Approximation algorithms for Euler genus and related problems

Chandra Chekuri Anastasios Sidiropoulos

February 3, 2014

Slides based on a presentation of Tasos Sidiropoulos
Graphs and topology

Theorem (Kuratowski, 1930)
A graph is planar if and only if it does not contain K_{5} and $K_{3,3}$ as a topological minor.

Theorem (Wagner, 1937)
A graph is planar if and only if it does not contain K_{5} and $K_{3,3}$ as a minor.
Graphs and topology

Theorem (Kuratowski, 1930)

A graph is planar if and only if it does not contain K_5 and $K_{3,3}$ as a topological minor.
Graphs and topology

Theorem (Kuratowski, 1930)

A graph is planar if and only if it does not contain K_5 and $K_{3,3}$ as a topological minor.

Theorem (Wagner, 1937)

A graph is planar if and only if it does not contain K_5 and $K_{3,3}$ as a minor.
Minors and Topological minors

Definition
A graph H is a minor of G if H is obtained from G by a sequence of edge/vertex deletions and edge contractions.

Definition
A graph H is a topological minor of G if a subdivision of H is isomorphic to a subgraph of G.
Planarity

planar graph

non-planar graph
Planarity

planar graph

non-planar graph
What about other surfaces?

sphere torus double torus triple torus

real projective plane Klein bottle
What about other surfaces?

- Sphere: $g = 0$
- Torus: $g = 1$
- Double torus: $g = 2$
- Triple torus: $g = 3$
- Real projective plane: $k = 1$
- Klein bottle: $k = 2$
Genus of graphs

Definition
The orientable (resp. non-orientable) genus of a graph G is the minimum k, such that G admits an embedding into a surface of orientable (resp. non-orientable) genus k.

- Graph genus of a graph quantifies “closeness” to planarity.

$\text{genus}(K_5) = 1$ \quad $\text{genus(}\text{teapot}) \leq 1$ \quad $\text{genus(}\text{bridge}) \leq 24$
Euler genus

For any surface S,

$$\text{eg}(S) := \min\{2 \cdot \text{genus}(S), \text{nonorientable-genus}(S)\}$$
Euler genus

For any surface S,

$$\text{eg}(S) := \min\{2 \cdot \text{genus}(S), \text{nonorientable-genus}(S)\}$$

Euler characteristic: For any triangulation of S, with v vertices, e edges, and f faces, we have

$$\chi(S) := v - e + f = 2 - \text{eg}(S)$$
Euler genus

For any surface S,

$$\text{eg}(S) := \min\{2 \cdot \text{genus}(S), \text{nonorientable-genus}(S)\}$$

Euler characteristic: For any triangulation of S, with v vertices, e edges, and f faces, we have

$$\chi(S) := v - e + f = 2 - \text{eg}(S)$$

For any graph G,

$$\text{eg}(G) := \min\{g \in \mathbb{N}_{\geq 0} : G \text{ embeds into a surface } S, \text{ with } \text{eg}(S) = g\}$$
Definition
A family of graphs \mathcal{G} is minor-closed if for any $G \in \mathcal{G}$ all minors of G are also in \mathcal{G}.

Definition
A property P of graphs is minor-closed if all graphs satisfying P form a minor-closed family.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
- k-apex, for some $k > 0$.
- Linkless embeddability in \mathbb{R}^3.
- Treewidth k, for some $k > 0$.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
- k-apex, for some $k > 0$.
- Linkless embeddability in \mathbb{R}^3.
- Treewidth k, for some $k > 0$.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
- k-apex, for some $k > 0$.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
- k-apex, for some $k > 0$.
- Linkless embeddability in \mathbb{R}^3.
Minor-closed properties

- Planarity
- Orientable genus g, for some $g > 0$.
- Nonorientable genus g, for some $g > 0$.
- Euler genus g, for some $g > 0$.
- k-apex, for some $k > 0$.
- Linkless embeddability in \mathbb{R}^3.
- Treewidth k, for some $k > 0$.
Graph minors: central theorems

Theorem (Robertson & Seymour, 2004)

For any minor-closed property P, there exists a finite collection of graphs $\mathcal{F} = \mathcal{F}(P)$, such that a graph G satisfies the property P if and only if G does not contain any of the graphs in \mathcal{F} as a minor.
Graph minors: central theorems

Theorem (Robertson & Seymour, 2004)
For any minor-closed property P, there exists a finite collection of graphs $\mathcal{F} = \mathcal{F}(P)$, such that a graph G satisfies the property P if and only if G does not contain any of the graphs in \mathcal{F} as a minor.

Theorem (Robertson & Seymour)
For any fixed graph H there is polynomial time algorithm that given G decides if H is a minor of G. The running time is $O(|V(G)|^3)$.

Implies existence of an efficient algorithm for testing any minor-closed property. Running time improved to $O(|V(G)|^2)$ by [Kawarabayashi-Kobayashi-Reed '12].
Theorem (Robertson & Seymour, 2004)

For any minor-closed property P, there exists a finite collection of graphs $\mathcal{F} = \mathcal{F}(P)$, such that a graph G satisfies the property P if and only if G does not contain any of the graphs in \mathcal{F} as a minor.

Theorem (Robertson & Seymour)

For any fixed graph H there is polynomial time algorithm that given G decides if H is a minor of G. The running time is $O(|V(G)|^3)$.

- Implies existence of an efficient algorithm for testing any minor-closed property.
Theorem (Robertson & Seymour, 2004)

For any minor-closed property P, there exists a finite collection of graphs $\mathcal{F} = \mathcal{F}(P)$, such that a graph G satisfies the property P if and only if G does not contain any of the graphs in \mathcal{F} as a minor.

Theorem (Robertson & Seymour)

For any fixed graph H there is polynomial time algorithm that given G decides if H is a minor of G. The running time is $O(|V(G)|^3)$.

- Implies existence of an efficient algorithm for testing any minor-closed property.

Running time improved to $O(|V(G)|^2)$ by [Kawarabayashi-Kobayashi-Reed ’12].
Computing the Euler genus of a graph

Given n-vertex graph G, decide whether $\text{eg}(G) \leq g$, for some $g \geq 0$.

- \(O(n^3 \cdot f(g))\)-time [Robertson & Seymour]
- \(O(n \cdot f'(g))\)-time [Mohar '99]
- \(O(n \cdot 2^{O(g)})\)-time [Kawarabayashi, Mohar & Reed '08]
- \(\text{NP-hard}\) [Thomassen '89]

The exponential dependence on g is necessary!
Given n-vertex graph G, decide whether $\text{eg}(G) \leq g$, for some $g \geq 0$.

- $O(n^3 \cdot f(g))$-time [Robertson & Seymour]
Computing the Euler genus of a graph

Given n-vertex graph G, decide whether $\text{eg}(G) \leq g$, for some $g \geq 0$.

- $O(n^3 \cdot f(g))$-time [Robertson & Seymour]
- $O(n \cdot f'(g))$-time [Mohar '99]
Computing the Euler genus of a graph

Given n-vertex graph G, decide whether $\text{eg}(G) \leq g$, for some $g \geq 0$.

- $O(n^3 \cdot f(g))$-time [Robertson & Seymour]
- $O(n \cdot f'(g))$-time [Mohar '99]
- $O(n \cdot 2^{O(g)})$-time [Kawarabayashi, Mohar & Reed '08]

The exponential dependence on g is necessary!
Computing the Euler genus of a graph

Given n-vertex graph G, decide whether $\text{eg}(G) \leq g$, for some $g \geq 0$.

- $O(n^3 \cdot f(g))$-time [Robertson & Seymour]
- $O(n \cdot f'(g))$-time [Mohar '99]
- $O(n \cdot 2^{O(g)})$-time [Kawarabayashi, Mohar & Reed '08]
- NP-hard [Thomassen '89]

The exponential dependence on g is necessary!
To KASIMIR KURATOWSKI
Who gave K_5 and $K_{3,3}$
To those who thought planarity
Was nothing but topology.

K_5: $K_{3,3}$:
Approximating the Euler genus of a graph

Question: Given a graph G, how well can we *approximate* $\text{eg}(G)$ in polynomial time?

An α-approximation algorithm for $\text{eg}(G)$, is a polynomial-time algorithm, that given G outputs a drawing of G into a surface S such that $\text{eg}(S) \leq \alpha \cdot \text{eg}(G)$.

By Euler's characteristic, $|E(G)| \leq O(n) \cdot \text{eg}(G) \leq O(n) \cdot |E(G)|$.$\Rightarrow O(n)$-approximation.

$O(1)$-approximation is not ruled out! For bounded degree graphs: $O(n^{1/2})$-approximation [Chen, Kanchi & Kanevsky '97]
Approximating the Euler genus of a graph

Question: Given a graph G, how well can we approximate $\text{eg}(G)$ in polynomial time?

An α-approximation algorithm for $\text{eg}(G)$, is a polynomial-time algorithm, that given G outputs a drawing of G into a surface S such that $\text{eg}(S) \leq \alpha \cdot \text{eg}(G)$.

- By Euler’s characteristic,

$$|E(G)| \leq O(n) \cdot \text{eg}(G) \leq O(n) \cdot |E(G)|$$

\Rightarrow $O(n)$-approximation.
Approximating the Euler genus of a graph

Question: Given a graph G, how well can we approximate $\text{eg}(G)$ in polynomial time?

An α-approximation algorithm for $\text{eg}(G)$, is a polynomial-time algorithm, that given G outputs a drawing of G into a surface S such that $\text{eg}(S) \leq \alpha \cdot \text{eg}(G)$.

- By Euler’s characteristic,

\[
|E(G)| \leq O(n) \cdot \text{eg}(G) \leq O(n) \cdot |E(G)|
\]

$\Rightarrow O(n)$-approximation.

- $O(1)$-approximation is not ruled out!
Approximating the Euler genus of a graph

Question: Given a graph G, how well can we *approximate* $\text{eg}(G)$ in polynomial time?

An α-approximation algorithm for $\text{eg}(G)$, is a polynomial-time algorithm, that given G outputs a drawing of G into a surface S such that $\text{eg}(S) \leq \alpha \cdot \text{eg}(G)$.

- By Euler’s characteristic,

\[|E(G)| \leq O(n) \cdot \text{eg}(G) \leq O(n) \cdot |E(G)| \]

\[\Rightarrow O(n)\text{-approximation}. \]
- $O(1)$-approximation is not ruled out!

For bounded degree graphs:
- $O(n^{1/2})$-approximation [Chen, Kanchi & Kanevsky ’97]
A Pseudo-Approximation

Theorem (Makarychev, Nayyeri & Sidiropoulos ’12)

There is a polynomial-time algorithm, that given a Hamiltonian graph G (along with a Hamilton path P) and integer g, either outputs a drawing of G into a surface S such that $\text{eg}(S) \leq O(g^{O(1)})$ or correctly decides that $\text{eg}(G) > g$.
Main Result

Theorem (C, Sidiropoulos '13)

There is a polynomial-time algorithm, that given G and integer g, either outputs a drawing of G into a surface S such that \(\text{eg}(S) \leq O(\Delta^2g^{12}\log^{19/2}n) \) or correctly decides that \(\text{eg}(G) > g \). Here \(\Delta \) is maximum degree and \(n \) is number of nodes.
Main Result

Theorem (C, Sidiropoulos ’13)

There is a polynomial-time algorithm, that given \(G \) and integer \(g \), either outputs a drawing of \(G \) into a surface \(S \) such that \(\text{eg}(S) \leq O(\Delta^2 g^{12} \log^{19/2} n) \) or correctly decides that \(\text{eg}(G) > g \). Here \(\Delta \) is maximum degree and \(n \) is number of nodes.

Corollary

An \(O(n^{1/2-\delta}) \)-approximation for bounded-degree graphs.
Main Result

Theorem (C, Sidiropoulos ’13)

There is a polynomial-time algorithm, that given \(G \) and integer \(g \), either outputs a drawing of \(G \) into a surface \(S \) such that \(\text{eg}(S) \leq O(\Delta^2 g^{12} \log^{19/2} n) \) or correctly decides that \(\text{eg}(G) > g \). Here \(\Delta \) is maximum degree and \(n \) is number of nodes.

Corollary

An \(O(n^{1/2-\delta}) \)-approximation for bounded-degree graphs.
Beyond Euler genus

Further applications for bounded degree graphs.
- $g^{O(1)}$-approximation for orientable genus.
Beyond Euler genus

Further applications for bounded degree graphs.

- $g^{O(1)}$-approximation for orientable genus.
- $k^{O(1)}$-approximation for crossing number.
Beyond Euler genus

Further applications for bounded degree graphs.

- $g^{O(1)}$-approximation for orientable genus.
- $k^{O(1)}$-approximation for crossing number.
- $k^{O(1)}$-approximation minimum edge/vertex planarization.
Some details of the algorithm
Tree decompositions and Treewidth

A tree decomposition of G is a tree $T = (V_T, E_T)$ and collection of sets/bags $\{X_t \subseteq V(G) : t \in V_T\}$ such that

- $\bigcup_{t \in V_T} X_t = V(G)$.
- For every $\{u, v\} \in E(G)$, there is $t \in V_T$ s. t. $\{u, v\} \subseteq X_t$.
- For every $v \in V(G)$, the set $\{t \in V_T : v \in X_t\}$ forms a connected subtree of T.

The width of the decomposition is defined to be $\max_{t \in V_T} |X_t| - 1$.

Example from Bodlaender's talk
$G=(V,E)$ $T=(V_T, E_T)$
$X_t = \{d,e,c\} \subseteq V$
Definition

The treewidth of a graph G, denoted by $\text{tw}(G)$, is the minimum width of a tree decomposition for G.

Examples:

▶ For any tree T, $\text{tw}(T) = 1$.
▶ For any cycle C, $\text{tw}(C) = 2$.
▶ For a complete graph K_n, $\text{tw}(K_n) = n - 1$.
▶ For any $(r \times r)$-grid G, $\text{tw}(G) = \Theta(r)$. Thus planar graphs can have "large" treewidth.
Definition
The treewidth of a graph G, denoted by $\text{tw}(G)$, is the minimum width of a tree decomposition for G.

Examples:
- For any tree T, $\text{tw}(T) = 1$.
- For any cycle C, $\text{tw}(C) = 2$.
- For a complete graph K_n, $\text{tw}(K_n) = n - 1$.
- For any $(r \times r)$-grid G, $\text{tw}(G) = \Theta(r)$. Thus planar graphs can have “large” treewidth.
Theorem (Robertson & Seymour ’86)

There is a function f such that any graph G with $\text{tw}(G) \geq f(k)$ contains a clique of size k or the $k \times k$ grid as a minor.
Theorem (Robertson & Seymour ’86)

There is a function f such that any graph G with $\text{tw}(G) \geq f(k)$ contains a clique of size k or the $k \times k$ grid as a minor.

Corollary (Grid-minor theorem)

$\text{tw}(G) \geq f(k)$ implies G contains a $\sqrt{k} \times \sqrt{k}$ grid as a minor.

The grid is a canonical obstruction for small treewidth.
Theorem (Robertson, Semour, Thomas ’94)

Let G be a graph such that $\text{tw}(G) \geq 2^{O(k^5)}$ then G contains a grid minor of size k.

If G is a planar graph then G contains a grid-minor of size $\text{tw}(G)/6$.

Theorem (Demaine et al. ’05)

Let G be a graph of Euler genus g, then G contains a “flat” grid minor of size $\Omega(\text{tw}(G)/(g + 1))$.

Theorem (C, Chuzhoy ’13)

Let G be a graph such that $\text{tw}(G) \geq k^{100}$ then G contains a grid minor of size k.
Treewidth paradigm in algorithms

- If G has “small” (constant) treewidth, solve problem efficiently or approximately. Running time typically depends exponentially on $\text{tw}(G)$.
- If G has “large” treewidth use obstruction given by structures such as grids.
Overview of exact algorithms.

Given graph G of high treewidth.
 - Repeatedly remove “flat” parts.
High-level overview

Overview of exact algorithms.

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of “small” treewidth.
High-level overview

Overview of exact algorithms.

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of “small” treewidth.
- Compute a drawing for the skeleton G' exactly.
High-level overview

Overview of exact algorithms.

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of “small” treewidth.
- Compute a drawing for the skeleton G' exactly.
- Extend the drawing to G.
Flatness and embeddings

Definition
Let G be a graph, and let H be a planar subgraph of G. We say that H is flat if there exists a planar drawing of H, such that all edges $\{u, v\} \in E(G)$, with $u \in V(H)$, $v \in V(G) \setminus V(H)$, the vertex u is on the outer face of H.

Theorem (Mohar '92)
Let G be a graph of Euler genus g, and let H be a flat $\left(\sqrt{r \times r}\right)$-grid minor in G, for some $r > 10 \cdot g$. Then, in any drawing of G into a surface of genus g, the “central part” of H is embedded inside a disk.
Flatness and embeddings

Definition
Let G be a graph, and let H be a planar subgraph of G. We say that H is flat if there exists a planar drawing of H, such that all edges $\{u, v\} \in E(G)$, with $u \in V(H)$, $v \in V(G) \setminus V(H)$, the vertex u is on the outer face of H.

Theorem (Mohar ’92)
Let G be a graph of Euler genus g, and let H be a flat $(r \times r)$-grid minor H in G, for some $r > 10 \cdot g$. Then, in any drawing of G into a surface of genus g, the “central part” of H is embedded inside a disk.
High-level overview

Overview of exact algorithms.

Given graph G of treewidth $\Omega(g^2)$

- Repeatedly remove “flat” parts: find flat grid of size $10g \times 10g$. Remove “middle” vertex v of grid to obtain G'.
High-level overview

Overview of exact algorithms.

Given graph G of treewidth $\Omega(g^2)$

- Repeatedly remove “flat” parts: find flat grid of size $10g \times 10g$. Remove “middle” vertex v of grid to obtain G'.
- Recursively find an embedding of G'.
High-level overview

Overview of exact algorithms.

Given graph G of treewidth $\Omega(g^2)$

- Repeatedly remove “flat” parts: find flat grid of size $10g \times 10g$. Remove “middle” vertex v of grid to obtain G'.
- Recursively find an embedding of G'.
- Extend the drawing to G by placing v in the middle of grid.
High-level overview

Overview of exact algorithms.

Given graph G of treewidth $\Omega(g^2)$

- Repeatedly remove “flat” parts: find flat grid of size $10g \times 10g$. Remove “middle” vertex v of grid to obtain G'.
- Recursively find an embedding of G'.
- Extend the drawing to G by placing v in the middle of grid.
- Recursion stops when $\text{tw}(G)$ is “small”, $\text{tw}(G) = O(g^2)$. Compute a drawing exactly in time $f(g)\text{poly}(n)$.

G

skeleton of G
High-level overview of our algorithm

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
High-level overview of our algorithm

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of small treewidth.
High-level overview of our algorithm

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of **small** treewidth.
- Compute a “rigid skeleton” G''.
High-level overview of our algorithm

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of **small** treewidth.
- Compute a “rigid skeleton” G''.
- Compute a drawing for G'' **approximately**.
High-level overview of our algorithm

Given graph G of high treewidth.

- Repeatedly remove “flat” parts.
- Obtain “skeleton” G' of small treewidth.
- Compute a “rigid skeleton” G''.
- Compute a drawing for G'' approximately.
- Modify the drawing to obtain a drawing for G.

G
approximate skeleton
rigid skeleton
Lemma

There exists a polynomial time algorithm which given a graph G of treewidth t, and an integer $g \geq 0$, either correctly decides that $\text{eg}(G) > g$, or it outputs a set $X \subseteq V(G)$, such that

- $|X| = O(gt \log^{3/2} n)$.
- $G \setminus X$ is planar.
Planarizing graphs of small treewidth, and small genus

Decompose G recursively as follows:

- If G is planar stop.
- Else, $\text{tw}(G) \leq t$ implies balanced separator $S \subset V(G)$ of size $\leq t$. Find S using approximation algorithm. $G - S$ leaves components G_1, G_2, \ldots, G_h where $|V(G_i)| \leq 2n/3$ for each i.
- Decompose each G_i.
Planarizing graphs of small treewidth, and small genus

Decompose G recursively as follows:

- If G is planar stop.
- Else, $\text{tw}(G) \leq t$ implies balanced separator $S \subset V(G)$ of size $\leq t$. Find S using approximation algorithm. $G - S$ leaves components G_1, G_2, \ldots, G_h where $|V(G_i)| \leq 2n/3$ for each i.
- Decompose each G_i.

Bounding number of nodes removed:

- Depth of recursion is $O(\log n)$
- Number of internal nodes in recursion tree at any level i is at most g. Otherwise G has more than g disjoint subgraphs that are not planar! Implies $\text{eg}(G) > g$.
- Total number of nodes removed as separators is $O(gt \log n)$. Lose extra factors for approximation.
Handling “small” treewidth case

Lemma

There exists a polynomial time algorithm which given a graph G of treewidth t, and an integer $g \geq 0$, either correctly decides that $\text{eg}(G) > g$, or it outputs a set $X \subseteq V(G)$, such that

- $|X| = O(gt \log^{3/2} n)$.
- $G \setminus X$ is planar.

Algorithm for “small” treewidth: $\text{tw}(G) = g^{O(1)}$

- Embed $G \setminus X$ in plane.
- Add a handle for each edge incident to $|X|$. Number of edges incident to X is at most $\Delta |X|$.
- Thus, embedding into a surface of orientable genus $O(\Delta g^{O(1)} \text{polylog}(n))$.

Caveat: we cannot use this directly
Handling “small” treewidth case

Lemma
There exists a polynomial time algorithm which given a graph G of treewidth t, and an integer $g \geq 0$, either correctly decides that $\text{eg}(G) > g$, or it outputs a set $X \subseteq V(G)$, such that

- $|X| = O(gt \log^{3/2} n)$.
- $G \setminus X$ is planar.

Algorithm for “small” treewidth: $\text{tw}(G) = g^{O(1)}$

- Embed $G \setminus X$ in plane.
- Add a handle for each edge incident to $|X|$. Number of edges incident to X is at most $\Delta|X|$.
- Thus, embedding into a surface of orientable genus $O(\Delta g^{O(1)} \text{polylog}(n))$.

Caveat: we cannot use this directly
Handling “large” treewidth

\[\text{tw}(G) = t > g^{10}: \text{want to find “flat” grid minor in poly}(g, n) \text{ time.} \]
Handling “large” treewidth

tw(G) = t > g^{10}: want to find “flat” grid minor in poly(g, n) time.

Idea:
- G has a grid minor H of size $\Omega(t/g) \times \Omega(t/g)$.
- From lemma can remove $\tilde{O}(gt)$ nodes X such that $G' = G - X$ is planar.
- G' will have large treewidth if we can show that $H - X$ has a large grid minor.
- Recover grid minor from G'.
Persistence of grid minors

Lemma (Eppstein '13)

Let \(r, f \geq 1 \). Let \(G \) be the \((r \times r)\)-grid, and \(X \subset V(G) \), with \(|X| = f\). Then, \(G \setminus X \) contains the \((r' \times r')\)-grid as a minor, where \(r' = \Theta(\min\{r, r^2/f\}) \).
Persistence of grid minors

Lemma (Eppstein '13)

Let $r, f \geq 1$. Let G be the $(r \times r)$-grid, and $X \subset V(G)$, with $|X| = f$. Then, $G \setminus X$ contains the $(r' \times r')$-grid as a minor, where $r' = \Theta(\min\{r, r^2/f\})$.

\[f = O(r) \quad f = \Omega(r) \]
Grid minors and planarization

Corollary (Chekuri, S '13)

Let G be a graph of Euler genus $g \geq 1$, and treewidth $t \geq 1$. There is a polynomial time algorithm to compute a set $X \subseteq V(G)$, with $|X| = (gt \log^{5/2} n)$, and a planar connected component of $G \setminus X$ containing the $(r' \times r')$-grid as a minor, with $r' = \Omega \left(\frac{t}{g^3 \log^{5/2} n} \right)$.

Thus if $t > g^{10}$ can find a flat grid minor of size $\tilde{\Omega}(g^{7})$. This grid has to be rigidly embedded inside a disk in any embedding of G into a surface of genus $\leq g$.

Grid minors and planarization

Corollary (Chekuri, S ’13)

Let G be a graph of Euler genus $g \geq 1$, and treewidth $t \geq 1$. There is a polynomial time algorithm to compute a set $X \subseteq V(G)$, with $|X| = (g t \log^{5/2} n)$, and a planar connected component of $G \setminus X$ containing the $(r' \times r')$-grid as a minor, with $r' = \Omega \left(\frac{t}{g^3 \log^{5/2} n} \right)$.

Thus if $t > g^{10}$ can find a flat grid minor of size $\tilde{\Omega}(g^7)$. This grid has to be rigidly embedded inside a disk in any embedding of G into a surface of genus $\leq g$.

Flat grid minors to Skeleton

Given graph G of high treewidth.
- Repeatedly remove “flat” grid minors.
- Obtain “skeleton” G' of small treewidth.

To extend drawing of skeleton need to define it carefully.
Need to “merge” the multiple flat grid minors properly.
Skeleton

- Removed parts form “patches” \((C_1, X_1), (C_2, X_2), \ldots, (C_k, X_k)\).
- Each patch \((C_i, X_i)\) consists of a set of nodes \(X_i \subset V\) and a cycle \(C_i \subset X_i\).
- The patches are disjoint.
- In any drawing of \(G\) into a surface of Euler genus \(g\), each patch \((C_i, X_i)\) has to be drawn in a disk with \(C_i\) as its boundary.
- Skeleton that remains has “small” treewidth: \(\tilde{O}(g^{O(1)})\).
Making Skeleton rigid

- Embed skeleton G' using the small treewidth algorithm
- Insert patches into the embedding of the skeleton
Making Skeleton rigid

- Embed skeleton G' using the small treewidth algorithm
- Insert patches into the embedding of the skeleton
- **Problem:** The cycles C_i for the patches may not be enclose a disk in the embedding of G' since embedding is not into a genus g surface.
Making Skeleton rigid

- Embed skeleton G' using the small treewidth algorithm
- Insert patches into the embedding of the skeleton
- **Problem**: The cycles C_i for the patches may not be enclose a disk in the embedding of G' since embedding is not into a genus g surface.
- **Our fix**: Framing
Framing

(a) \(\{C_1, C_2\}\)-Framing of a graph.

(b) \(\{C_1, C_2\}\)-Framing of a subgraph.
Planarizing Skeleton

Skeleton has treewidth $\tilde{O}(g^{O(1)})$.

Lemma
Let G' be skeleton of G with patches $(X_1, C_1), \ldots, (X_r, C_r)$. The algorithm either correctly decides that $\text{eg}(G) > g$, or outputs a set $X \subseteq V(G)$ s.t.

- $|X| = O(\Delta g^{12} \log^{19/2} n)$.
- For every connected component H of $G' \setminus X$, the framing of H is planar.
Extending embedding of Skeleton via Frames and Patches
Beyond Euler genus

Further applications for bounded degree graphs.

- $g^{O(1)}$-approximation for orientable genus.
- $k^{O(1)}$-approximation for crossing number.
- $k^{O(1)}$-approximation minimum edge/vertex planarization.

Via a common framework that exploits the embedding given by the algorithm to approximate the Euler genus.
Representativity of face width of an embedding

Definition
Let ϕ be an embedding of G into a surface S. A noose is a loop in S that only intersects $\phi(G)$ at $\phi(V(G))$. The length of a noose is the number of vertices it intersects.

Definition
The *representativity* of ϕ is defined to be the smallest length of all noncontractible nooses in ϕ.
Approximating Orientable genus

Given G and $g > 0$ is genus(G) $\leq g$?
Approximating Orientable genus

Given G and $g > 0$ is $\text{genus}(G) \leq g$?

- If $\text{genus}(G) \leq g$ then $\text{eg}(G) \leq 2g$
- Use approximation algorithm to embed G into surface S such that $\text{eg}(S) = \tilde{O}(g^{O(1)})$

- If S is orientable, done! Can check efficiently.
- If S is non-orientable then there is an orientation reversing noose — find a shortest one, say of length ℓ.
- If $\ell = \Omega(g^2)$ then representativity of the embedding into S is large. Implies that $\text{genus}(S) > g$.
- Else $\ell < O(g^2)$, remove vertices of noose and < $\Delta \ell$ edges. Reduces genus by at least 1. Repeatedly do this until we have an orientable surface or no short noose. Total number of edges removed is $\tilde{O}(g^{O(1)})$. Add one handle for each edge.
Approximating Orientable genus

Given G and $g > 0$ is $\text{genus}(G) \leq g$?

- If $\text{genus}(G) \leq g$ then $\text{eg}(G) \leq 2g$
- Use approximation algorithm to embed G into surface S such that $\text{eg}(S) = \tilde{O}(g^O(1))$
- If S is orientable, done! Can check efficiently.

- If S is non-orientable then there is an orientation reversing noose — find a shortest one, say of length ℓ.
- If $\ell = \Omega(g^2)$ then representativity of the embedding into S is large. Implies that $\text{genus}(S) > g$.
- Else $\ell < \tilde{O}(g^2)$, remove vertices of noose and $< \Delta \ell$ edges. Reduces genus by at least 1. Repeatedly do this until we have an orientable surface or no short noose. Total number of edges removed is $\tilde{O}(g^O(1))$. Add one handle for each edge.
Approximating Orientable genus

Given G and $g > 0$ is $\text{genus}(G) \leq g$?

- If $\text{genus}(G) \leq g$ then $\text{eg}(G) \leq 2g$
- Use approximation algorithm to embed G into surface S such that $\text{eg}(S) = \tilde{O}(g^{O(1)})$
- If S is orientable, done! Can check efficiently.
- If S is non-orientable then there is an orientation reversing noose — find a shortest one, say of length ℓ.

Reduces genus by at least 1. Repeatedly do this until we have an orientable surface or no short noose. Total number of edges removed is $\tilde{O}(g^{O(1)})$. Add one handle for each edge.
Approximating Orientable genus

Given G and $g > 0$ is genus(G) ≤ g?

- If genus(G) ≤ g then $eg(G) ≤ 2g$
- Use approximation algorithm to embed G into surface S such that $eg(S) = \tilde{O}(g^{O(1)})$
- If S is orientable, done! Can check efficiently.
- If S is non-orientable then there is an orientation reversing noose — find a shortest one, say of length ℓ.
- If $\ell = \Omega(g^2)$ then representativity of the embedding into S is large. Implies that genus(S) > g.
Approximating Orientable genus

Given G and $g > 0$ is $\text{genus}(G) \leq g$?

- If $\text{genus}(G) \leq g$ then $\text{eg}(G) \leq 2g$
- Use approximation algorithm to embed G into surface S such that $\text{eg}(S) = \tilde{O}(g^{O(1)})$
- If S is orientable, done! Can check efficiently.
- If S is non-orientable then there is an orientation reversing noose — find a shortest one, say of length ℓ.
- If $\ell = \Omega(g^2)$ then *representativity* of the embedding into S is large. Implies that $\text{genus}(S) > g$.
- Else $\ell < O(g^2)$, remove vertices of noose and $< \Delta \ell$ edges. Reduces genus by at least 1. Repeatedly do this until we have an orientable surface or no short noose. Total number of edges removed is $\tilde{O}(g^{O(1)})$. Add one handle for each edge.
Some open problems

- Is there a $O(1)$-approximation for Euler genus?
Some open problems

- Is there a $O(1)$-approximation for Euler genus?
- Can we remove the bounded-degree assumption in our algorithm?
- Improve the dependence on g?
- Which other minor-closed properties admit similar approximation algorithms? Can we approximate the largest clique-minor size?
Thank you!