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Abstract—We consider the problem of randomly rounding a
fractional solution x in an integer polytope P ⊆ [0, 1]n to a
vertex X of P , so that E[X] = x. Our goal is to achieve
concentration properties for linear and submodular functions of
the rounded solution. Such dependent rounding techniques, with
concentration bounds for linear functions, have been developed
in the past for two polytopes: the assignment polytope (that is,
bipartite matchings and b-matchings) [32], [19], [23], and more
recently for the spanning tree polytope [2]. These schemes have
led to a number of new algorithmic results.

In this paper we describe a new swap rounding technique which
can be applied in a variety of settings including matroids and
matroid intersection, while providing Chernoff-type concentration
bounds for linear and submodular functions of the rounded
solution. In addition to existing techniques based on negative cor-
relation, we use a martingale argument to obtain an exponential
tail estimate for monotone submodular functions. The rounding
scheme explicitly exploits exchange properties of the underlying
combinatorial structures, and highlights these properties as the
basis for concentration bounds.

Matroids and matroid intersection provide a unifying frame-
work for several known applications [19], [23], [7], [22], [2] as
well as new ones, and their generality allows a richer set of
constraints to be incorporated easily. We give some illustrative
examples, with a more comprehensive discussion deferred to a
later version of the paper.

I. INTRODUCTION

Randomized rounding is a fundamental technique in ap-
proximation algorithms. It was introduced by Raghavan and
Thompson [28] for the purpose of rounding a fractional solu-
tion x to a linear programming (LP) relaxation of a problem,
into an integral solution. The original technique from [28] (and
several subsequent papers) relies on independent rounding of
the variables. This allows one to use Chernoff bounds for linear
functions of the variables; these bounds are critical for several
applications in packing and covering problems. However, there
are situations in which independent rounding is not feasible
due to the presence of constraints that must not be violated by
the rounded solution. Various techniques are used to handle
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such scenarios. To name just a few: alteration of solutions
obtained by independent rounding, careful derandomization
or constructive methods when the probability of a feasible
solution is non-zero but small (for example using the Lovász
Local Lemma), and various forms of dependent randomized
rounding schemes. In some dependent randomized techniques,
concentration bounds similar to Chernoff bounds are still avail-
able. See for example the work of Arora, Frieze and Kaplan
[1], Srinivasan [32] (and several subsequent generalizations
and applications [19], [23], [29], [5]), Doerr [14], [15], the
work of Asadpour and Saberi [3], and Asadpour et al.’s [2]
recent breakthrough on the asymmetric traveling salesman
problem (ATSP).

Our focus in this paper is on the following broad class of
dependent rounding schemes. Given a fractional solution x in
an integer polytope P ⊆ [0, 1]n, randomly round x to a vertex
X of P such that E[X] = x and concentration bounds hold
for linear (or even more general) functions of X . The polytope
P , via its vertices, captures the constraints that the rounded
solution needs to preserve. For example, Srinivasan [32]
considered the polytope P = {x ∈ [0, 1]n :

∑n
i=1 xi = k}.

That is, we wish to round x = (x1, . . . , xn) ∈ P to a random
integral X = (X1, . . . , Xn) such that exactly k of the Xi are
set to 1, and moreover, for any vector a ∈ [0, 1]n, the linear
function

∑
i aiXi is concentrated around its mean. I.e., we

want Chernoff-type concentration bounds as if the Xi’s were
independent, even though the variables satisfy a deterministic
constraint. A dependent randomized rounding technique is
employed in [32], and it is shown that the variables are
negatively correlated.1 Negative correlation implies Chernoff-
type concentration bounds for linear functions of the variables,
as shown earlier by Panconesi and Srinivasan [27]. It is notable
that this seemingly simple setting already results in a variety
of non-trivial applications [32].

Gandhi et al. [19] employed dependent randomized round-
ing in the more general setting of an assignment polytope

1A collection of {0, 1}-random variables X1, . . . , Xr are negatively
correlated if, for all subsets T ⊆ [r], E[

∏
i∈T Xi] ≤

∏
i∈T E[Xi] and

E[
∏
i∈T (1−Xi)] ≤

∏
i∈T (1− E[Xi]).



(bipartite matchings and b-matchings). They call it random-
ized pipage rounding following a deterministic variant that
was proposed earlier by Ageev and Sviridenko [4]. For the
assignment polytope it is no longer the case that negative
correlation holds for all subsets of variables, but only for
those subsets that contain only the edge variables incident
to some vertex of the underlying graph. Nonetheless, this is
sufficient for several applications [19], [23], [29]. In recent
work, Saha and Srinivasan [29] proposed a general scheme for
randomized iterated rounding following the ideas in [23]; the
scheme applies in several settings but is too broad to directly
give concentration bounds.

A different approach to dependent rounding is maximum
entropy sampling. Asadpour and Saberi [3] used this tech-
nique for a resource allocation problem. More recently, this
technique was used by Asadpour et al. [2] in their work on the
ATSP problem to round a fractional solution in the spanning
tree polytope so that the variables are negatively correlated.
Unfortunately, a natural generalization of this approach to
matroids does not always provide negative correlation — see
[31] and a discussion below.

The success of dependent rounding schemes raises several
natural questions. For what polytopes can one implement a
rounding procedure that guarantees concentration properties?
Is there a framework unifying the known results for the
assignment polytope and the spanning tree polytope? Can
we obtain concentration bounds for non-linear (in particular
submodular) functions under such rounding? In this paper we
describe a conceptually new approach that leads to a variety
of general results.

Our contribution. We propose the following generic approach
to rounding a fractional solution x ∈ P .

The Randomized Swap Rounding Scheme:
• Express x as a convex combination of vertices of P , that

is, x =
∑n
i=1 αivi where each vi is a vertex of P and∑

i αi = 1.
• Let w1 = v1, β1 = α1, and in each stage, merge two

vertices wi,vi+1 into a new vertex wi+1 with coefficient
βi+1 = βi + αi+1 in such a way that E[βi+1wi+1] =
βiwi + αi+1vi+1 (the merge operation).

• After n − 1 stages, obtain a vertex X = wn such that
E[X] =

∑n
i=1 αivi = x.

This procedure can be viewed as a random walk in the
polytope, or a vector-valued martingale. The properties of this
procedure naturally depend on how the merge operation is
implemented. One solution is to pick either wi+1 := wi or
wi+1 := vi+1 with probabilities proportional to βi, αi+1, but
this procedure would not have any interesting properties in
general; this is equivalent to picking, in a single step, exactly
one of v1, . . . ,vn where the probability of picking vi is αi.
Our goal is to introduce suitable randomness in the merge
operation, so that concentration bounds can be proved for
certain functions of X .

Our main contribution is in identifying a broad class of
polytopes where such concentration bounds can be achieved.

We show a simple rounding procedure for matroid polytopes,
and more generally even for matroid intersection polytopes,
while satisfying exponential concentration properties (with
some limitations in the case of matroid intersection). Since the
spanning tree polytope is a special case of a matroid polytope,
and the assignment polytope is a special case of matroid
intersection, several of the aforementioned applications [19],
[23], [2] can be derived as special cases of our rounding
scheme. Beyond matroid intersection, our technique can be
also applied to non-bipartite graph matchings and b-matchings,
but we defer details to a future work. The common feature of
our implementations of the merge operation is that it proceeds
in a sequence of random swaps of elements. Therefore we call
our procedure randomized swap rounding. This swapping is
guided by exchange properties of the underlying combinatorial
structures. Our main technical results are concentration bounds
for our rounding procedure in various settings. We present our
technical results in Section II.

Polyhedral descriptions, integrality, and total dual integrality
of the matroid and matroid intersection polytopes due to
Edmonds [13] were fundamental achievements in combina-
torial optimization in the 60’s and 70’s. Matroids and matroid
intersection can be used to capture a variety of constraints, and
our results apply to any combinatorial structure of this type.
For applications involving monotone submodular functions,
we employ the continuous greedy algorithm developed in [33]
to approximately maximize the multilinear extension F of a
monotone submodular set function f over a solvable poly-
tope. We also extend this algorithm to simultaneously handle
multiple submodular functions. These ingredients provide a
powerful toolkit that can be used to derive a number of
applications. For instance, we obtain an optimal (1−1/e−ε)-
approximation for the Max-Min allocation problem with sub-
modular valuations, for any constant number of agents. See
Section III for more details.

Negative correlation. Previous methods for dependent round-
ing, including pipage rounding methods and maximum entropy
sampling, rely on negative correlation. The work of [27]
shows that negative correlation implies concentration for linear
functions. Hence, negative correlation is a powerful property
for a dependent randomized rounding procedure to satisfy. We
show that in some sense, matroids are exactly the setting where
this property can be achieved.

Theorem I.1. Let P be a polytope with vertices in {0, 1}N .
Then the following two properties are equivalent:

1) For any x ∈ P , there exists a probability distribution over
vertices of P such that a random vertex X drawn from
this distribution satisfies E[X] = x and the coordinates
{Xi}i∈N are negatively correlated.

2) P is a projection of a matroid base polytope, in the sense
that there is a matroid M = (N ′, I) such that N ⊆ N ′

and X is a vertex of P iff X = 1B∩N for some base B
of M.

The implication 2) ⇒ 1) follows from our swap rounding



procedure, as we prove in this paper. We defer the proof of
the other implication to a full version of this paper. The above
implies that negative correlation cannot be achieved for all
subsets of coordinates beyond the setting of matroids. For
matroid intersection we can still achieve negative correlation
for special subsets of coordinates that we call equivalence
classes in a matroid. This generalizes the fact that for bipar-
tite matchings and b-matchings, negative correlation can be
achieved for subsets of edges incident to a vertex as in [19].

Beyond negative correlation. In order to prove tail esti-
mates for submodular functions, we need to resort to other
techniques. We use a martingale argument tailored to our
rounding procedure to show a lower-tail bound for monotone
submodular functions on matroid polytopes (Theorem II.2).
Our concentration bounds are dimension-free, i.e. independent
of the size of the ground set n, as opposed to bounds with
variance growing with n, which can be obtained easily from
known martingale results.

Swap rounding, unlike pipage rounding, allows us to apply
martingale methods more easily for the following reason.
Recall that the scheme first computes an explicit convex
decomposition x =

∑
i αivi. The coefficients αi are fixed

throughout the process, and moreover, the merge step between
two vertices is combinatorial, and typically has a well-defined
number of steps. We are able to exploit these features to
bound the total variance of the process, as a function of the
expectation rather than the number of elements n. To prove
a lower-tail bound for submodular functions, we charge the
variance of successive rounding steps in a careful way to the
current value of the multilinear extension of the submodular
function. Since the random process here is a sub-martingale,
we do not expect a similar upper-tail bound.

Discussion of prior techniques. In [7], [34] randomized
pipage rounding was generalized to the setting of matroids.
Our work here implies that randomized pipage rounding also
satisfies negative correlation. However, our tail estimate for
submodular functions (Theorem II.2) relies on the structure of
swap rounding and we do not know how to prove it for pipage
rounding.

In their recent work on an O(log n/ log log n) approxima-
tion for the ATSP problem, Asadpour et al. [2] used maximum
entropy sampling to find a “thin spanning tree” via a fractional
solution in the spanning tree polytope. Swap rounding for
matroid polytopes, when specialized to the spanning tree
polytope, can be used as an alternative subroutine for finding
a thin spanning tree in [2]. Compared to maximum entropy
sampling, swap rounding has several advantages; it is easy
to describe and implement, and more efficient. In maximum
entropy sampling [2], negative correlation arises from the
structure of spanning trees in a way that does not extend
to all matroids. For an example of a matroid where the
maximum-entropy distribution over bases does not satisfy
negative correlations, see [31].

In the more general setting of matroid intersection, ran-
domized swap rounding is more complicated to describe and

analyze. We are not aware of any prior dependent rounding
technique for matroid intersection other than for the special
case of bipartite matching [19]. The extension to matroid
intersection requires several ingredients, in particular, a de-
composition property for feasible swaps in two matroids from
recent work of Lee et al. [25].

Arora, Frieze and Kaplan [1] described a rounding scheme
based on alternating cycles for bipartite matchings. They
obtained concentration for any linear function of the rounded
solution, however in a somewhat weaker form, with vari-
ance depending explicitly on n. Since their focus was on
approximation of dense instances, these concentration results
were sufficient for their purpose. Their scheme also does not
maintain the property that E[X] = x, and in particular does
not produce a perfect matching even when x is a fractional
perfect matching; one can easily show that the expectation
cannot be preserved if one wants concentration properties.
Nevertheless, there are interesting parallels between the two
approaches which we explore in some recent work [11].

Organization. Due to space constraints, and the large number
of technical details in our rounding scheme and concentration
bounds, we are only able to give a high-level overview of our
applications and defer a detailed discussion to a longer version
of the paper. An earlier unpublished version of our work [10]
considered only matroid polytopes and describes some of these
applications in more detail.

The rest of the paper is organized as follows. In Section I-A,
we present the necessary definitions. In Section II, we describe
our technical results and in Section III, a few illustrative
applications. In Section IV the randomized swap rounding pro-
cedure for matroids is introduced. In Section V, we extend this
procedure to the setting of matroid intersection. In Section VI,
we discuss the connection between negative correlation and
increasing submodular expectations, and describe a type of
random process which satisfies both these properties.

A. Preliminaries

Matroid polytopes. Given a matroid M = (N, I) with rank
function r : 2N → Z+, the matroid polytope P (M) is defined
as the convex hull of characteristic vectors of the independent
sets of M, or equivalently [13]:

P (M) = conv{1I : I ∈ I} = {x ≥ 0 : ∀S;
∑
i∈S

xi ≤ r(S)}.

A related polytope is the matroid base polytope B(M),
the convex hull of the characteristic vectors of bases, i.e.
independent sets of maximum cardinality inM . Equivalently,
B(M) = {x ∈ P (M) :

∑
i∈N xi = r(N)}. Both these

polytopes have the property of total dual integrality (see [30]
for more information).

Matroid exchange properties. To simplify notation, we use
+ and − for the addition and deletion of single elements from
a set, for example S − i+ j denotes the set (S \ {i}) ∪ {j}.
The following base exchange property of matroids is crucial
in our rounding for matroid polytopes.



Lemma I.2. Let M = (N, I) be a matroid and let B1, B2

be bases. For any i ∈ B1 \B2 there exists j ∈ B2 \B1 such
that B1 − i+ j and B2 − j + i are also bases.

Given i, a suitable element j for the exchange can be found
by checking all elements in B2 \ B1. Faster algorithms exist
in special cases such as graphic matroids.

Matroid intersection. LetM1 = (N, I1) andM2 = (N, I2)
be two matroids. It follows from the work of Edmonds [13]
that the intersection polytope P (M1) ∩ P (M2) is integral
and its vertices correspond exactly to sets I ∈ I1 ∩ I2.2 The
structure of feasible exchanges between two independent sets
I, J ∈ I1∩I2 is more complicated here. We give more details
in Section V.

Equivalent elements in matroids. In our treatment of matroid
intersection, the following notion is important.

Definition I.3. Two elements i, j ∈ N are equivalent in a
matroid M = (N, I) if for any set A ∈ I not containing i, j,
A+ i ∈ I if and only if A+ j ∈ I.

It can be shown that this is in fact an equivalence relation
(we omit the proof). Observe that for a partition matroid, the
equivalence classes with respect to this relation are exactly
the respective parts. More generally, for a laminar matroid, the
equivalence classes are the minimal sets in the laminar family.
The special case of bipartite matchings corresponds to the
intersection of two partition matroids, where each equivalence
class is a set of edges incident to a fixed vertex.

Submodular functions. A function f : 2N → R is submodu-
lar if for any A,B ⊆ N , f(A)+f(B) ≥ f(A∪B)+f(A∩B).
In addition, f is monotone if f(S) ≤ f(T ) whenever S ⊆ T .
We denote by fA(i) = f(A + i) − f(A) the marginal value
of i with respect to A. An important concept in recent work
on submodular functions [6], [33], [7], [22], [24], [34] is the
multilinear extension of a submodular function:

F (x1, . . . , xn) = E[f(x̂)] =
∑
S⊆N

f(S)
∏
i∈S

xi
∏

i∈N\S

(1− xi)

where x̂ is obtained by independently rounding x1, . . . , xn
to {0, 1}n. (We use interchangeably the notation f(S) and
f(X1, . . . , Xn) where Xi ∈ {0, 1} are interpreted as indicator
variables of i ∈ S.)

Algorithmic issues. In this paper, submodular functions are
assumed to be given by a value oracle, returning f(S) for a
given query S ⊆ N . For a matroid M = (N, I) we assume
that there is a rank oracle that given a set S ⊆ N returns
rM(S). We appeal to well-known facts about polynomial time
algorithms for optimizing and separating over matroid and
matroid intersection polytopes [30].

2The same is no longer true for three matroids, and the maximization
problem over the intersection of three matroids is NP-hard.

II. OUR RESULTS

Rounding for matroids. For matroid polytopes, we present
a simple rounding procedure, based on the strong exchange
property of matroids (see Section IV). We start with a frac-
tional solution (x1, . . . , xn) ∈ P (M) and produce a random
vertex X = (X1, . . . , Xn) which corresponds to an indepen-
dent set in M. The main property of the rounded solution
X is that its coordinates have expectations E[Xi] = xi, and
the Xi’s are negatively correlated. This yields Chernoff-type
concentration bounds for any linear function of X1, . . . , Xn

([27], see also Theorem 3.1 in [19]). We also show an
expectation bound for submodular functions, similar to what
holds for pipage rounding [7]; this is useful in applications
involving submodular functions.

Theorem II.1. Let (x1, . . . , xn) ∈ P (M) be a fractional
solution in the matroid polytope and (X1, . . . , Xn) ∈ P (M)∩
{0, 1}n an integral solution obtained using randomized swap
rounding. Then for any linear function Z =

∑
aiXi with

ai ∈ [0, 1], we have E[Z] =
∑
aixi and

• If δ ≥ 0 and µ ≥ E[Z], then

Pr[Z ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)1+δ

)µ
.

• If δ ∈ [0, 1], and µ ≤ E[Z], then
Pr[Z ≤ (1− δ)µ] ≤ e−µδ2/2.

Moreover, for any submodular function f : {0, 1}n → R and
its multilinear extension F : [0, 1]n → R,
• E[f(X1, . . . , Xn)] ≥ F (x1, . . . , xn).

An interesting technical point is that the property of negative
correlations is easily implied by the expectation bound for
submodular functions. We discuss this relationship in Sec-
tion VI-A. For monotone submodular functions we also prove
an exponential bound for the lower tail. Since the random
process here is a sub-martingale rather than a martingale, we
do not expect a similar bound for the upper tail.

Theorem II.2. Let f : {0, 1}n → R+ be a monotone submod-
ular function with marginal values in [0, 1], and F : [0, 1]n →
R+ its multilinear extension. Let (x1, . . . , xn) ∈ P (M) be
a point in a matroid polytope and (X1, . . . , Xn) ∈ {0, 1}n
a random solution obtained from it by randomized swap
rounding. Let µ0 = F (x1, . . . , xn) and δ > 0. Then

Pr[f(X1, . . . , Xn) ≤ (1− δ)µ0] ≤ e−µ0δ
2/8.

This result is more involved than Theorem II.1 and does
not follow from the property of negative correlations alone.
We defer the proof to a full version of the paper. We remark
that weaker tail estimates involving a dependence on n follow
directly from martingale concentration bounds; the main dif-
ficulty here is to obtain a bound which does not depend on n.
The tail estimate is with respect to the value of the starting
point, µ0 = F (x1, . . . , xn), rather than the actual expectation
of f(R), which could be larger (it would be equal for a linear
function f ). For this reason, we do not have an upper tail
bound. In applications, µ0 is the value that we wish to compare
with, and hence this is the bound that we need.



Rounding for matroid intersection. We generalize our round-
ing procedure to the framework of matroid intersection. Here,
we have two matroidsM1,M2 and a fractional solution in the
intersection of the respective polytopes, x ∈ P (M1)∩P (M2).
We round x to an integral solution X corresponding to a set
independent in both matroids, so that E[X] = x.

We develop a more involved version of randomized swap
rounding for this setting, which is described in Section V.
Our procedure uses a decomposition property for matroid
intersection developed recently in [25]. Contrary to the setting
of a single matroid, we cannot expect all the coordinates
X1, . . . , Xn to be negatively correlated here. Even in the
special case of bipartite matchings, positive correlation be-
tween certain variables is inevitable if we wish to preserve the
expectation exactly or even approximately. A simple example
that demonstrates this point is that of a cycle of length 2n
with xe = 1/2 on each edge. We prove that our rounding
procedure for matroid intersection has the property of negative
correlations for any subset of elements equivalent in either
M1 orM2 (see Section I-A for a definition). This is a natural
generalization of the property of negative correlation for edges
incident to a vertex in the setting of bipartite b-matchings [19].

Theorem II.3. Let (X1, . . . , Xn) be obtained by randomized
swap rounding for matroid intersection from a starting point
(x1, . . . , xn) ∈ P (M1)∩P (M2). Let Q be a set of elements
equivalent either in M1 or M2. Then for any linear function
Z =

∑
i∈Q aiXi with ai ∈ [0, 1], E[Z] =

∑
i∈Q aixi and

• If δ ≥ 0 and µ ≥ E[Z], then

Pr[Z ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)1+δ

)µ
.

• If δ ∈ [0, 1], and µ ≤ E[Z], then
Pr[Z ≤ (1− δ)µ] ≤ e−µδ2/2.

Moreover, for any submodular function f : {0, 1}Q → R and
its multilinear extension F : [0, 1]Q → R,
• E[f(Xi : i ∈ Q)] ≥ F (xi : i ∈ Q).

This also means that our rounding procedure can be used
in conjunction with a submodular objective function which
decomposes into submodular functions on the equivalence
classes of M1 and M2. It is known that the multilinear opti-
mization problem max{F (x) : x ∈ P} can be approximated
within a factor of 1 − 1/e for any monotone submodular
function and any down-monotone polytope for which we can
optimize linear functions (a ”solvable polytope”) [33], [7].
The matroid intersection polytope P = P (M1) ∩ P (M2)
is solvable and hence we get a (1 − 1/e)-approximation for
maximizing this restricted type of submodular functions over
matroid intersection.

Theorem II.4. Let M1 = (N, I1), M2 = (N, I2) be
two matroids and C1, C2 ⊂ 2N their respective families of
equivalence classes. Let f : {0, 1}N → R+ be such that

f(S) =
∑
C∈C1

f1,C(S ∩ C) +
∑
C∈C2

f2,C(S ∩ C)

where f1,C , f2,C are monotone submodular. Then there is a
(1− 1/e)-approximation for max{f(S) : S ∈ I1 ∩ I2}.

A useful special case is that one of the matroids, say
M1, is a partition or laminar matroid. Then the bounds in
Theorem II.3 hold for any part Q (or minimal set in the
laminar family) of this matroid M1. We can also achieve a
(1−1/e)-approximation for any sum of monotone submodular
functions on the parts of M1 (Theorem II.4). This is a new
result even in the special case of bipartite b-matchings (two
partition matroids), where we can handle any sum of monotone
submodular functions on the stars incident to different vertices.
We also recover the concentration bounds of [19] in this case.
However, the matroid M2 can be arbitrary; this allows us to
impose new types of constraints.

Multiple submodular objectives. In our applications, we of-
ten deal with submodular objective functions. Here we rely on
the notion of multilinear extension and the continuous greedy
algorithm [6], [33], [7]. The problem max{F (x) : x ∈ P}
admits a (1 − 1/e)-approximation if F is the multilinear
extension of a submodular set function f : {0, 1}N → R+

and P ⊆ [0, 1]|N | is a solvable down-monotone polytope [33],
[7]. In this work, we extend the continuous greedy algorithm
to applications involving multiple submodular functions. This
extension might be interesting on its own; we formulate it as
follows. In the following statement, n does not have to be
constant. We defer the proof to a full version of the paper.

Theorem II.5. Consider monotone submodular functions
f1, . . . , fn : 2N → R+, their multilinear extensions Fi :
[0, 1]N → R+ and a solvable polytope P ⊆ [0, 1]N . There
is an algorithm which, given V1, . . . , Vn ∈ R+,
• either finds a point x ∈ P such that Fi(x) ≥ (1−1/e)Vi

for each i,
• or returns a certificate that there is no point x ∈ P such

that Fi(x) ≥ Vi for all i.

The algorithm is a generalization of the continuous greedy
algorithm from [33]. In a nutshell, the algorithm starts from
x(0) = 0 and at time t follows a direction dx

dt = v(t) ∈ P such
that v(t)·∇Fi(x(t)) ≥ Vi−Fi(x(t)) for all i. Such a direction
can be found by linear programming; if it does not exist, we
know that the instance is infeasible. Otherwise, the algorithm
reaches a solution x(1) such that Fi(x(1)) ≥ (1− 1/e)Vi for
all i. We remark that x(1) ∈ P even though the path of the
algorithm might not be contained in P . In [33], [7], P was
assumed to be down-closed, but in fact this is not essential for
the continuous greedy algorithm.

III. APPLICATIONS

Our rounding schemes and concentration results allow us
to extend the applications of independent rounding to new
settings where we can essentially add a matroid constraint
“for free”. We can even add a matroid intersection constraint,
with some restrictions on the concentration bounds that we
want to apply (see Theorem II.3). We can handle linear
and also submodular objective functions. For example, Kulik,
Shachnai and Tamir [22] gave a (1− 1/e− ε)-approximation
for maximizing a monotone submodular function subject to a



constant number of linear constraints. We can obtain the same
result with an additional matroid constraint.

Matroids, matroid intersection and submodular functions
are abstract tools, and it is not always easy to see that a
given application can be viewed as a special case of some of
the problems we can handle. However, the advantage of the
abstract view is that one can easily see relevant extensions. For
instance, throughput maximization in broadcast scheduling,
one of the applications in [19], can be cast as a special
case of submodular function maximization subject to a simple
partition matroid constraint [9]; this allows us to easily obtain
a (1−1/e)-approximation for a variety of generalizations that
are not obtainable by prior techniques.

In this section we give a sample of results without proofs.
We defer the proofs and a more detailed discussion to a full
version of the paper.

Matroid bases with packing constraints. The multipath
routing problem in the work of Srinivasan [32], and the thin
spanning trees for ATSP in the work of Asadpour et al. [2] can
be viewed in the common framework of rounding a point in the
matroid polytope while minimizing congestion for additional
packing constraints. These problems were handled by very
different dependent rounding schemes while our rounding
procedure is the same for both problems. We prove the
following theorem.

Theorem III.1. Given a matroid M = (N, I) and a matrix
A ∈ Rm×N , there is an O(logm/ log logm)-approximation
for the problem

min{λ : ∃ base B in M;A · 1B ≤ λ1}.

Next, we focus on the following concrete problem.

Max-Min Submodular Allocation. In allocation problems,
one can consider various objectives to fulfill. The most com-
mon one is the social welfare, i.e. the sum of utilities of all
agents. A more difficult objective to optimize is the utility of
the least satisfied agent (the ”Max-Min allocation” problem):

Given m items and n agents with submodular valuation
functions wi : {0, 1}m → R+, find an allocation of disjoint
sets S1, . . . , Sn maximizing min1≤i≤n wi(Si).

First consider the special case of linear valuations, i.e. each
item j has value vij for agent i. Maximizing social welfare
in this setting is trivial (just give each item to the agent
maximizing its value), while the Max-Min problem is much
more difficult. For a constant number of agents, this problem
admits an FPTAS [35]. When the number of agents is part
of the input, the best known algorithm gives for any fixed
ε > 0 an O(nε)-approximation (and takes nO(1/ε) time)
[8]. We consider this problem in the more general setting
of submodular valuation functions wi : {0, 1}m → R+.
For this problem, a (2n − 1)-approximation for n agents
(even with subadditive valuations) was presented by Khot and
Ponnuswami [21], and an Õ(n1/4m1/2)-approximation was
shown by Goemans et al. [20]. In this work, we consider Max-
Min Submodular Allocation in the regime of a small number
of agents.

Theorem III.2. For any ε > 0 and any constant number of
agents n ≥ 2, there is a (1−1/e−ε)-approximation for Max-
Min Submodular Allocation (in the value oracle model). This
is the best possible factor independent of n, since a (1− (1−
1/n)n + ε)-approximation for any fixed n ≥ 2 and ε > 0
would require exponentially many queries.

An important ingredient in our algorithm is the general-
ization of the continuous greedy algorithm to multiple sub-
modular objectives (Theorem II.5), and the lower-tail bound
for monotone submodular functions (Theorem II.2). Given a
valid guess V for the optimum value, the continuous greedy
algorithm finds a fractional solution which satisfies every agent
to within (1 − 1/e)V . We then round the fractional solution
using swap rounding for (partition) matroids, and the lower-
tail bound in the rounding stage allows us to conclude that
with high probability, no agent loses too much compared to
the fractional solution. We remark that we can also achieve
a constant factor approximation even when the number of
agents is part of the input, provided that all items are “small”
compared to the optimum; by small we mean that the value
of an item is at most OPT/(c log n) for some constant c.

The statement of optimality follows from the oracle hard-
ness construction for Maximum Submodular Welfare in [26],
where in the YES case all agents receive the same value V ,
while in the NO case all the agents together cannot receive
more than (1− (1− 1/n)n + ε)nV .

We finally describe a general class of problems that can be
handled by our tools.

General framework for constrained allocation problems.
Suppose we have m items and n agents with submodular utility
functions wi : 2[m] → R+. Assume in addition that we have
the following constraints:
• The set of allocated items is required to be independent

in a matroid M.
• There is a laminar family F of constraints on the agents,

such that for each S ∈ F the agents in S can together
receive at most kS items.

Given these constraints, we want to find an allocation
(S1, . . . , Sn) maximizing the social welfare

∑n
i=1 wi(Si).

Using our techniques in the framework of matroid intersec-
tion, we can prove the following.

Theorem III.3. There is a (1 − 1/e)-approximation for any
allocation problem in the above framework.

First we observe that the simplest case is when there are
no constraints on the items to be allocated and no constraints
on the number of items that agents can receive. This special
case is the submodular welfare problem and an optimal (1−
1/e) approximation for this problem was given in [33]. Even
in this setting, there is a natural implicit matroid constraint
present - in essence, one makes copies of an item, one for each
agent, and this allows one to view the separate submodular
functions of the agents as a single submodular function. A
matroid constraint then requires that at most 1 copy of each
item is allocated.



In our framework, we are allowed to impose any matroid
constraint on the set of items that are allocated. For example,
items can be partitioned into certain groups and we can only
allocate a certain number of items from each group. A more
exotic matroid constraint would be that the allocated items
should be vertices matchable in a given bipartite graph, or
that they should be edges forming a spanning tree in a given
graph. In addition, we have constraints on the number of items
that the agents can receive, for example agent i can receive at
most ki items and overall we allocate at most m′ items.

IV. RANDOMIZED SWAP ROUNDING FOR MATROIDS

Let M = (N, I) be a matroid of rank d = r(N) and
let n = |N |. Randomized swap rounding is a randomized
procedure that rounds a point x ∈ P (M) to an independent
set. We present the procedure for points in the base polytope.
It can easily be generalized to round any point in the matroid
polytope.

Assume that x ∈ B(M) is the point we want to round. The
procedure needs a representation of x as a convex combination
of bases, i.e., x =

∑m
`=1 β`1B` with

∑m
`=1 β` = 1, β` ≥ 0. We

can find such a convex combination using standard techniques
(see [30]). The rounding proceeds in n−1 stages, where in the
first stage we merge the bases B1, B2 (randomly) into a new
base C2, and replace β11B1 +β21B2 in the linear combination
by (β1 + β2)1C2

. In the k-th stage, Ck and Bk+1 are merged
into a new base Ck+1, and (

∑k
`=1 β`)1Ck + βk+11Bk+1

is
replaced in the linear combination by (

∑k+1
`=1 β`)1Ck+1

. After
n−1 stages, we obtain a linear combination (

∑n
`=1 β`)1Cn =

1Cn , and the base Cn is returned.

Algorithm MergeBases(β1, B1, β2, B2):
While (B1 6= B2) do

Pick i ∈ B1 \B2 and find j ∈ B2 \B1 such that
B1 − i+ j ∈ I and B2 − j + i ∈ I;

With probability β1/(β1 + β2), {B2 ← B2 − j + i};
Else {B1 ← B1 − i+ j};

EndWhile
Output B1.

The procedure we use to merge two bases, called MergeBases,
takes as input two bases B1 and B2 and two positive scalars
β1 and β2. It is described in the figure below. Notice that the
procedure relies heavily on the basis exchange property given
by Lemma I.2 to guarantee the existence of the elements j in
the while loop. As discussed in Section I-A, j can be found
by checking all elements in B2 \ B1. Furthermore, since the
cardinality of B1∆B2 decreases at each iteration, the total
number of iterations is at most |B1| = d.

Algorithm SwapRound(x =
∑n
`=1 β`1B`):

C1 = B1;
For (k = 1 to n− 1) do
Ck+1 =MergeBases(

∑k
`=1 β`, Ck, βk+1, Bk+1);

EndFor
Output Cn.

The main algorithm SwapRound is described in the figure.
It uses MergeBases to repeatedly merge bases in the convex
decomposition of x. After n− 1 merge operations, we obtain
one random base which is our rounded solution. We claim that
this solution satisfies the property of negative correlations and
increasing expectations for submodular functions. We present
further discussion and proofs in Section VI.

V. RANDOMIZED SWAP ROUNDING FOR MATROID
INTERSECTION

Here we work with two matroids, M1 = (N, I1) and
M2 = (N, I2). The high-level structure of our rounding
procedure for matroid intersection is the same as in Section IV
(see Algorithm SwapRound(x)). Again, we need to start
with a convex combination

∑
αI1I where I ∈ I1 ∩ I2. Any

fractional solution x ∈ P (M1) ∩ P (M2) can be efficiently
decomposed in this manner, see [30].

We focus on the implementation of the merge procedure,
which is more involved here. We define the exchange digraph
which is a standard tool in the study of matroid intersection
(see [30, Chapter 41]). For I ∈ I1∩I2, we define two digraphs
DM1

(I) and DM2
(I) as follows.

• For each i ∈ I, j ∈ N \ I with I + j − i ∈ I1, we have
an arc (i, j) ∈ DM1(I);

• For each i ∈ I, j ∈ N \ I with I + j − i ∈ I2, we have
an arc (j, i) ∈ DM2

(I).
We define a digraph DM1,M2

(I) as the union of DM1
(I) and

DM2(I). A directed cycle in DM1,M2(I) corresponds to a
chain of feasible swaps. However, it is not necessarily the case
that the entire cycle gives a valid exchange in both matroids.
Nonetheless, it is known that if a cycle decomposes into two
matchings which are unique on their set of vertices respec-
tively in DM1(I) and DM2(I), then the cycle corresponds to
a feasible swap. This motivates the following definition.

Definition V.1. A directed cycle C in DM1,M2(I) is irre-
ducible if C ∩ DM1

(I) is the unique perfect matching in
DM1

(I) and C ∩DM2
(I) is the unique perfect matching in

DM2
(I) on the vertex set V (C). Otherwise, C is reducible.

Let us assume that we have two sets I, J ∈ I1 ∩ I2

and |I| = |J |. (This assumption can be easily avoided.) The
following lemma, building on the ideas of matroid intersection
[30, Section 41.3], was proved in [25].

Lemma V.2. Let M` = (N, I1), ` = 1, 2, be matroids on
ground set N . Suppose that I, J ∈ I1 ∩ I2 and |I| = |J |.
Then there is an integer s ≥ 0 and a collection of ir-
reducible directed cycles {C1, . . . , Cm} (allowing repetition)
in DM1,M2(I), using only elements of I∆J , so that each
element of I∆J appears in exactly 2s of the directed cycles.

We remark that this lemma is existential and there are
examples where the collection of irreducible cycles is expo-
nentially large. This is not an issue in [25], but here we need an
efficient variant of this decomposition. We prove the following
constructive variant of this lemma (we defer the proof to a full
version).



Lemma V.3. Let M` = (N, I1), ` = 1, 2, be matroids on
ground set N . Suppose that I, J ∈ I1 ∩ I2 and |I| = |J |.
Then we can find in polynomial time a collection of irreducible
cycles {C1, . . . , Cm},m ≤ |I∆J |, in DM1,M2(I), with
coefficients γi ≥ 0,

∑m
i=1 γi = 1, such that for some γ > 0,∑m

i=1 γi1V (Ci) = γ1I∆J .

Swap procedure overview. Let us explain how we use this to
implement randomized swap rounding. Suppose for simplicity
we have a linear combination x = 1

21I + 1
21J , where

I, J ∈ I1 ∩ I2 and |I| = |J |. We would like to perform the
merge operation on I and J . To that end, we apply Lemma V.3
twice, to obtain (1) a convex combination of irreducible cycles∑
γi1V (Ci) in DM1,M2

(I), representing feasible swaps from
I to J , and (2) a convex combination of irreducible cycles∑
δi1V (C′

i)
in DM1,M2

(J), representing feasible swaps from
J to I .

We have
∑
γi1V (Ci) = γ1I∆J and

∑
δi1V (C′

i)
= δ1I∆J ,

where γ, δ > 0 are not necessarily equal. We would like
to choose a random swap cycle such that each element in
I∆J has an equal probability of being added or removed.
Therefore, we first decide randomly whether we want to pick
a cycle from DM1,M2(I) (with probability δ

γ+δ ), or from
DM1,M2

(J) (with probability γ
γ+δ ). Then, we pick a specific

cycle: in the first case, we choose Ci with probability γi, and
replace I by I∆V (Ci). In the second case, we choose C ′i
with probability δi, and replace J by J∆V (C ′i). Summing up
over all cycles containing a given element in I , we get that the
probability of being removed from I is equal to the probability
of being added to J , both being equal to γδ

γ+δ . This implies
that our fractional solution is preserved in expectation, and it
forms a vector-valued martingale.

Once we perform this swap, the size of I∆J shrinks. We re-
peat the same procedure, until I and J become identical. This
finishes the merge operation for two vertex solutions 1I ,1J .
It is quite straightforward to generalize from 1

21I + 1
21J to an

arbitrary linear combination. We give a concise description of
the merge operation in the box.

Algorithm MergeIntersectionBases(α, I, β, J):
While (I 6= J) do

Generate a collection of irreducible cycles in DM1,M2(I)
such that

∑
γi1V (Ci) = γ1I∆J ,

∑
γi = 1, γi ≥ 0,

and a collection of irreducible cycles in DM1,M2(J),
such that

∑
δi1V (C′

i)
= δ1I∆J ,

∑
δi = 1, δi ≥ 0.

With probability βδγi
αγ+βδ

for each i, let I := I∆V (Ci).
else with probability αγδi

αγ+βδ
for each i, let J := J∆V (C′

i).
EndWhile
Output I .

VI. SOME PROOFS

A. Submodular functions and negative correlation

In this section, we show a connection between the property
of negative correlation of random variables X1, . . . , Xn and a
property of submodular functions of these random variables,

f(X1, . . . , Xn). Then we prove that both properties hold for
the ensembles of random variables arising from our rounding
procedures for matroids (the proof for matroid intersection is
deferred). The connection we present is interesting in its own
right; we remark that negative correlation for matroids under
swap rounding (and also randomized pipage rounding) can
be shown via a more elementary and direct proof — see our
earlier manuscript [10].

Lemma VI.1. Let X1, . . . , Xn be {0, 1} random variables
with expectations E[Xi] = xi. The following two properties
are equivalent:
• X1, . . . , Xn are negatively correlated, i.e. for any sub-

set T ⊆ [n], we have E[
∏
i∈T Xi] ≤

∏
i∈T xi and

E[
∏
i∈T (1−Xi)] ≤

∏
i∈T (1− xi).

• X1, . . . , Xn have the ”property of increasing expecta-
tions” for any submodular function f : {0, 1}n → R of
coverage type or complementary coverage type3: We have
E[f(X1, . . . , Xn)] ≥ F (x1, . . . , xn) where F : [0, 1]n →
R is the multilinear extension of f .

Proof: First, let us assume that X1, . . . , Xn are nega-
tively correlated. Let f(X1, . . . , Xn) = |

⋃
i:Xi=1Ai| be a

coverage-type submodular function. Then f(X1, . . . , Xn) for
Xi ∈ {0, 1} can be written as

f(X1, . . . , Xn) =
∑
j

1−
∏

i:j∈Ai

(1−Xi)

 .

By the property of negative correlations,

E[f(X1, . . . , Xn)] =
∑
j

1− E

 ∏
i:j∈Ai

(1−Xi)


≥

∑
j

1−
∏

i:j∈Ai

(1− xi)


which is exactly the multilinear extension F (x1, . . . , xn). Sim-
ilarly, a complementary coverage-type function can be written
as f(X1, . . . , Xn) =

∑
j(1 −

∏
i:j∈Ai Xi) and the same ar-

gument shows that E[f(X1, . . . , Xn)] ≥
∑
j(1−

∏
i:j∈Ai xi),

which is the respective multilinear extension of f .
Conversely, assume that we have the property of increas-

ing expectations for all coverage-type and complementary
coverage-type functions. For a given T ⊆ [n], take the
coverage function induced by Ai = {1} for i ∈ T and
Ai = ∅ otherwise. Then we have f(X1, . . . , Xn) = 1 −∏
i∈T (1 −Xi) and the multilinear extension of this function

is F (x1, . . . , xn) = 1 −
∏
i∈T (1 − xi). The property of

increasing expectations, E[f(X1, . . . , Xn)] ≥ F (x1, . . . , xn),
gives exactly the second condition of negative correlation:

E[
∏
i∈T

(1−Xi)] ≤
∏
i∈T

(1− xi).

3A coverage-type function is f(S) = |
⋃
i∈S Ai| for some set system

{Ai}ni=1. By complementary coverage type, we mean a function f(S) =
g(S̄) such that g is of coverage type.



The first condition, E[
∏
i∈T Xi] ≤

∏
i∈T xi, follows from the

property of increasing expectations applied to the complemen-
tary coverage function f(X1, . . . , Xn) = 1−

∏
i∈T Xi.

We remark that we have found a counterexample to the
above equivalence for general monotone submodular functions
(which we omit here). I.e., the property of increasing expec-
tations for all submodular functions is strictly stronger than
the property of negative correlation. This also implies that
the lower-tail bound in Theorem II.2 cannot follow from the
property of negative correlations, because even the expectation
E[f(X1, . . . , Xn)] could be lower than F (x1, . . . , xn) for
certain negatively correlated variables with E[Xi] = xi.

In the following, we consider ensembles of random vari-
ables arising from a random process satisfying certain condi-
tions (which are, in particular, satisfied by randomized swap
rounding). We will show that such random variables satisfy
the property of increasing expectations for all submodular
functions, hence implying the property of negative correlations
as well.

Lemma VI.2. Let τ ∈ N and let Xt = (X1,t, . . . , Xn,t)
for t ∈ {0, . . . , τ} be a non-negative vector-valued random
process with initial distribution given by X0 = x ∈ Rn with
probability 1, and satisfying the following properties:

1) For every t ∈ {0, . . . , τ − 1}, E[Xt+1 | Xt] = Xt.
2) For every t ∈ {0, . . . , τ − 1}, with probability 1, Xt+1−

Xt has at most one positive coordinate and at most one
negative coordinate; the remaining coordinates are zero.

Then for any submodular function f : {0, 1}n → R and its
multilinear extension F : [0, 1]n → R, for any t ∈ {0, . . . , τ},

E[F (Xt)] ≥ F (x).

By Lemma VI.1, this also implies that the variables
X1,t, . . . , Xn,t are negatively correlated for each t. We remark
that the conditions do not require that when two coordinates
change, their sum remains constant. We only assume that two
coordinates do not increase or decrease simultaneously.

Proof: We claim that E[F (Xt+1) | Xt] ≥ F (Xt) for
each t. Since F (X0) = F (x), this implies the statement of
the lemma.

Consider the difference F (Xt+1) − F (Xt). We know that
with probability 1, Xt and Xt+1 differ in at most two
coordinates. Assume for now that these coordinates are i < j
(if only one coordinate changes, pick j arbitrarily). We denote
by ei = 1{i} and ej = 1{j} the canonical basis vectors
corresponding to elements i and j. Using the fact that F
is linear when only one coordinate varies, we can write the
difference F (Xt+1)− F (Xt) as follows:

F (Xt+1)− F (Xt)

= F (Xt + (Xi,t+1 −Xi,t)ei + (Xj,t+1 −Xj,t)ej)− F (Xt)

= (Xi,t+1 −Xi,t)
∂F

∂xi

∣∣∣
Xt

+ (Xj,t+1 −Xj,t)
∂F

∂xj

∣∣∣
X+
t

where X+
t = Xt + (Xi,t+1 − Xi,t)ei. Consider the partial

derivative at X+
t . If Xj,t+1 > Xj,t, then Xi,t+1 ≤ Xi,t by the

property that at most one coordinate can increase. Then we
are evaluating the partial derivative ∂F

∂xj
at a point X+

t ≤ Xt.

Here we use the property that ∂2F
∂xi∂xj

≤ 0 for the multilinear
extension of any submodular function [33], [7]. This implies
that if ∂F

∂xj
is evaluated at a point dominated by Xt, its value

is at least ∂F
∂xj

∣∣∣
Xt

. On the other hand, if Xj,t+1 < Xj,t, then

Xi,t+1 ≥ Xi,t and we are evaluating ∂F
∂xj

at a point X+
t ≥ Xt,

which means that the partial derivative is at most ∂F
∂xj

∣∣∣
Xt

. In
both cases, we get

F (Xt+1)− F (Xt)

≥ (Xi,t+1 −Xi,t)
∂F

∂xi

∣∣∣
Xt

+ (Xj,t+1 −Xj,t)
∂F

∂xj

∣∣∣
Xt

.

Recall that i, j are in fact random. However, whatever the
values of i, j, it holds that

F (Xt+1)− F (Xt) ≥
n∑
i=1

(Xi,t+1 −Xi,t)
∂F

∂xi

∣∣∣
Xt

since the terms for coordinates that do not change are zero.
Now we can take expectation conditioned on Xt, and use the
fact that E[Xi,t+1 −Xi,t | Xt] = 0:

E[F (Xt+1)− F (Xt) | Xt]

≥
n∑
i=1

E[Xi,t+1 −Xi,t | Xt]
∂F

∂xi

∣∣∣
Xt

= 0.

B. Conditions for negative correlation in matroids

In this section we prove that randomized swap rounding
satisfies the conditions of Lemma VI.2. We denote by an
elementary operation of the swap rounding algorithm one
iteration of the while loop in the MergeBases procedure,
which is repeatedly called in SwapRound. Hence, an ele-
mentary operation changes two components in one of the
bases used in the convex representation of the current point.
For example, if the first elementary operation transforms the
base B1 into B′1, then this can be interpreted on the matroid
base polytope as transforming the point x =

∑n
`=1 β`1B` into

β11B′
1

+
∑n
`=2 β`1B` . Hence, the SwapRound algorithm can

be seen as a sequence of dn elementary operations leading to
a random sequence X0, . . . ,Xτ where Xt denotes the convex
combination after t elementary operations.

Lemma VI.3. Randomized swap rounding for matroids satis-
fies the conditions of Lemma VI.2.

Proof: Let Xt denote the fractional solution after t steps,
let Xi,t denote the i-th component of Xt. To prove the first
condition of Lemma VI.2 we condition on a particular vector
Xt at time t of the process and on its convex representation
Xt =

∑k
`=1 β`1B` . The vector Xt+1 is obtained from Xt by

an elementary operation. Without loss of generality we assume
that the elementary operation performs a swap between the
bases B1 and B2 involving the elements i ∈ B1 \ B2 and



j ∈ B2\B1. Let B′1 and B′2 be the bases after the swap. Hence,
with probability β1/(β1 +β2), B′1 = B1 and B′2 = B2−j+ i,
and with probability β2/(β1 + β2), B′1 = B1 − i + j and
B′2 = B2. Thus,

E[β11B′
1

+ β21B′
2
]

=
β1

β1 + β2
(β11B1 + β2(1B2 − ej + ei))

+
β2

β1 + β2
(β1(1B1 − ei + ej) + β21B2)

= β11B1
+ β21B2

,

where ei = 1{i} and ej = 1{j} denote the canonical basis
vectors corresponding to element i and j, respectively. Since
the vector Xt+1 is given by Xt+1 = β11B′

1
+ β21B′

2
+∑k

`=3 β`1B` , we obtain E[Xt+1 | Xt] = Xt. The second
condition of Lemma VI.2 is clearly satisfied since only two
coordinates are involved in each elementary operation, and
exactly one of them increases and one decreases.
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