B \cap S = \emptyset \)

Running time depends on \(n^p \)

Theorem: Local optima is \((3+2/p)\) approximate
Analysis for 5-approximation

Clever and perhaps not so intuitive argument

Let S be a local optimum and O be an optimum solution

implies for every $l \in S$ and $i \in O$

$\text{cost}(S-l+i) \geq \text{cost}(S)$

(we ignore the approximate stopping condition in this analysis)
Set up k swap pairs carefully chosen

each facility $i \in O$ is in exactly \textit{one} of the pairs

each facility $l \in S$ is at most \textit{two} of the pairs

Let σ and ω be the assignment functions of clients to facilities for S and O
Analysis

A facility $l \in S$ is said to *capture* a facility $i \in O$ iff at least half the clients of i are clients of l

in other words $\left| \omega^{-1}(i) \cap \sigma^{-1}(l) \right| \geq \left| \omega^{-1}(i) \right|/2$

Intuitively l is close to i

Note: a facility in O is captured by at most one facility in S
but a facility in S can capture multiple facilities in O
Analysis

Set up a bipartite graph $H=(S,O)$ as follows:
There is an edge (l, i) in H iff l captures i

Now we define the k swap pairs:
- Remove all facilities in S with degree >1 in H.
- If (l, i) is an edge in H and degree of l is 1 then add (l, i) to the swap pair and remove l, i.
- Pair each remaining facility i' in O with some arbitrary remaining facility in S s.t. no facility in S is paired more than twice (check that this is possible by simple counting).
Analysis

The final ingredient of the set up is a permutation π on the clients that satisfies some important properties

$\pi: \mathcal{D} \rightarrow \mathcal{D}$ permutation implies 1-1 onto function

Properties:
- j and $\pi(j)$ are assigned to the *same* facility in \mathcal{O}, that is $\omega(j) = \omega(\pi(j))$
- j and $\pi(j)$ are assigned to *different* facilities in \mathcal{S} unless $\omega(j)$ is captured in which case we don’t care
\[\omega(j) = \omega(\pi(j)) \]

Diagram:
- \(\sigma(j) \)
- \(\omega(j) \)
- \(\sigma(\pi(j)) \)
- \(j \)
- \(\pi(j) \)
Analysis

Can show that π satisfying properties exists

Consider $i \in O$ s.t i is not captured. Note that we can restrict attention to clients in $\omega^{-1}(i)$ and define π on them.

For each $j \in \omega^{-1}(i)$ we need to ensure that $\pi(j)$ has the property that $\sigma(j) \neq \sigma(\pi(j))$
Analysis

For each $j \in \omega^{-1}(i)$ we need to ensure that $\pi(j)$ has the property that $\sigma(j) \neq \sigma(\pi(j))$

Wlog assume clients in $\omega^{-1}(i)$ are numbered 0,1,2,...,h-1 where $h = | \omega^{-1}(i) |$ and further that clients with same σ are consecutively numbered.

set $\pi(j) = j + \lceil h/2 \rceil \mod h$

Check that this satisfies the desired property (here is where the fact that i is not captured is used)
Analysis

Now we are ready to prove the 5-approximation

foreach swap pair \((l, i)\),
\[\text{cost}(S - l + i) - \text{cost}(S) \geq 0\]

lower bound \[\sum_{(l, i)} (\text{cost}(S - l + i) - \text{cost}(S))\]
by
5 \(\text{cost(O)} - \text{cost}(S)\)
as follows
Consider client j
how much does it contribute to
\[\sum_{(l, i)} (\text{cost}(S - l + i) - \text{cost}(S)) \]
we consider i when $i = \omega(j)$ and
when $(l=\sigma(j), i)$ is a swap pair (at most two pairs)
(in this second we assume $i \neq w(j)$)
for other values of i we can ignore j's contribution
since it only helps the inequality (why?)
Analysis

when \(i = \omega(j) \)
\(j \) contributes
\(c_{\omega(j),j} - c_{\sigma(j),j} \)

when \((l=\sigma(j), i) \) is a swap-pair \(j \) contributes ??

note that \(i \neq \omega(j) \) implies \(\omega(j) \) not captured by choice of
swap pairs (why? think carefully here)

hence we can use \(\pi(j) \) here

\(j \) is assigned to \(\sigma(\pi(j)) \) since \(l=\sigma(j) \) is swapped out. here
we use the fact that \(\sigma(\pi(j)) \) is different from \(\sigma(j) \)
Analysis

j is assigned to $\sigma(\pi(j))$ since $l=\sigma(j)$ is swapped out. Here we use the fact that $\sigma(\pi(j))$ is different from $\sigma(j)$.

Let $r = \sigma(\pi(j))$.

So j contributes $c_{r,j} - c_{\sigma(j)j}$.

Observe that this contribution is non-negative since $\sigma(j)$ is closer to j than r by defn.
Analysis

so j contributes $c_{r,j} - c_{\sigma(j),j}$

observe that this contribution is positive since $\sigma(j)$ is closer to j than r by defn

by triangle ineq

$c_{r,j} \leq c_{\omega(j),j} + c_{\omega(j),\pi(j)} + c_{\pi(j),r}$

note that there can be two (l, i) pairs so total contribution of j is at most

$c_{\omega(j),j} - c_{\sigma(j),j} + 2(c_{\omega(j),j} + c_{\omega(j),\pi(j)} + c_{\pi(j),r} - c_{\sigma(j),j})$
\[\omega(j) = \omega(\pi(j)) \]

\[\sigma(\pi(j)) = r \]
Analysis

note that there can be two \((l, i)\) pairs so total contribution of \(j\) is at most

\[
c_{\omega(j),j} - c_{\sigma(j),j} + 2(c_{\omega(j),j} + c_{\omega(j),\pi(j)} + c_{\pi(j),r} - c_{\sigma(j),j})
\]

When we sum up over all \(j\) we notice that the last two terms disapper from the fact the \(\pi\) is a permutation. And also from the fact that \(\omega(\pi(j)) = \omega(j)\) we get the total sum as

\[
cost(O) - cost(S) + 4 cost(O)
\]
Analysis

Therefore

\[
\text{cost}(O) - \text{cost}(S) + 4 \text{cost}(O) \geq 0
\]

which implies that

\[
\text{cost}(S) \leq 5 \text{cost}(O) = 5 \text{OPT}
\]