Orienteering and related problems: mini-survey and open problems

Chandra Chekuri University of Illinois (UIUC) Orienteering

Input: Graph (undir or dir) G, nodes s, t and budget B

Goal: find $s \rightarrow t$ walk/path P of length $\leq B$ that maximizes number of nodes in P

Orienteering

Input: Graph (undir or dir) G, nodes s, t and budget B

Goal: find $s \rightarrow t$ walk/path P of length $\leq B$ that maximizes number of nodes in P

Orienteering

Input: Graph (undir or dir) G, nodes s, t and budget B

Goal: find $s \rightarrow t$ walk/path P of length $\leq B$ that maximizes number of nodes in P

Orienteering: known results

Undirected graphs

- Approx. algorithms
 - (2+ε) for points in R²
 [Arkin-Mitchell-Narasimhan'98]
 - 4 [Blum-Chawla-Karger-Lane-Meyerson-Minkoff'03]
 - 3 [Bansal-Blum-Chawla-Meyerson'04]
 - (1+ε) for points in R^d, d
 fixed [Chen-HarPeled'05]
 - (2+ε) [C-Korula-Pal'08]
- Hardness:
 - APX-hard [BCKLMM'03]

Orienteering: known results

Undirected graphs

- Approx. algorithms
 - (2+ε) for points in R²
 [Arkin-Mitchell-Narasimhan'98]
 - 4 [Blum-Chawla-Karger-Lane-Meyerson-Minkoff'03]
 - 3 [Bansal-Blum-Chawla-Meyerson'04]
 - (1+ε) for points in R^d, d
 fixed [Chen-HarPeled'05]
 - (2+ε) [C-Korula-Pal'08]
- Hardness:
 - APX-hard [BCKLMM'03]

Directed Graphs

- Approx. algorithms
 - O(log n) in *quasi-poly* time
 [C-Pal'05]
 - O(log² n) [C-Korula-Pal'08] [Nagarajan-Ravi'07]
- Hardness: APX-hard

Orienteering: known results

Undirected graphs

- Approx. algorithms
 - (2+ε) for points in R²
 [Arkin-Mitchell-Narasimhan'98]
 - 4 [Blum-Chawla-Karger-Lane-Meyerson-Minkoff'03]
 - 3 [Bansal-Blum-Chawla-Meyerson'04]
 - (1+ε) for points in R^d, d
 fixed [Chen-HarPeled'05]
 - (2+ε) [C-Korula-Pal'08]
- Hardness:
 - APX-hard [BCKLMM'03]

Directed Graphs

- Approx. algorithms
 - O(log n) in *quasi-poly* time
 [C-Pal'05]
 - O(log² n) [C-Korula-Pal'08] [Nagarajan-Ravi'07]
- Hardness: APX-hard

Close gap for directed graphs

Orienteering: Key Idea [BCKLMM]

- Reduce to k-Stroll problem via the intermediate problem called *min-excess* problem
- The k-Stroll problem
 - Input: Graph G, nodes s, t and integer k
 - Goal: Find min-cost s-t walk/path that visits k nodes
- Min-excess problem
 - Input: Graph G, nodes s, t and integer k
 - Goal: Find s-t walk/path P that visits k nodes and minimizes excess of P = len(P) - dist(s,t)

Orienteering via Min-Excess

[BCKLMM'03, BBCM'04] Theorem: γ approx for Min-Excess implies ceiling(γ) approx for Orienteering

Orienteering via Min-Excess

[BCKLMM'03, BBCM'04] Theorem: γ approx for Min-Excess implies ceiling(γ) approx for Orienteering

Min-Excess via (approx) k-Stroll

wriggly portions have large excess: use k-stroll approx monotone portions: use exact algorithm stitch via dynamic programming

Min-Excess via (approx) k-Stroll

[BCKLMM'03] Theorem: β approx for k-Stroll implies O(β) for min-excess

k-Stroll and Orienteering

[BCKLMM'03]

Theorem: α approx for k-Stroll implies $O(\alpha)$ approx for Orienteering

Algorithms for k-Stroll

- Undir graphs: (2+€) [Chaudhuri-Godfrey-Rao-Talwar'03]
- Directed graphs: ??

Is there a non-trivial approx. for dir k-Stroll? Is the problem very hard?

Algorithms for k-Stroll in dir graphs

- k=n is asymmetric TSP Path problem (ATSPP)
 - $O(\sqrt{n})$ approx [Lam-Newman'05]
 - O(log n) approx [C-Pal'06]
- Bicriteria (α , β) approx: output path with k/ α vertices and cost β OPT
 - (O(log² k, O(1)) approx [C-Korula-Pal'08] [Nagarajan-Ravi'07] (different approaches)
 - Bi-criteria approx sufficient for Orienteering

Improve k-Stroll bi-criteria approx

Orienteering-TW

- Each node v has a time window [R(v), D(v)]
- v counted only if it is visited in its window

Deadline-TSP: R(v) = 0 for all v

Goal: Find s-t walk to max # of nodes visited

[Bansal-Blum-Chawla-Meyerson'04]

 α approx for Orienteering implies

- O(α log n) approx for Deadline-TSP
- $O(\alpha \log^2 n)$ approx for Orienteering-TW

 $\alpha = O(1)$ for undir and $\alpha = O(\log^2 n)$ in dir graphs

Conjecture: there is an O(log n) approx for Orient-TW in undirected graphs

Is the problem $\omega(1)$ -factor hard in directed graphs?

Evidence for conjecture:

- O(log n) approx in quasi-poly time even in directed graphs. [C-Pal'05]
- O(α log L_{max}) approx [C-Korula'07] where L_{max} is max window length assuming integer data

[C-Korula'07]

Two simple algorithms:

- $O(\alpha \log L_{max})$ approx assume integer data and is L_{max} is max window length
- $O(\alpha \max(\log n, \log (L_{max}/L_{min})))$

Difficult case: L_{max}/L_{min} is super-poly in n

[C-Korula'07] Idea for O(log L_{max}) approx

- Lemma: Let [a,b] be an interval with a, b integer and m = b-a. Then [a,b] can be *partitioned* into at most 2 log m *disjoint* sub-intervals such that
- length of each sub-interval is a power of 2
- sub-interval of length 2ⁱ starts at multiple of 2ⁱ
- at most 2 intervals of each length

Proof of Lemma

- [a, b] interval with a and b integers
- If a, b are even integers, recurse on [a/2, b/2] and multiply each interval by 2
- If a, b are odd, recurse on [a+1, b-1] and add [a, a+1] and [b-1, b]
- If a is odd and b is even, recurse on [a+1, b] and add [a, a+1]
- If a is even and b is odd, recurse on [a,b-1] and add [b-1, b]

- Apply lemma to each [R(v), D(v)]
- Consider all sub-intervals of length 2ⁱ.
- These intervals start at a multiple of 2ⁱ hence they are *either disjoint or completely overlap*
- Can use Orienteering in each interval and stitch across disjoint intervals using dynamic prog.
- At most log L_{max} classes and one of them has OPT/2log L_{max} profit

Fixed-parameter Tractability

Observation: There is an O(4^k poly(n)) time algorithm that gives optimum profit if there is a solution that visits at most k nodes.

Follows from "color-coding" scheme of [Alon-Yuster-Zwick]

A more complex path problem

SOP-TW

- f: 2^V → R⁺ a monotone submodular set function on the nodes V
- Each node v has a time window [R(v), D(v)].

Goal: find path P s.t nodes in P are visited in time windows and f(P) is maximized

Algorithm for SOP-TW

[C-Pal'05]

Theorem: There is a quasi-poly time O(log n) approx. for SOP-TW

Recursive Greedy Alg: idea

Unknown optimum path P*

Recursive Greedy Algorithm

Savitch's algo for optimization ?

RG(f, s, t, B, i)

- ^{1.} "Guess" v and $B_1 \in [R(v), D(v)]$
- 2. $P_1 = RG(f, s, v, B_1, i-1)$
- 3. $P_2 = RG(f_{P1}, v, t, B-B_1, i-1)$
- 4. return $P = P_1$ concat P_2

Analysis

Theorem: RG(f,s,t,B,log n) yeilds an O(log n) approximation

Running time with recursion depth i: (nB)^{O(i)} Can improve to (n log B)^{O(i)} : quasi-poly

Guessing more

Running time O(n ^{a log n}) Approximation: log n / log (a+1)

log^{1-ε} n approximation in exp(n^ε) time (sub-exponential time) Applications

Quasi-poly algorithms:

- O(log² n) approx for group Steiner problem in undir graphs. Current approx. is O(log³ n) and hardness is Ω(log^{2-ε} n). SOP-TW is hard to within Ω(log^{1-ε} n) factor.
- O(log n) approx for Orienteering with time varying profits at nodes
- O(log n) approx for Orienteering with multiple disjoint time windows for each node v.

Questions

Obvious: change quasi-poly to poly.

Conjecture: O(log² n) approx. for group Steiner via LP.

Is there a non-trivial poly-time (poly-log?) approx for Orienteering with multiple time windows?

Group Steiner problem

Set cover + Steiner tree = group Steiner

Undirected graph G = (V, E)Groups: $S_1, S_2, ..., S_k$, each $S_i \subseteq V$

Goal: find minimum cost tree T = (V', E') such that $|V' \cap S_i| \ge 1$ for $1 \le i \le k$

Group Steiner problem

O(log² n) approx if G is a tree O(log³ n) approx for general graphs [Garg-Konjevod-Ravi'98 + ...]

Ω(log^{2-ε} n) approx not possible even on trees unless NP contained in quasi-polynomial time [Halperin-Krauthgamer'03]

SOP and group Steiner

Simple observation: α -approx for SOP implies $2\alpha \log k$ approx for group Steiner problem

Consequences:

- O(log² n) approx for group Steiner problem in quasi-poly time
- Ω(log^{1-ε} n) hardness for SOP unless NP is contained in quasi-poly time

Reduction size lower bound

Unless NP \subseteq quasi-polytime no log^{2- ϵ} n approx. for group Steiner problem [Halperin-Krauthgamer'03]

Can we obtain $\log^{2-\epsilon} n$ hardness under $P \neq NP$? Can reduction size by polynomial?

No, unless NP \subseteq sub-exponential time From log^{1- ϵ} n approx in subexp time for SOP

Proof

 $|P_1| \ge |P_1^*| / \log (k/2)$

 $|P_2| \ge ? / \log (k/2)$

Proof

 $|P_1| \ge |P_1^*| / \log (k/2)$

 $|P_2| \ge |P_2^* \setminus P_1| / \log (k/2)$ $\ge (|P_2^*| - |P_1|) / \log (k/2)$ Proof contd

 $|P| \ge (|P^*| - |P|) / \log (k/2)$

 $|P| \ge |P^*| / (1 + \log (k/2))$ $\ge |P^*| / \log k$

Lemma: α approx for recursive step implies α+1 approx for greedy step [Fisher-Nemhauser-Wolsey'78]

Open Problems: Summary

	Undir Graphs	Dir Graphs
Orienteering	2+e	O(log n)* O(log ² n)
k-Stroll	2+e	?
Orienteering-TW	O(log ² n) O(log L _{max})	O(log n)* O(log ⁴ n) O(log ² n log L _{max})
Multiple TWs/node	O(log n)*	O(log n)*

Only APX-hardness for all of the above problems!

* : quasi-poly running time