Orienteering and related problems:
mini-survey and open problems

Chandra Chekuri
University of Illinois (UIUC)

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
budget B

Goal: find s — t walk/path P of length < B that
maximizes number of nodes in P

—

Il
(@)}

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
budget B

Goal: find s — t walk/path P of length < B that
maximizes number of nodes in P

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
budget B

Goal: find s — t walk/path P of length < B that
maximizes number of nodes in P

Orienteering: known results

Undirected graphs

= Approx. algorithms

= (2+¢) for points in R?
[Arkin-Mitchell-Narasimhan98]

= 4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff'03]

= 3 [Bansal-Blum-Chawla-
Meyerson’04]

= (1+¢) for points in RY, d
fixed [Chen-HarPeled05]
= (2+¢) [C-Korula-Pal'08]

= Hardness:
« APX-hard [BCKLMM'03]

Orienteering: known results

Undirected graphs Directed Graphs
= Approx. algorithms = Approx. algorithms
= (2+¢) for points in R2 = O(log n) in guasi-poly time
[Arkin-Mitchell-Narasimhan'98] [C-Pal’'05]
= 4 [Blum-Chawla-Karger-Lane- = O(log? n) [C-Korula-Pal’08]
Meyerson-Minkoff'03] [Nagarajan-Ravi'07]
= 3 [Bansal-Blum-Chawla- = Hardness: APX-hard
Meyerson’04]

= (1+¢) for points in RY, d
fixed [Chen-HarPeled05]
= (2+¢) [C-Korula-Pal'08]

= Hardness:
« APX-hard [BCKLMM'03]

Orienteering: known results

Undirected graphs Directed Graphs
= Approx. algorithms = Approx. algorithms
= (2+¢) for points in R? = O(log n) in guasi-poly time
[Arkin-Mitchell-Narasimhan'98] [C-Pal’'05]
= 4 [Blum-Chawla-Karger-Lane- = O(log? n) [C-Korula-Pal’08]
Meyerson-Minkoff'03] [Nagarajan-Ravi'07]
= 3 [Bansal-Blum-Chawla- = Hardness: APX-hard
Meyerson’04]
= (1+¢) for points in RY, d :
fixed [Chen-HarPeled'05] | Close gap for directed graphs
= (2+¢) [C-Korula-Pal'08]
= Hardness:

« APX-hard [BCKLMM'03]

Orienteering: Key Idea [BCKLMM]

= Reduce to k-Stroll problem via the intermediate
problem called min-excess problem

= The k-Stroll problem
Input: Graph G, nodes s, t and integer k
Goal: Find min-cost s-t walk/path that visits k nodes

= Min-excess problem
Input: Graph G, nodes s, t and integer k

Goal: Find s-t walk/path P that visits k hodes and
minimizes excess of P = len(P) — dist(s,t)

Orienteering via Min-Excess

[BCKLMM'03, BBCM'04]

Theorem: y approx for Min-Excess implies
ceiling(y) approx for Orienteering

Break P into Y portions of equal profit t
One of the portions has < 1/Y excess(P)

Orienteering via Min-Excess

[BCKLMM'03, BBCM'04]

Theorem: y approx for Min-Excess implies
ceiling(y) approx for Orienteering

S Y approx Min-Excess Path ¢

Min-Excess via (approx) k-Stroll

distance from s

wriggly

monotone

wriggly portions have large excess: use k-stroll approx
monotone portions: use exact algorithm
stitch via dynamic programming

Min-Excess via (approx) k-Stroll

distance from s

Wriggl/

monotone

[BCKLMM'03]
Theorem: 3 approx for k-Stroll implies O(f) for min-excess

k-Stroll and Orienteering

[BCKLMM’03]

Theorem: o approx for k-Stroll implies O()
approx for Orienteering

Algorithms for k-Stroll

= Undir graphs: (2+¢€) [Chaudhuri-Godfrey-Rao-
Talwar'03]

= Directed graphs: ??

Is there a non-trivial approx. for dir k-Stroll?
Is the problem very hard?

Algorithms for k-Stroll in dir graphs

= k=n is asymmetric TSP Path problem (ATSPP)
= O(+/n) approx [Lam-Newman'05]
= O(log n) approx [C-Pal’'06]

= Bicriteria (o,) approx: output path with k/o
vertices and cost OPT

= (O(log? k, O(1)) approx [C-Korula-Pal'08] [Nagarajan-
Ravi'07] (different approaches)

= Bi-criteria approx sufficient for Orienteering

Improve k-Stroll bi-criteria approx

Orienteering with Time-Windows

Orienteering-TW
= Each node v has a time window [R(V), D(v)]
= v counted only if it is visited in its window

Deadline-TSP: R(v) = 0 for all v

Goal: Find s-t walk to max # of nodes visited

Orienteering with Time-Windows

[Bansal-Blum-Chawla-Meyerson’04]
o approx for Orienteering implies

= O(ax log n) approx for Deadline-TSP
= O(x log? n) approx for Orienteering-TW

o = O(1) for undir and o« = O(log? n) in dir graphs

Orienteering with Time-Windows

Conjecture: there is an O(log n) approx for Orient-TW
in undirected graphs

Is the problem w(1)-factor hard in directed graphs?

Evidence for conjecture:

= O(log n) approx in quasi-poly time even in
directed graphs. [C-Pal’05]

= O(x log L, ,,) approx [C-Korula’07] where L, _, is
max window length assuming integer data

Orienteering with Time-Windows

[C-Korula'07]
Two simple algorithms:

= O(x log L,,.,) approx assume integer data and is
L., IS max window length

= O(ax max(log n, log (Lia/Limin)))

Difficult case: L. ., /L.,,is super-poly in n

Orienteering with Time-Windows

[C-Korula'07]
Idea for O(log L,,.,) approx

Lemma: Let [a,b] be an interval with a, b integer
and m = b-a. Then [a,b] can be partitioned into
at most 2 log m disjoint sub-intervals such that

= length of each sub-interval is a power of 2
= sub-interval of length 2' starts at multiple of 2
= at most 2 intervals of each length

Proof of Lemma

= [3, b] interval with a and b integers

= If 3, b are even integers, recurse on [a/2, b/2]
and multiply each interval by 2

= If a, b are odd, recurse on [a+1, b-1] and add
[a, a+1] and [b-1, b]

= If ais odd and b is even, recurse on [a+1, D]
and add [a, a+1]

= If ais evenand b is odd, recurse on [a,b-1] and
add [b-1, b]

Orienteering with Time-Windows

= Apply lemma to each [R(V), D(v)]
= Consider all sub-intervals of length 2'.

= These intervals start at a multiple of 2' hence
they are either disjoint or completely overlap

= Can use Orienteering in each interval and stitch
across disjoint intervals using dynamic prog.

= At most log L, ., classes and one of them has
OPT/2log L., profit

Fixed-parameter Tractability

Observation: There is an O(4 poly(n)) time
algorithm that gives optimum profit if there is a
solution that visits at most k nodes.

Follows from “color-coding” scheme of
[Alon-Yuster-Zwick]

A more complex path problem

SOP-TW

s 12V = R* a monotone submodular set
function on the nodes V

= Each node v has a time window [R(v), D(v)] .

Goal: find path P s.t nodes in P are visited in time
windows and f(P) is maximized

Algorithm for SOP-TW

[C-Pal’'05]

Theorem: There is a quasi-poly time O(log n)
approx. for SOP-TW

Recursive Greedy Alg: idea

Unknown optimum path P*

middle node v
time to reach v = B,

Recursive Greedy Algorithm

//&+%

5 B, B - B, t

265,48, i

. 'Guess” v and B, € [R(v), D(v)]
2. P]. —_ RG(f, S, V, Bl’ |'1)
3. Pz —_ RG(fpl, V, t, B'B]_, |'1)

+. return P = P, concat P,

Analysis

Theorem: RG(f,s,t,B,log n) yeilds an O(log n)
approximation

Running time with recursion depth i: (nB)°0
Can improve to (n log B)°0 : quasi-poly

Guessing more

Running time O(n alegn)

Approximation: log n/log (a+1)

log'¢ n approximation in exp(n¢) time
(sub-exponential time)

Applications

Quasi-poly algorithms:

O(log? n) approx for group Steiner
undir graphs. Current approx. is O(
hardness is Q(logZ€n). SOP-TW is
within Q(log'-€n) factor.

broblem in
0g? n) and

nard to

O(log n) approx for Orienteering with time

varying profits at nodes

O(log n) approx for Orienteering with multiple
disjoint time windows for each node v.

Questions

Group Steiner problem

Set cover + Steiner tree = group Steiner

Undirected graph G = (V, E)
Groups: S¢, S5, ..., S, ,each S, CV

Goal: find minimum cost tree T = (V’, E’) such that
VNS |>1fori<i<k

Group Steiner problem

O(log? n) approx if G is a tree
O(log? n) approx for general graphs
[Garg-Konjevod-Ravi‘o8 + ...]

Q(log?® n) approx not possible even on trees
unless NP contained in quasi-polynomial time
[Halperin-Krauthgamer'03]

SOP and group Steiner

Simple observation:

a-approx for SOP implies 2o log k approx for
group Steiner problem

Consequences:

O(log? n) approx for group Steiner problem in
quasi-poly time

Q(logt n) hardness for SOP unless NP is
contained in quasi-poly time

Reduction size lower bound

Unless NP C quasi-polytime no log?¢ n approx. for
group Steiner problem [Halperin-Krauthgamer'03]

Can we obtain log?* n hardness under P = NP ?
Can reduction size by polynomial?

No, unless NP C sub-exponential time
From log'< n approx in subexp time for SOP

Proof

IP;| > |Py7| / log (k/2)

|P,| = ?/log (k/2)

Proof

IP;| > |Py7| / log (k/2)

Pl 2> |
> (

P,"\ Py| / log (k/2)

P,7| - [P4]) / log (k/2)

Proof contd

[P| = (IP*| - [P]) / log (k/2)

IP| > [P*| / (1 + log (k/2))
> |P*| / log k

Lemma: o approx for recursive step implies a+1
approx for greedy step
[Fisher-Nemhauser-Wolsey'/8]

Open Problems: Summary

Undir Dir Graphs
Graphs
Orienteering 2+€ O(log n)* O(log? n)
k-Stroll 2+€ ?

Orienteering-TW O(log? n) O(log n)* O(log* n)
O(log Lo,) | O(log? nlog L)

Multiple TWs/node | O(log n)* O(log n)*

Only APX-hardness for all of the above problems!

* 1 quasi-poly running time

