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Orienteering 

Input: Graph (undir or dir) G, nodes s, t  and    
 budget B 

Goal: find s ! t walk/path P of length · B that 
maximizes number of nodes in P 

s t 
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Orienteering: known results 

Undirected graphs 
  Approx. algorithms 

  (2+ε) for points in R2 
[Arkin-Mitchell-Narasimhan’98] 

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03] 

  3 [Bansal-Blum-Chawla-
Meyerson’04] 

  (1+ε) for points in Rd, d 
fixed [Chen-HarPeled’05] 

  (2+ε) [C-Korula-Pal’08] 

  Hardness:  
  APX-hard [BCKLMM’03] 
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Close gap for directed graphs 



Orienteering: Key Idea [BCKLMM] 

  Reduce to k-Stroll problem via the intermediate 
problem called min-excess problem 

  The k-Stroll problem 
  Input: Graph G, nodes s, t and integer k 
  Goal: Find min-cost s-t walk/path that visits k nodes 

  Min-excess problem 
  Input: Graph G, nodes s, t and integer k 
  Goal: Find s-t walk/path P that visits k nodes and 

minimizes excess of P = len(P) – dist(s,t) 



Orienteering via Min-Excess 

[BCKLMM’03, BBCM’04] 
Theorem: γ approx for Min-Excess implies      

 ceiling(γ) approx for Orienteering 

t 
s 

P* γ = 4 

• Break P* into Υ portions of equal profit 
• One of the portions has ≤ 1/Υ excess(P*) 



Orienteering via Min-Excess 

[BCKLMM’03, BBCM’04] 
Theorem: γ approx for Min-Excess implies      

 ceiling(γ) approx for Orienteering 

t 
s 

P* γ = 4 

 Υ approx Min-Excess Path 



Min-Excess via (approx) k-Stroll 

wriggly portions have large excess: use k-stroll approx 
monotone portions: use exact algorithm 
stitch via dynamic programming  

t s 

wriggly 

monotone 

distance from s 

P* 



Min-Excess via (approx) k-Stroll 

t s 

wriggly 

monotone 

distance from s 

[BCKLMM’03] 
Theorem: β approx for k-Stroll implies O(β) for min-excess 

P* 



k-Stroll and Orienteering 

[BCKLMM’03] 
Theorem: α approx for k-Stroll implies O(α) 

approx for Orienteering 



Algorithms for k-Stroll 

  Undir graphs: (2+ε) [Chaudhuri-Godfrey-Rao-
Talwar’03]  

  Directed graphs: ?? 

Is there a non-trivial approx. for dir k-Stroll? 
Is the problem very hard? 



Algorithms for k-Stroll in dir graphs 

  k=n is asymmetric TSP Path problem (ATSPP) 
  O(√n) approx [Lam-Newman’05] 
  O(log n) approx [C-Pal’06] 

  Bicriteria (α, β) approx: output path with k/α 
vertices and cost β OPT 
  (O(log2 k, O(1)) approx [C-Korula-Pal’08] [Nagarajan-

Ravi’07] (different approaches) 
  Bi-criteria approx sufficient for Orienteering 

Improve k-Stroll bi-criteria approx 



Orienteering with Time-Windows 

Orienteering-TW 
  Each node v has a time window [R(v), D(v)] 
  v counted only if it is visited in its window 

Deadline-TSP: R(v) = 0 for all v 

Goal: Find s-t walk to max # of nodes visited  



Orienteering with Time-Windows 

[Bansal-Blum-Chawla-Meyerson’04] 

α approx for Orienteering implies  
  O(α log n) approx for Deadline-TSP  
  O(α log2 n) approx for Orienteering-TW 

α = O(1) for undir and α = O(log2 n) in dir graphs 



Orienteering with Time-Windows 

Evidence for conjecture: 
  O(log n) approx in quasi-poly time even in 

directed graphs. [C-Pal’05] 
  O(α log Lmax) approx [C-Korula’07] where Lmax is  

max window length assuming integer data 

Conjecture: there is an O(log n) approx for Orient-TW  
           in undirected graphs 

Is the problem ω(1)-factor hard in directed graphs?  



Orienteering with Time-Windows 

[C-Korula’07]  
Two simple algorithms: 
  O(α log Lmax) approx assume integer data and is 

Lmax is max window length 
  O(α max(log n, log (Lmax/Lmin))) 

Difficult case: Lmax/Lmin is super-poly in n 



Orienteering with Time-Windows 

[C-Korula’07] 
Idea for O(log Lmax) approx 

Lemma: Let [a,b] be an interval with a, b integer 
and m = b-a. Then [a,b] can be partitioned into 
at most 2 log m disjoint sub-intervals such that 

  length of each sub-interval is a power of 2 
  sub-interval of length 2i starts at multiple of 2i 
  at most 2 intervals of each length 



Proof of Lemma 

  [a, b] interval with a and b integers 
  If a, b are even integers, recurse on [a/2, b/2] 

and multiply each interval by 2 
  If a, b are odd, recurse on [a+1, b-1] and add 

[a, a+1] and [b-1, b]  
  If a is odd and b is even, recurse on [a+1, b] 

and add [a, a+1] 
  If a is even and b is odd, recurse on [a,b-1] and 

add [b-1, b] 



Orienteering with Time-Windows 

  Apply lemma to each [R(v), D(v)] 
  Consider all sub-intervals of length 2i.  
  These intervals start at a multiple of 2i hence 

they are either disjoint or completely overlap 
  Can use Orienteering in each interval and stitch 

across disjoint intervals using dynamic prog. 

  At most log Lmax classes and one of them has 
OPT/2log Lmax profit 



Fixed-parameter Tractability 

Observation: There is an O(4k poly(n)) time 
algorithm that gives optimum profit if there is a 
solution that visits at most k nodes. 

Follows from “color-coding” scheme of          
[Alon-Yuster-Zwick] 



A more complex path problem 

SOP-TW 
  f: 2V ! R+  a monotone submodular set 

function on the nodes V  
  Each node v has a time window [R(v), D(v)] .  

Goal: find path P s.t nodes in P are visited in time 
windows and f(P) is maximized 



Algorithm for SOP-TW 

[C-Pal’05] 
Theorem: There is a quasi-poly time O(log n) 

approx. for SOP-TW 



Recursive Greedy Alg: idea 

s t 

Unknown optimum path P*  

middle node v 

v 

B1 
B - B1 

time to reach v = B1 



Recursive Greedy Algorithm 

s t 

v 

B1 
B - B1 

RG(f, s, t, B, i) 

1.  “Guess” v and B1 ε [R(v), D(v)] 

2.  P1 = RG(f, s, v, B1, i-1) 

3.  P2 = RG(fP1, v, t, B-B1, i-1) 

4.  return P = P1 concat P2 

Savitch’s algo for 
optimization ? 



Analysis 

Theorem: RG(f,s,t,B,log n) yeilds an O(log n) 
approximation 

Running time with recursion depth i:  (nB)O(i) 
Can improve to  (n log B)O(i) : quasi-poly 



Guessing more  

s t v1 
v2 

v3 

B1 B2 B3 

B4 

Running time O(n a log n)   

Approximation:  log n / log (a+1) 

log1-ε n approximation in  exp(nε) time        
   (sub-exponential time) 



Applications 

Quasi-poly algorithms: 
  O(log2 n) approx for group Steiner problem in 

undir graphs. Current approx. is O(log3 n) and 
hardness is Ω(log2-ε n). SOP-TW is hard to 
within Ω(log1-ε n) factor. 

  O(log n) approx for Orienteering with time 
varying profits at nodes 

  O(log n) approx for Orienteering with multiple 
disjoint time windows for each node v.   



Questions 

Conjecture: O(log2 n) approx. for group Steiner via LP. 

Is there a non-trivial poly-time (poly-log?) approx for 
Orienteering with multiple time windows? 

Obvious: change quasi-poly to poly. 



Group Steiner problem 

Set cover +  Steiner tree = group Steiner 

Undirected graph G = (V, E) 
Groups:  S1, S2, ..., Sk , each Si µ V 

Goal: find minimum cost tree T = (V’, E’) such that  
 |V’ Å Si | ¸ 1 for 1· i · k 



Group Steiner problem 

O(log2 n) approx if G is a tree  
O(log3 n) approx for general graphs 
 [Garg-Konjevod-Ravi’98 + ...] 

Ω(log2-ε n) approx not possible even on trees 
unless NP contained in quasi-polynomial time  

 [Halperin-Krauthgamer’03] 



SOP and group Steiner 

Simple observation: 
α-approx for SOP implies 2α log k approx for 

group Steiner problem 

Consequences: 
 O(log2 n) approx for group Steiner problem in 

quasi-poly time 
 Ω(log1-ε n) hardness for SOP unless NP is 

contained in quasi-poly time 



Reduction size lower bound 

Unless NP µ quasi-polytime no log2-ε n approx. for 
group Steiner problem [Halperin-Krauthgamer’03] 

Can we obtain log2-ε n hardness under P ≠ NP ? 
Can reduction size by polynomial? 

No, unless NP µ sub-exponential time  
From log1-ε n approx in subexp time for SOP 



Proof 

P 
P1

 P2
 

v 

|P1| ¸ |P1
*| / log (k/2) 

|P2| ¸ ? / log (k/2) 



Proof 

P 
P1

 P2
 

v 

|P1| ¸ |P1
*| / log (k/2) 

|P2| ¸ |P2
* \ P1| / log (k/2) 

      ¸ (|P2
*| - |P1|) / log (k/2) 



Proof contd 

|P|  ¸ (|P*| - |P|) / log (k/2) 

|P| ¸ |P*| / (1 + log (k/2))  
      ¸ |P*| / log k 

Lemma: α approx for recursive step implies α+1 
approx for greedy step 

[Fisher-Nemhauser-Wolsey’78] 



Open Problems: Summary 

* : quasi-poly running time  

Undir 
Graphs 

Dir Graphs 

Orienteering 2+ε O(log n)* O(log2 n) 

k-Stroll 2+ε ? 

Orienteering-TW 

Multiple TWs/node 

O(log2 n)   
O(log Lmax) 

O(log n)*  

O(log n)* O(log4 n)   
O(log2 n log Lmax) 

O(log n)*  

Only APX-hardness for all of the above problems! 


