
Orienteering and related problems:
 mini-survey and open problems

Chandra Chekuri
University of Illinois (UIUC)

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Directed Graphs
  Approx. algorithms

  O(log n) in quasi-poly time
[C-Pal’05]

  O(log2 n) [C-Korula-Pal’08]
[Nagarajan-Ravi’07]

  Hardness: APX-hard

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Directed Graphs
  Approx. algorithms

  O(log n) in quasi-poly time
[C-Pal’05]

  O(log2 n) [C-Korula-Pal’08]
[Nagarajan-Ravi’07]

  Hardness: APX-hard

Close gap for directed graphs

Orienteering: Key Idea [BCKLMM]

  Reduce to k-Stroll problem via the intermediate
problem called min-excess problem

  The k-Stroll problem
  Input: Graph G, nodes s, t and integer k
  Goal: Find min-cost s-t walk/path that visits k nodes

  Min-excess problem
  Input: Graph G, nodes s, t and integer k
  Goal: Find s-t walk/path P that visits k nodes and

minimizes excess of P = len(P) – dist(s,t)

Orienteering via Min-Excess

[BCKLMM’03, BBCM’04]
Theorem: γ approx for Min-Excess implies

 ceiling(γ) approx for Orienteering

t
s

P* γ = 4

• Break P* into Υ portions of equal profit
• One of the portions has ≤ 1/Υ excess(P*)

Orienteering via Min-Excess

[BCKLMM’03, BBCM’04]
Theorem: γ approx for Min-Excess implies

 ceiling(γ) approx for Orienteering

t
s

P* γ = 4

 Υ approx Min-Excess Path

Min-Excess via (approx) k-Stroll

wriggly portions have large excess: use k-stroll approx
monotone portions: use exact algorithm
stitch via dynamic programming

t s

wriggly

monotone

distance from s

P*

Min-Excess via (approx) k-Stroll

t s

wriggly

monotone

distance from s

[BCKLMM’03]
Theorem: β approx for k-Stroll implies O(β) for min-excess

P*

k-Stroll and Orienteering

[BCKLMM’03]
Theorem: α approx for k-Stroll implies O(α)

approx for Orienteering

Algorithms for k-Stroll

  Undir graphs: (2+ε) [Chaudhuri-Godfrey-Rao-
Talwar’03]

  Directed graphs: ??

Is there a non-trivial approx. for dir k-Stroll?
Is the problem very hard?

Algorithms for k-Stroll in dir graphs

  k=n is asymmetric TSP Path problem (ATSPP)
  O(√n) approx [Lam-Newman’05]
  O(log n) approx [C-Pal’06]

  Bicriteria (α, β) approx: output path with k/α
vertices and cost β OPT
  (O(log2 k, O(1)) approx [C-Korula-Pal’08] [Nagarajan-

Ravi’07] (different approaches)
  Bi-criteria approx sufficient for Orienteering

Improve k-Stroll bi-criteria approx

Orienteering with Time-Windows

Orienteering-TW
  Each node v has a time window [R(v), D(v)]
  v counted only if it is visited in its window

Deadline-TSP: R(v) = 0 for all v

Goal: Find s-t walk to max # of nodes visited

Orienteering with Time-Windows

[Bansal-Blum-Chawla-Meyerson’04]

α approx for Orienteering implies
  O(α log n) approx for Deadline-TSP
  O(α log2 n) approx for Orienteering-TW

α = O(1) for undir and α = O(log2 n) in dir graphs

Orienteering with Time-Windows

Evidence for conjecture:
  O(log n) approx in quasi-poly time even in

directed graphs. [C-Pal’05]
  O(α log Lmax) approx [C-Korula’07] where Lmax is

max window length assuming integer data

Conjecture: there is an O(log n) approx for Orient-TW
 in undirected graphs

Is the problem ω(1)-factor hard in directed graphs?

Orienteering with Time-Windows

[C-Korula’07]
Two simple algorithms:
  O(α log Lmax) approx assume integer data and is

Lmax is max window length
  O(α max(log n, log (Lmax/Lmin)))

Difficult case: Lmax/Lmin is super-poly in n

Orienteering with Time-Windows

[C-Korula’07]
Idea for O(log Lmax) approx

Lemma: Let [a,b] be an interval with a, b integer
and m = b-a. Then [a,b] can be partitioned into
at most 2 log m disjoint sub-intervals such that

  length of each sub-interval is a power of 2
  sub-interval of length 2i starts at multiple of 2i
  at most 2 intervals of each length

Proof of Lemma

  [a, b] interval with a and b integers
  If a, b are even integers, recurse on [a/2, b/2]

and multiply each interval by 2
  If a, b are odd, recurse on [a+1, b-1] and add

[a, a+1] and [b-1, b]
  If a is odd and b is even, recurse on [a+1, b]

and add [a, a+1]
  If a is even and b is odd, recurse on [a,b-1] and

add [b-1, b]

Orienteering with Time-Windows

  Apply lemma to each [R(v), D(v)]
  Consider all sub-intervals of length 2i.
  These intervals start at a multiple of 2i hence

they are either disjoint or completely overlap
  Can use Orienteering in each interval and stitch

across disjoint intervals using dynamic prog.

  At most log Lmax classes and one of them has
OPT/2log Lmax profit

Fixed-parameter Tractability

Observation: There is an O(4k poly(n)) time
algorithm that gives optimum profit if there is a
solution that visits at most k nodes.

Follows from “color-coding” scheme of
[Alon-Yuster-Zwick]

A more complex path problem

SOP-TW
  f: 2V ! R+ a monotone submodular set

function on the nodes V
  Each node v has a time window [R(v), D(v)] .

Goal: find path P s.t nodes in P are visited in time
windows and f(P) is maximized

Algorithm for SOP-TW

[C-Pal’05]
Theorem: There is a quasi-poly time O(log n)

approx. for SOP-TW

Recursive Greedy Alg: idea

s t

Unknown optimum path P*

middle node v

v

B1
B - B1

time to reach v = B1

Recursive Greedy Algorithm

s t

v

B1
B - B1

RG(f, s, t, B, i)

1.  “Guess” v and B1 ε [R(v), D(v)]

2.  P1 = RG(f, s, v, B1, i-1)

3.  P2 = RG(fP1, v, t, B-B1, i-1)

4.  return P = P1 concat P2

Savitch’s algo for
optimization ?

Analysis

Theorem: RG(f,s,t,B,log n) yeilds an O(log n)
approximation

Running time with recursion depth i: (nB)O(i)
Can improve to (n log B)O(i) : quasi-poly

Guessing more

s t v1
v2

v3

B1 B2 B3

B4

Running time O(n a log n)

Approximation: log n / log (a+1)

log1-ε n approximation in exp(nε) time
 (sub-exponential time)

Applications

Quasi-poly algorithms:
  O(log2 n) approx for group Steiner problem in

undir graphs. Current approx. is O(log3 n) and
hardness is Ω(log2-ε n). SOP-TW is hard to
within Ω(log1-ε n) factor.

  O(log n) approx for Orienteering with time
varying profits at nodes

  O(log n) approx for Orienteering with multiple
disjoint time windows for each node v.

Questions

Conjecture: O(log2 n) approx. for group Steiner via LP.

Is there a non-trivial poly-time (poly-log?) approx for
Orienteering with multiple time windows?

Obvious: change quasi-poly to poly.

Group Steiner problem

Set cover + Steiner tree = group Steiner

Undirected graph G = (V, E)
Groups: S1, S2, ..., Sk , each Si µ V

Goal: find minimum cost tree T = (V’, E’) such that
 |V’ Å Si | ¸ 1 for 1· i · k

Group Steiner problem

O(log2 n) approx if G is a tree
O(log3 n) approx for general graphs
 [Garg-Konjevod-Ravi’98 + ...]

Ω(log2-ε n) approx not possible even on trees
unless NP contained in quasi-polynomial time

 [Halperin-Krauthgamer’03]

SOP and group Steiner

Simple observation:
α-approx for SOP implies 2α log k approx for

group Steiner problem

Consequences:
 O(log2 n) approx for group Steiner problem in

quasi-poly time
 Ω(log1-ε n) hardness for SOP unless NP is

contained in quasi-poly time

Reduction size lower bound

Unless NP µ quasi-polytime no log2-ε n approx. for
group Steiner problem [Halperin-Krauthgamer’03]

Can we obtain log2-ε n hardness under P ≠ NP ?
Can reduction size by polynomial?

No, unless NP µ sub-exponential time
From log1-ε n approx in subexp time for SOP

Proof

P
P1

 P2

v

|P1| ¸ |P1
*| / log (k/2)

|P2| ¸ ? / log (k/2)

Proof

P
P1

 P2

v

|P1| ¸ |P1
*| / log (k/2)

|P2| ¸ |P2
* \ P1| / log (k/2)

 ¸ (|P2
*| - |P1|) / log (k/2)

Proof contd

|P| ¸ (|P*| - |P|) / log (k/2)

|P| ¸ |P*| / (1 + log (k/2))
 ¸ |P*| / log k

Lemma: α approx for recursive step implies α+1
approx for greedy step

[Fisher-Nemhauser-Wolsey’78]

Open Problems: Summary

* : quasi-poly running time

Undir
Graphs

Dir Graphs

Orienteering 2+ε O(log n)* O(log2 n)

k-Stroll 2+ε ?

Orienteering-TW

Multiple TWs/node

O(log2 n)
O(log Lmax)

O(log n)*

O(log n)* O(log4 n)
O(log2 n log Lmax)

O(log n)*

Only APX-hardness for all of the above problems!

