
Orienteering and related problems:
 mini-survey and open problems

Chandra Chekuri
University of Illinois (UIUC)

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering

Input: Graph (undir or dir) G, nodes s, t and
 budget B

Goal: find s ! t walk/path P of length · B that
maximizes number of nodes in P

s t

B = 6

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Directed Graphs
  Approx. algorithms

  O(log n) in quasi-poly time
[C-Pal’05]

  O(log2 n) [C-Korula-Pal’08]
[Nagarajan-Ravi’07]

  Hardness: APX-hard

Orienteering: known results

Undirected graphs
  Approx. algorithms

  (2+ε) for points in R2
[Arkin-Mitchell-Narasimhan’98]

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03]

  3 [Bansal-Blum-Chawla-
Meyerson’04]

  (1+ε) for points in Rd, d
fixed [Chen-HarPeled’05]

  (2+ε) [C-Korula-Pal’08]

  Hardness:
  APX-hard [BCKLMM’03]

Directed Graphs
  Approx. algorithms

  O(log n) in quasi-poly time
[C-Pal’05]

  O(log2 n) [C-Korula-Pal’08]
[Nagarajan-Ravi’07]

  Hardness: APX-hard

Close gap for directed graphs

Orienteering: Key Idea [BCKLMM]

  Reduce to k-Stroll problem via the intermediate
problem called min-excess problem

  The k-Stroll problem
  Input: Graph G, nodes s, t and integer k
  Goal: Find min-cost s-t walk/path that visits k nodes

  Min-excess problem
  Input: Graph G, nodes s, t and integer k
  Goal: Find s-t walk/path P that visits k nodes and

minimizes excess of P = len(P) – dist(s,t)

Orienteering via Min-Excess

[BCKLMM’03, BBCM’04]
Theorem: γ approx for Min-Excess implies

 ceiling(γ) approx for Orienteering

t
s

P* γ = 4

• Break P* into Υ portions of equal profit
• One of the portions has ≤ 1/Υ excess(P*)

Orienteering via Min-Excess

[BCKLMM’03, BBCM’04]
Theorem: γ approx for Min-Excess implies

 ceiling(γ) approx for Orienteering

t
s

P* γ = 4

 Υ approx Min-Excess Path

Min-Excess via (approx) k-Stroll

wriggly portions have large excess: use k-stroll approx
monotone portions: use exact algorithm
stitch via dynamic programming

t s

wriggly

monotone

distance from s

P*

Min-Excess via (approx) k-Stroll

t s

wriggly

monotone

distance from s

[BCKLMM’03]
Theorem: β approx for k-Stroll implies O(β) for min-excess

P*

k-Stroll and Orienteering

[BCKLMM’03]
Theorem: α approx for k-Stroll implies O(α)

approx for Orienteering

Algorithms for k-Stroll

  Undir graphs: (2+ε) [Chaudhuri-Godfrey-Rao-
Talwar’03]

  Directed graphs: ??

Is there a non-trivial approx. for dir k-Stroll?
Is the problem very hard?

Algorithms for k-Stroll in dir graphs

  k=n is asymmetric TSP Path problem (ATSPP)
  O(√n) approx [Lam-Newman’05]
  O(log n) approx [C-Pal’06]

  Bicriteria (α, β) approx: output path with k/α
vertices and cost β OPT
  (O(log2 k, O(1)) approx [C-Korula-Pal’08] [Nagarajan-

Ravi’07] (different approaches)
  Bi-criteria approx sufficient for Orienteering

Improve k-Stroll bi-criteria approx

Orienteering with Time-Windows

Orienteering-TW
  Each node v has a time window [R(v), D(v)]
  v counted only if it is visited in its window

Deadline-TSP: R(v) = 0 for all v

Goal: Find s-t walk to max # of nodes visited

Orienteering with Time-Windows

[Bansal-Blum-Chawla-Meyerson’04]

α approx for Orienteering implies
  O(α log n) approx for Deadline-TSP
  O(α log2 n) approx for Orienteering-TW

α = O(1) for undir and α = O(log2 n) in dir graphs

Orienteering with Time-Windows

Evidence for conjecture:
  O(log n) approx in quasi-poly time even in

directed graphs. [C-Pal’05]
  O(α log Lmax) approx [C-Korula’07] where Lmax is

max window length assuming integer data

Conjecture: there is an O(log n) approx for Orient-TW
 in undirected graphs

Is the problem ω(1)-factor hard in directed graphs?

Orienteering with Time-Windows

[C-Korula’07]
Two simple algorithms:
  O(α log Lmax) approx assume integer data and is

Lmax is max window length
  O(α max(log n, log (Lmax/Lmin)))

Difficult case: Lmax/Lmin is super-poly in n

Orienteering with Time-Windows

[C-Korula’07]
Idea for O(log Lmax) approx

Lemma: Let [a,b] be an interval with a, b integer
and m = b-a. Then [a,b] can be partitioned into
at most 2 log m disjoint sub-intervals such that

  length of each sub-interval is a power of 2
  sub-interval of length 2i starts at multiple of 2i
  at most 2 intervals of each length

Proof of Lemma

  [a, b] interval with a and b integers
  If a, b are even integers, recurse on [a/2, b/2]

and multiply each interval by 2
  If a, b are odd, recurse on [a+1, b-1] and add

[a, a+1] and [b-1, b]
  If a is odd and b is even, recurse on [a+1, b]

and add [a, a+1]
  If a is even and b is odd, recurse on [a,b-1] and

add [b-1, b]

Orienteering with Time-Windows

  Apply lemma to each [R(v), D(v)]
  Consider all sub-intervals of length 2i.
  These intervals start at a multiple of 2i hence

they are either disjoint or completely overlap
  Can use Orienteering in each interval and stitch

across disjoint intervals using dynamic prog.

  At most log Lmax classes and one of them has
OPT/2log Lmax profit

Fixed-parameter Tractability

Observation: There is an O(4k poly(n)) time
algorithm that gives optimum profit if there is a
solution that visits at most k nodes.

Follows from “color-coding” scheme of
[Alon-Yuster-Zwick]

A more complex path problem

SOP-TW
  f: 2V ! R+ a monotone submodular set

function on the nodes V
  Each node v has a time window [R(v), D(v)] .

Goal: find path P s.t nodes in P are visited in time
windows and f(P) is maximized

Algorithm for SOP-TW

[C-Pal’05]
Theorem: There is a quasi-poly time O(log n)

approx. for SOP-TW

Recursive Greedy Alg: idea

s t

Unknown optimum path P*

middle node v

v

B1
B - B1

time to reach v = B1

Recursive Greedy Algorithm

s t

v

B1
B - B1

RG(f, s, t, B, i)

1.  “Guess” v and B1 ε [R(v), D(v)]

2.  P1 = RG(f, s, v, B1, i-1)

3.  P2 = RG(fP1, v, t, B-B1, i-1)

4.  return P = P1 concat P2

Savitch’s algo for
optimization ?

Analysis

Theorem: RG(f,s,t,B,log n) yeilds an O(log n)
approximation

Running time with recursion depth i: (nB)O(i)
Can improve to (n log B)O(i) : quasi-poly

Guessing more

s t v1
v2

v3

B1 B2 B3

B4

Running time O(n a log n)

Approximation: log n / log (a+1)

log1-ε n approximation in exp(nε) time
 (sub-exponential time)

Applications

Quasi-poly algorithms:
  O(log2 n) approx for group Steiner problem in

undir graphs. Current approx. is O(log3 n) and
hardness is Ω(log2-ε n). SOP-TW is hard to
within Ω(log1-ε n) factor.

  O(log n) approx for Orienteering with time
varying profits at nodes

  O(log n) approx for Orienteering with multiple
disjoint time windows for each node v.

Questions

Conjecture: O(log2 n) approx. for group Steiner via LP.

Is there a non-trivial poly-time (poly-log?) approx for
Orienteering with multiple time windows?

Obvious: change quasi-poly to poly.

Group Steiner problem

Set cover + Steiner tree = group Steiner

Undirected graph G = (V, E)
Groups: S1, S2, ..., Sk , each Si µ V

Goal: find minimum cost tree T = (V’, E’) such that
 |V’ Å Si | ¸ 1 for 1· i · k

Group Steiner problem

O(log2 n) approx if G is a tree
O(log3 n) approx for general graphs
 [Garg-Konjevod-Ravi’98 + ...]

Ω(log2-ε n) approx not possible even on trees
unless NP contained in quasi-polynomial time

 [Halperin-Krauthgamer’03]

SOP and group Steiner

Simple observation:
α-approx for SOP implies 2α log k approx for

group Steiner problem

Consequences:
 O(log2 n) approx for group Steiner problem in

quasi-poly time
 Ω(log1-ε n) hardness for SOP unless NP is

contained in quasi-poly time

Reduction size lower bound

Unless NP µ quasi-polytime no log2-ε n approx. for
group Steiner problem [Halperin-Krauthgamer’03]

Can we obtain log2-ε n hardness under P ≠ NP ?
Can reduction size by polynomial?

No, unless NP µ sub-exponential time
From log1-ε n approx in subexp time for SOP

Proof

P
P1

 P2

v

|P1| ¸ |P1
*| / log (k/2)

|P2| ¸ ? / log (k/2)

Proof

P
P1

 P2

v

|P1| ¸ |P1
*| / log (k/2)

|P2| ¸ |P2
* \ P1| / log (k/2)

 ¸ (|P2
*| - |P1|) / log (k/2)

Proof contd

|P| ¸ (|P*| - |P|) / log (k/2)

|P| ¸ |P*| / (1 + log (k/2))
 ¸ |P*| / log k

Lemma: α approx for recursive step implies α+1
approx for greedy step

[Fisher-Nemhauser-Wolsey’78]

Open Problems: Summary

* : quasi-poly running time

Undir
Graphs

Dir Graphs

Orienteering 2+ε O(log n)* O(log2 n)

k-Stroll 2+ε ?

Orienteering-TW

Multiple TWs/node

O(log2 n)
O(log Lmax)

O(log n)*

O(log n)* O(log4 n)
O(log2 n log Lmax)

O(log n)*

Only APX-hardness for all of the above problems!

