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Input: Graph (undir or dir) G, nodes s, t  and    
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Goal: find s ! t walk/path P of length · B that 
maximizes number of nodes in P 
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Orienteering: known results 

Undirected graphs 
  Approx. algorithms 

  (2+ε) for points in R2 
[Arkin-Mitchell-Narasimhan’98] 

  4 [Blum-Chawla-Karger-Lane-
Meyerson-Minkoff’03] 

  3 [Bansal-Blum-Chawla-
Meyerson’04] 

  (1+ε) for points in Rd, d 
fixed [Chen-HarPeled’05] 

  (2+ε) [C-Korula-Pal’08] 

  Hardness:  
  APX-hard [BCKLMM’03] 
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Orienteering: Key Idea [BCKLMM] 

  Reduce to k-Stroll problem via the intermediate 
problem called min-excess problem 

  The k-Stroll problem 
  Input: Graph G, nodes s, t and integer k 
  Goal: Find min-cost s-t walk/path that visits k nodes 

  Min-excess problem 
  Input: Graph G, nodes s, t and integer k 
  Goal: Find s-t walk/path P that visits k nodes and 

minimizes excess of P = len(P) – dist(s,t) 



Orienteering via Min-Excess 

[BCKLMM’03, BBCM’04] 
Theorem: γ approx for Min-Excess implies      

 ceiling(γ) approx for Orienteering 

t 
s 

P* γ = 4 

• Break P* into Υ portions of equal profit 
• One of the portions has ≤ 1/Υ excess(P*) 



Orienteering via Min-Excess 

[BCKLMM’03, BBCM’04] 
Theorem: γ approx for Min-Excess implies      

 ceiling(γ) approx for Orienteering 

t 
s 

P* γ = 4 

 Υ approx Min-Excess Path 



Min-Excess via (approx) k-Stroll 

wriggly portions have large excess: use k-stroll approx 
monotone portions: use exact algorithm 
stitch via dynamic programming  

t s 

wriggly 

monotone 

distance from s 

P* 



Min-Excess via (approx) k-Stroll 

t s 

wriggly 

monotone 

distance from s 

[BCKLMM’03] 
Theorem: β approx for k-Stroll implies O(β) for min-excess 

P* 



k-Stroll and Orienteering 

[BCKLMM’03] 
Theorem: α approx for k-Stroll implies O(α) 

approx for Orienteering 



Algorithms for k-Stroll 

  Undir graphs: (2+ε) [Chaudhuri-Godfrey-Rao-
Talwar’03]  

  Directed graphs: ?? 

Is there a non-trivial approx. for dir k-Stroll? 
Is the problem very hard? 



Algorithms for k-Stroll in dir graphs 

  k=n is asymmetric TSP Path problem (ATSPP) 
  O(√n) approx [Lam-Newman’05] 
  O(log n) approx [C-Pal’06] 

  Bicriteria (α, β) approx: output path with k/α 
vertices and cost β OPT 
  (O(log2 k, O(1)) approx [C-Korula-Pal’08] [Nagarajan-

Ravi’07] (different approaches) 
  Bi-criteria approx sufficient for Orienteering 

Improve k-Stroll bi-criteria approx 



Orienteering with Time-Windows 

Orienteering-TW 
  Each node v has a time window [R(v), D(v)] 
  v counted only if it is visited in its window 

Deadline-TSP: R(v) = 0 for all v 

Goal: Find s-t walk to max # of nodes visited  



Orienteering with Time-Windows 

[Bansal-Blum-Chawla-Meyerson’04] 

α approx for Orienteering implies  
  O(α log n) approx for Deadline-TSP  
  O(α log2 n) approx for Orienteering-TW 

α = O(1) for undir and α = O(log2 n) in dir graphs 



Orienteering with Time-Windows 

Evidence for conjecture: 
  O(log n) approx in quasi-poly time even in 

directed graphs. [C-Pal’05] 
  O(α log Lmax) approx [C-Korula’07] where Lmax is  

max window length assuming integer data 

Conjecture: there is an O(log n) approx for Orient-TW  
           in undirected graphs 

Is the problem ω(1)-factor hard in directed graphs?  



Orienteering with Time-Windows 

[C-Korula’07]  
Two simple algorithms: 
  O(α log Lmax) approx assume integer data and is 

Lmax is max window length 
  O(α max(log n, log (Lmax/Lmin))) 

Difficult case: Lmax/Lmin is super-poly in n 



Orienteering with Time-Windows 

[C-Korula’07] 
Idea for O(log Lmax) approx 

Lemma: Let [a,b] be an interval with a, b integer 
and m = b-a. Then [a,b] can be partitioned into 
at most 2 log m disjoint sub-intervals such that 

  length of each sub-interval is a power of 2 
  sub-interval of length 2i starts at multiple of 2i 
  at most 2 intervals of each length 



Proof of Lemma 

  [a, b] interval with a and b integers 
  If a, b are even integers, recurse on [a/2, b/2] 

and multiply each interval by 2 
  If a, b are odd, recurse on [a+1, b-1] and add 

[a, a+1] and [b-1, b]  
  If a is odd and b is even, recurse on [a+1, b] 

and add [a, a+1] 
  If a is even and b is odd, recurse on [a,b-1] and 

add [b-1, b] 



Orienteering with Time-Windows 

  Apply lemma to each [R(v), D(v)] 
  Consider all sub-intervals of length 2i.  
  These intervals start at a multiple of 2i hence 

they are either disjoint or completely overlap 
  Can use Orienteering in each interval and stitch 

across disjoint intervals using dynamic prog. 

  At most log Lmax classes and one of them has 
OPT/2log Lmax profit 



Fixed-parameter Tractability 

Observation: There is an O(4k poly(n)) time 
algorithm that gives optimum profit if there is a 
solution that visits at most k nodes. 

Follows from “color-coding” scheme of          
[Alon-Yuster-Zwick] 



A more complex path problem 

SOP-TW 
  f: 2V ! R+  a monotone submodular set 

function on the nodes V  
  Each node v has a time window [R(v), D(v)] .  

Goal: find path P s.t nodes in P are visited in time 
windows and f(P) is maximized 



Algorithm for SOP-TW 

[C-Pal’05] 
Theorem: There is a quasi-poly time O(log n) 

approx. for SOP-TW 



Recursive Greedy Alg: idea 

s t 

Unknown optimum path P*  

middle node v 

v 

B1 
B - B1 

time to reach v = B1 



Recursive Greedy Algorithm 

s t 

v 

B1 
B - B1 

RG(f, s, t, B, i) 

1.  “Guess” v and B1 ε [R(v), D(v)] 

2.  P1 = RG(f, s, v, B1, i-1) 

3.  P2 = RG(fP1, v, t, B-B1, i-1) 

4.  return P = P1 concat P2 

Savitch’s algo for 
optimization ? 



Analysis 

Theorem: RG(f,s,t,B,log n) yeilds an O(log n) 
approximation 

Running time with recursion depth i:  (nB)O(i) 
Can improve to  (n log B)O(i) : quasi-poly 



Guessing more  

s t v1 
v2 

v3 

B1 B2 B3 

B4 

Running time O(n a log n)   

Approximation:  log n / log (a+1) 

log1-ε n approximation in  exp(nε) time        
   (sub-exponential time) 



Applications 

Quasi-poly algorithms: 
  O(log2 n) approx for group Steiner problem in 

undir graphs. Current approx. is O(log3 n) and 
hardness is Ω(log2-ε n). SOP-TW is hard to 
within Ω(log1-ε n) factor. 

  O(log n) approx for Orienteering with time 
varying profits at nodes 

  O(log n) approx for Orienteering with multiple 
disjoint time windows for each node v.   



Questions 

Conjecture: O(log2 n) approx. for group Steiner via LP. 

Is there a non-trivial poly-time (poly-log?) approx for 
Orienteering with multiple time windows? 

Obvious: change quasi-poly to poly. 



Group Steiner problem 

Set cover +  Steiner tree = group Steiner 

Undirected graph G = (V, E) 
Groups:  S1, S2, ..., Sk , each Si µ V 

Goal: find minimum cost tree T = (V’, E’) such that  
 |V’ Å Si | ¸ 1 for 1· i · k 



Group Steiner problem 

O(log2 n) approx if G is a tree  
O(log3 n) approx for general graphs 
 [Garg-Konjevod-Ravi’98 + ...] 

Ω(log2-ε n) approx not possible even on trees 
unless NP contained in quasi-polynomial time  

 [Halperin-Krauthgamer’03] 



SOP and group Steiner 

Simple observation: 
α-approx for SOP implies 2α log k approx for 

group Steiner problem 

Consequences: 
 O(log2 n) approx for group Steiner problem in 

quasi-poly time 
 Ω(log1-ε n) hardness for SOP unless NP is 

contained in quasi-poly time 



Reduction size lower bound 

Unless NP µ quasi-polytime no log2-ε n approx. for 
group Steiner problem [Halperin-Krauthgamer’03] 

Can we obtain log2-ε n hardness under P ≠ NP ? 
Can reduction size by polynomial? 

No, unless NP µ sub-exponential time  
From log1-ε n approx in subexp time for SOP 



Proof 

P 
P1

 P2
 

v 

|P1| ¸ |P1
*| / log (k/2) 

|P2| ¸ ? / log (k/2) 



Proof 

P 
P1

 P2
 

v 

|P1| ¸ |P1
*| / log (k/2) 

|P2| ¸ |P2
* \ P1| / log (k/2) 

      ¸ (|P2
*| - |P1|) / log (k/2) 



Proof contd 

|P|  ¸ (|P*| - |P|) / log (k/2) 

|P| ¸ |P*| / (1 + log (k/2))  
      ¸ |P*| / log k 

Lemma: α approx for recursive step implies α+1 
approx for greedy step 

[Fisher-Nemhauser-Wolsey’78] 



Open Problems: Summary 

* : quasi-poly running time  

Undir 
Graphs 

Dir Graphs 

Orienteering 2+ε O(log n)* O(log2 n) 

k-Stroll 2+ε ? 

Orienteering-TW 

Multiple TWs/node 

O(log2 n)   
O(log Lmax) 

O(log n)*  

O(log n)* O(log4 n)   
O(log2 n log Lmax) 

O(log n)*  

Only APX-hardness for all of the above problems! 


