
Randomized MWU for Positive LPs∗

Chandra Chekuri Kent Quanrud

Abstract
We describe and analyze a simple randomized multi-
plicative weight update (MWU) based algorithm for ap-
proximately solving positive linear programming prob-
lems, in particular, mixed packing and covering LPs.

Given m explicit linear packing and covering con-
straints over n variables specified by N nonzero entries,
Young [36] gave a deterministic algorithm returning an
(1 + ε)-approximate feasible solution (if a feasible solu-
tion exists) in Õ

(
N/ε2

)
time. We show that a simple

randomized implementation matches this bound, and
that randomization can be further exploited to improve
the running time to Õ

(
N/ε+m/ε2 + n/ε3

)
(both with

high probability). For instances that are not very sparse
(with at least ω̃(1/ε) nonzeroes per column on average),
this improves the running time of Õ

(
N/ε2

)
. The ran-

domized algorithm also gives improved running times
for some implicitly defined problems that arise in com-
binatorial and geometric optimization.

1 Introduction
In this paper we consider fast approximation schemes
for positive linear programming problems where all the
input data consists of non-negative numbers, and the
output solution is also required to be non-negative. The
most general class here is mixed packing and covering
LPs which we state in a normalized form below:

find x such that x ≥ 0, Ax ≤ 1 and Bx ≥ 1,(NMPC)

where A ∈ RP×n≥0 and B ∈ QC×n are nonnegative ma-
trices∗. Let mp = |P| be the number of packing con-
straints, mc = |C| the number of covering constraints,
and m = mp +mc the total number of constraints. We
let N denote the total number of nonzeroes in A and
B. A basic special case is finding a nonnegative solu-
tion x ≥ 0 to Ax = b, where A and b have nonnegative
entries.

∗Department of Computer Science, University of Illinois, Ur-
bana, IL 61820. {chekuri,quanrud2}@illinois.edu. Work on this
paper partly supported by NSF grant CCF-1526799.
∗The normalized form does not have an objective function

since a maximization or minimization objective with non-negative
coefficients can be incorporated as a constraint.

A simpler subclass of (NMPC) considers pure pack-
ing problems of the form

max 〈c, x〉 over x ≥ 0 such that Ax ≤ 1(P)

and pure covering problems of the form

min 〈c, x〉 over x ≥ 0 such that Bx ≥ 1,(C)

where again all inputs A, B, and c are assumed to be
nonnegative. Pure packing and pure covering LPs are
duals of each other. In contrast, the dual of a mixed
packing and covering LP is not a mixed packing and
covering LP.

Postive LPs are a particularly simple class of lin-
ear programs that nonetheless have many fundamen-
tal applications in computer science and optimization.
Of course one can solve these by general purpose LP
solvers, but the running time is a non-linear polynomial
in the input size. Moreover, there are several applica-
tions in which the LP is implicitly defined. For several
such LPs, using the Ellipsoid method or explicitly writ-
ing down the LP and then using a standard solver is
prohibitively expensive.

We are interested in algorithms that obtain rela-
tively coarse approximations in substantially less time.
The approximation criteria is as follows. Given an er-
ror parameter ε > 0, if a feasible solution z to (NMPC)
exists, then we must return a nonnegative vector x ≥ 0
such that Ax ≤ (1+ε)1 and Bx ≥ (1−ε)1. (Clearly, the
error can be made one-sided by scaling x up or down.)
In a regime where ε is moderately large, we seek algo-
rithms that are polynomial in 1/ε and very fast in the
other parameters m, n, and N . In contrast, interior
point algorithms or ellipsoid based methods obtain an
additive error of ε and the dependence of the run-time
is polynomial in log(1/ε); however, the dependence on
m, n and N is much worse.

The past two decades, starting with works of
Shahrokhi and Matula [29], Plotkin, Shmoys, and Tar-
dos [28], Grigoriadis and Khachiyan [14], Luby and
Nisan [24], and many others (too many to provide
a proper accounting here), have produced a substan-
tial amount of literature on iterative methods for solv-
ing positive LPs with polynomial dependence on 1/ε
and otherwise better dependencies on parameters such

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

as the input size. Here we are interested in width-
independent algorithms. One broad technique is La-
grangian relaxation with potential functions (exponen-
tial or logarithmic) whose run-time dependence on ε is
1/ε2. Another technique relies on a reduction to (accel-
erated) first order methods from convex optimization.
These methods improve the dependence on ε to 1/ε;
Bienstock and Iyengar [5] demonstrated this building
upon Nesterov’s accelerated gradient descent technique.
The first order methods had worse running times on the
other parameters, however, recently there have been
several exciting developments that are able to obtain
a 1/ε dependence while also having near-linear depen-
dence on the other parameters.

For (NMPC) the algorithm of Young [36] returns
an ε-approximation deterministically in O

(
N ln(m)/ε2

)
;

this is the first nearly-linear time algorithm. Young’s al-
gorithm follows themultiplicative weight update (MWU)
framework, and improves on previous MWU-type algo-
rithms by lazily applying the weight updates via an ef-
ficient amortized data structure. Applying Nesterov’s
accelerated gradient descent technique, Bienstock and
Iyengar [5] achieve a running time of O

(
n2.5d/ε

)
where

d is the maximum number of nonzeroes in a column.
In the restricted setting of pure packing and cover-

ing better results are known. Koufogiannakis and Young
[21, 22] obtained (1 + ε) approximations to (P) and (C)
in O

(
N + (m+ n) ln(m)/ε2

)
time via a randomized al-

gorithm. The algorithm of Koufogiannakis and Young
efficiently simulates a zero-sum game between two play-
ers solving the primal and dual problem respectively and
draws inspiration from Grigoriadis and Khachiyan [15].
Recently, Allen-Zhu and Orecchia [2] gave a random-
ized coordinate descent algorithm that returns a (1 + ε)-
relative approximation to (P) in O(N ln(N) ln(ε)/ε)
time and (C) in O

(
N ln(n) ln(ε)/ε1.5

)
time. The

running time for (C) was subsequently improved to
O
(
N ln2(N/ε)/ε

)
by Wang, Rao, and Mahoney [33].

There have been several recent developments in paral-
lel algorithms as well. Since our focus here is only on
sequential algorithms, we refer the reader to the Ma-
honey, Rao, Wang, and Zhang [25] for several pointers
to recent and past work.

It is natural to ask whether one can obtained
improved running times for (NMPC) more in line with
the ones known for (P) and (C). This was explicitly
raised in [21, 22, 36]. The high-level goal is to shift the
ε-factors in the running time off of the dominant term
N to lower-order terms such as m and n.

Open Question 1.1. Is there a (randomized) algo-
rithm for (NMPC) that returns a (1+ε)-approximate so-
lution in Õ

(
N + (n+m)/ε2

)
time or in Õ(N/ε) time?

We note that some ideas that help for pure pack-
ing and covering such as coupling do not yet have an
analogue for (NMPC) and this makes it challenging to
address the preceding question. Our discussion so far
has mainly focused on explicitly described LPs. As we
mentioned already, there are several applications where
the LP is implicitly defined. A canonical example is
multicommodity flow which was instrumental in the de-
velopment of fast approximation schemes for positive
LPs. Achieving fast running times for such problems
requires a mix of techniques. Our work here is not only
motivated by explicit problems of the form (NMPC),
but other (implicit) mixed packing and covering prob-
lems contingent on the implementation of simple sub-
routines/oracles. In this regard, one advantage of the
MWU-based iterative methods is the relative simplicity
of both the algorithm and the analysis, which allows for
subroutines to be approximated by heuristics and accel-
erated by data structures for a better total running time
(see, for example, [27, 1, 36, 6, 7]). Our focus in this
paper is on augmenting the MWU framework to obtain
faster and/or simpler algorithms for several classes of
problems.

Our contribution and results: We develop a ran-
domized algorithm based on the MWU framework for
(NMPC), perhaps most similar to [36] among the com-
peting algorithms mentioned above. It leads to a width-
independent algorithm that simplifies the weight update
step via a simple correlated random choice in each it-
eration. The randomized scheme was used previously
in [21, 22] for pure packing and covering in the context
of their primal-dual coupled algorithm. Here we apply
it to a primal algorithm in the more general setting of
mixed packing and covering.

Our first contribution is to analyze this random-
ized algorithm and prove that it achieves a (1 + ε)-
approximation in O(m logm/ε2) iterations with high-
probability. The analysis is technical due to the adap-
tive nature of the step sizes that are needed to achieve
width-independence, and the interaction between the
packing and covering constraints (the packing weights
go up and the covering weights go down).

Our second contribution leverages the randomized
MWU algorithm for better approximation algorithms
to (NMPC). An easy implementation recovers the
O(N logm/ε2) run time achieved in [36]; the advantage
of the randomized algorithm is that steps are transpar-
ent and very simple data structures suffice. In addition
the randomization is useful for some implicit problems.
We then push randomized techniques further to im-
prove the running time and make measurable progress
on Question 1.1. Our improvement is captured by the
next theorem.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 1.1. Given a normalized mixed packing and
covering problem (NMPC), random-mwu returns a ε-
relative approximation in

O

 N log2m
ε + m log2m

ε2

+n log(m)(log(m)+log(n))
ε3

 = Õ

(
N

ε
+
m

ε2
+
n

ε3

)

time with probability 1− 1/ poly(m).

The improvement from Õ
(
N/ε2

)
to Õ(N/ε) is made

possible by a general data structure for approximating
nonnegative linear maps that we discuss in detail later.†
The improvement is meaningful when the input matrix
is not extremely sparse. For dense matrices with N =
Ω̃(mn), Theorem 1.1 improves the running time from
Õ
(
mn/ε2

)
to Õ(mn/ε). We believe that it may be

possible to improve the run time further to achieve a
bound of Õ

(
N/ε+ (m+ n)/ε2

)
. Note that MWU-based

algorithms cannot escape some 1/ε2 dependence via the
lower bound of Klein and Young [19].

Applications to implicit problems: Finally, our random-
ized algorithm yields faster algorithms for solving some
implicit LPs that arise as relaxations in combinatorial
and geometric optimization. We note that the random-
ized MWU algorithm is useful not just for mixed pack-
ing and covering but also pure packing and covering.
In some recent work [6, 7] we had developed faster al-
gorithms for implicit packing problems by adapting the
MWU framework via a combination of data structures.
Our randomized variant of MWU was initially moti-
vated by some examples of implicit problems in combi-
natorial and geometric settings that were not amenable
to the data structure ideas in [6]. In Section 5 we
sketch a few applications of explicit and implicit prob-
lems and highlight how the randomized variant allows
for handling new implicit problems as well as generaliz-
ing some prior results in [6] to the mixed packing and
covering setting. Our focus in this paper is on the high-
level randomized algorithm and its analysis for explicit
problems. Details of implicit applications are deferred,
partly due to space constraints, and partly due to the
fact that these applications require domain-specific data
structures and other ideas which are beyond the scope
of this paper.

2 Randomized MWU and Overview of
Techniques

The proposed algorithm, called random-mwu and
sketched in Figure 1, is (at a high-level) a variant of

†For ease of notation, we use Õ(· · ·) to suppress logarithmic
factors.

a deterministic algorithm for mixed packing and cover-
ing originally proposed in [35] and refined in [36]. The
algorithm falls in the broad framework of Lagrangian
relaxation algorithms that iteratively solve a relaxation
of the original problem as follows. The algorithm main-
tains weights for each constraint (which can be inter-
preted as dual variables). We let v denote the weight
vector for packing constraints and w denote the vector
for covering constraints; v and w are both initialized to
the all-1’s vector 1. In each iteration the algorithm finds
a feasible solution y for the relaxed problem which is
obtained by collapsing all the packing constraints into
a single constraint by taking a weighted combination,
and similarly collapsing all the covering constraints into
a single constraint:

(2.1) find x ≥ 0 s.t. 〈v,Ax〉 ≤ 〈v,1〉, 〈w,Bx〉 ≥ 〈w,1〉

Note that if the relaxed problem is infeasible then the
original problem is infeasible. random-mwu uses an
approximate oracle rather than exact oracle. Relaxing
the oracle does not upset the the final analysis for a
(1 + ε)-approximate solution, and offers flexibility that
leads to improvements in the running time. A key
observation is the relative simplicity of (2.1) compared
to (NMPC). For 1 ≤ i ≤ n, let αi = 〈v,A〉i/〈v,1〉 and
let βi = 〈w,B〉i/〈w,1〉. (2.1) is feasible iff there exists
an i such that αi/βi ≤ 1. Then setting yi = 1/βi and
all other coordinates to zero is a feasible solution. In
each iteration, we can assume without loss of generality
that only one coordinate is updated.

The algorithm adds the solution y to the current so-
lution (which is initialized to 0) with an appropriate step
size δ. Our algorithm follows the “timed” framework
from [8] which increments time from 0 to 1 and the step
size and other parameters are appropriately normalized.
To obtain a width-independent running time two key ex-
isting ideas are needed: (i) non-uniform step sizes [13]
and (ii) dropping covering constraints that are already
satisfied. See [36]. After each iteration the packing and
covering weights are updated multiplicatively (packing
weights are increased in an exponential fashion and cov-
ering weights are decreased).

The efficiency of the algorithm depends on the num-
ber of iterations and the work done in each iteration.
One can show that the deterministic variant terminates
in O(m logm/ε2) iterations. Each iteration requires
two main steps: (i) finding a solution to (2.1), and
(ii) updating the weights. These are non-trivial bottle-
necks to achieving an overall near-linear running time.
This was accomplished in [36] using a careful amortized
data structure to lazily update the weights among other
ideas. Some of these ideas were shown to be effective
for implicit problems as well [6, 7].

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

random-mwu(A ∈ RP×n≥0 ,B ∈ RC×n≥0 ,ε)
η = (lnm)/ε // parameter to control step size
v ← 1, w ← 1 // v, w: packing & covering weights
Q ← C // Q: active covering constraints
// for a, b ∈ RC , let 〈a, b〉Q =

∑
i∈Q

aibi

t← 0 // time goes from 0 to 1

[1] while t ≤ 1 and Q 6= ∅
[2] choose y ∈ Rn≥0 such that

(*) 〈v,Ay〉 ≤ (1 +O(ε))〈v,1〉
(**) 〈w,By〉Q ≥ (1−O(ε))〈w,1〉Q
// y is approx soln to Lagrangean relaxation with weights v, w

if no y ∈ Rn≥0 satisfies (*) and (**) then return “infeasible”
[3] δ ← max value δ > 0 such that // step size

(*) δηAy ≤ ε
(**) δηBy ≤ ε
(***) t+ δ ≤ 1
x← x+ δy // increment current solution with δy

t← t+ δ // increment time
pick θ ∈ [0, 1] uniformly at random
for i ∈ P // update/increase packing weights

// approximate vi ← exp(δη〈ei, Ay〉)vi
if (θ ≤ δη〈ei, Ay〉/ε)

[4] vi ← exp(ε)vi
end for
for i ∈ Q // update/decrease active covering weights

// approximate wi ← exp(−δη〈ei, By〉)
if (θ ≤ δη〈ei, By〉/ε)
wi ← exp(−ε)wi

[5] if wi ≤ exp(−η)
Q ← Q− i // i made inactive if weight small enough

end for
end while
return x

Figure 1: A randomized implementation of the MWU framework for mixed packing
and covering.

The primary difference in the algorithm we propose
from that in [36] is that the multiplicative weight
updates are now randomized. We borrow this idea from
[22] where it was applied to pure packing and covering
problems. Where the standard deterministic update
might increase a weight by a multiplicative factor of
exp(εp) for some p ∈ [0, 1], random-mwu increases
the weight by a multiplicative factor of exp(ε) with
probability p. In expectation, random-mwu makes the
appropriate update with respect to the logarithm of
the weight. The key to implementation efficiency is
that all the weight updates are correlated via a single
random variable θ. This cleanly addresses the efficiency

issue in updating the weights at the expense of moving
the burden to proving the correctness of the algorithm.
On the other hand, randomized weight updates do not
address the issue of solving (2.1) in each iteration, which
remain a bottleneck. We use randomization again in a
different way to improve that step as well in Section 4.

Figure 1 is incomplete, as we leave the implemen-
tation of lines [2] and [3] unspecified until Section 4.
This part will also be randomized and the details are
deferred primarily for ease of exposition. A secondary
reason is that in some implicit packing and covering
problems, [2] and [3] can be supplied by a more effi-
cient and domain-specific oracle. Some other low-level

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

implementation details are omitted from Figure 1. The
additional code allows us to list all the entries of a col-
umn above a threshold in time slightly faster than pre-
sorting all the nonnegative entries and doing a binary
search. We defer this discussion to the end because the
techniques are well-known and the speedup is by only
a logarithmic factor. Full implementation details are
eventually provided in Section 4.

We prove that random-mwu terminates both success-
fully and efficiently with high probability.

Theorem 2.1. Let A ∈ Rmp×n
≥0 and B ∈ Rmc×n

≥0 be
nonnegative matrices for which there exists a nonneg-
ative x ∈ Rn≥0 such that Ax ≤ 1 and Bx ≥ 1. Let
m = mp+mc, and let N be the total number of nonzero
coefficients in A and B.

With probability 1 − 1/ poly(m), random-
mwu(A,B,ε) returns a point x̂ such that
Ax̂ ≤ (1 +O(ε))1 and Bx̂ ≥ (1−O(ε))1 in
O
(
(mc + min{mp, n}) ln(n)/ε2

)
iterations and,

excluding the time spent in lines [2] and [3],
Õ
(
N +m ln(n)/ε2

)
time. Each packing weight

vi, i ∈ P increases along integral powers of exp(ε) from
1 to (at most) exp(ln(mp)/ε). Each covering weight
wi, i ∈ C decreases along integral powers of exp(ε) from
1 to exp(− ln(mc)/ε).

Remark 2.1. In the preceding theorem we assumed the
existence of a feasible solution for the sake of simplicity.
In fact the algorithm either outputs a (1+ε)-approximate
solution in the claimed run time or correctly reports that
the given system has no feasible solution.

As stated, the running time of random-mwu is as-
sured with high probability (and can be shown to
be finite with probability 1), but technically speak-
ing is unbounded. random-mwu can be made a proper
Monte Carlo algorithm that always terminates in
O
(
N +m ln(m)/ε2

)
time (excluding calls to the oracle)

by killing the algorithm if it runs for too long.

Online Chernoff: Chernoff bounds for sums of inde-
pendent, bounded and non-negative random variables
are ubiquitous in computer science. However, in pro-
cesses or algorithms where the choice in a step depends
on decisions made in previous steps, it is necessary to
use some form of martingale analysis. However, typi-
cal martingale inequalities are stated in the setting of
bounded random variables with zero mean, and in this
setting the concentration bounds depend on the number
of variables (which correspond to iterations in our case)
or the sum of their variances. These are not suitable for
our needs. The following concentration bound reformu-
lates Chernoff inequalities for online settings, and is the
workhorse of the proofs in this paper. The theorem in

a slightly stronger form with a stopping time is stated
and proved in [22].

Theorem 2.2. ([22, Lemma 10]) Let
X1, . . . , Xn, Y1, . . . , Yn ∈ [0, 1] be random variables
and let ε ∈ [0, 1/2) be a sufficiently small constant.

(a) If E[Xi | X1, . . . , Xi−1, Y1, . . . , Yi] ≤ Yi for i ∈ [n],
then for any δ > 0,

P

[
n∑
i=1

Xi ≥ (1 + ε)

n∑
i=1

Yi + δ

]
≤ (1 + ε)

−δ

(b) If E[Xi | X1, . . . , Xi−1, Y1, . . . , Yi] ≥ Yi for each i,
then for any δ > 0,

P

[
n∑
i=1

Xi ≤ (1− ε)
n∑
i=1

Yi − δ

]
≤ (1− ε)δ.

Note that concentration bound depends only on the
additive term δ and not on n. Theorems such as the
preceding one are related to work on drift analysis in
random processes [23].

2.1 Approximating monotonic linear maps
random-mwu with some basic bucketing tricks allows
us to recover an implementation with a running time
of O

(
N logm/ε2

)
for (NMPC). In order to obtain

the running time in Theorem 1.1 we need the next
component of our work. Recall that the randomization
in the algorithm allows us to efficiently update v and
w; the entries are probabilistically updated so that
we can charge the cost of an update to a relatively
big change in the value. However, implementing [2]
efficiently requires us to dynamically maintain a (1± ε)-
relative approximation for every coordinate of AT v and
BTw. Since the coordinates of v and w are updated
infrequently, the basic approach already maintains AT v
and BTw deterministically in O

(
N log(m)/ε2

)
time

total. Here we develop a randomized data structure
that improves this bound. We introduce the ideas
from a more fundamental perspective, as the results are
interesting in their own right.

Recall that a function f : Rn → Rm is linear if
f(αx+βy) = αf(x)+βf(y) for any x, y ∈ Rn and α, β ∈
R. A linear function f : Rm → Rn can be represented by
a matrix A ∈ Rm×n such that f(x)i =

∑n
j=1Aijxj for

any input x ∈ Rn and output coordinate i ∈ [m]. The
function f is monotonically increasing iff the coefficients
Aij are nonnegative. Given the matrix representation
A of a linear function f , we can compute the vector
Ax exactly in O(N) time, where N is the number of
nonzeroes in A, via the above sum. We want to maintain

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

the vector Ax as x varies; i.e., x = z1+· · ·+zk ∈ Rn over
a sequence of updates zi ∈ Rn. In the offline setting, if
all the vectors z1, . . . , zk are provided as input, then
we can simply compile their sum x and compute Ax in
O(N) time plus the time it takes to read in z1, . . . , zk. In
many applications, the vectors are delivered online and
adversarially. Having already computed A(z1+· · ·+zk),
we are given zk+1, and want to compute the new vector,
A(z1 + · · ·+ zk + zk+1). By linearity, A(z1 + · · ·+ zk +
zk+1) = A(z1 + · · · + zk) + Azk+1, and hence we can
computing Azk+1

and add it to the existing solution
A(z1 + · · ·+ zk). Doing this for every vector takes total
time O(kN) which is significantly slow when k is large.

The natural approach above is seemingly best pos-
sible as far as exact and deterministic algorithms go.
In some modern settings, the problem is more relaxed
where an approximation to Ax is sufficient. When im-
plementing fast approximation algorithms, dynamically
updating Axmay even be a bottleneck. This is precisely
the setting in random-mwu, so we consider the problem
of maintaining Ax approximately rather than exactly.

Remark 2.2. In mixed packing and covering, the cov-
ering weights go down, and hence we also need to handle
the approximate maintenance of Ax as x monotonically
decreases with the guarantee that Ax stays nonnegative.

In particular, we are interesting in uniform approxi-
mations where each coordinate 〈ei, Ax〉 (i ∈ [m]) should
be approximated well. We focus on the positive and
monotone setting where A ∈ Rm×n≥0 , x ≥ 0 and x is ei-
ther monotonically increasing or monotonically decreas-
ing. A simplified form of our basic result is as follows.

Theorem 2.3. Let ε > 0 with ε sufficiently small, and
let A ∈ Rm×n≥0 be a nonnegative matrix with N total
nonzeroes, and let L ∈ N and β > 0 be fixed parameters.
One can initialize a data structure in O(N) time with
the following guarantee. Consider any sequence of
L increments α1ej1 , α2ej2 , . . . , α`ejL ∈ Rn≥0 delivered
online satisfying the following

(i) Either α` ≥ 0 for all ` or α` ≤ 0 for all `

(ii) Letting x` = 1 +
∑̀
k=1

αkejk for each ` ∈ [L], we

have
1

β
A1 ≤ Ax` ≤ βA1 for all ` ∈ [L] (i.e., the

online sequence is constrained as such).

Then the data structure maintains a nonnegative vector
y ∈ Rm≥0 that with probability at least 1− 1/ poly(m,L),
satisfies (1− ε)Ax` ≤ y ≤ (1 + ε)Ax` for all ` ∈ [L]

in
(
L(log(m) + log log β)+N(log(m) + log log β) log β+

m log(β)(logm+logL)
ε2

)
total time.

Organization of the rest of the paper: The rest
of the paper is devoted to proving the theorems that
we outlined so far. We start by proving Theorem 2.1
in Section 3. Section 4 proves Theorem 2.3. We put
together the ingredients to prove Theorem 1.1 in Section
4.1. An overview of applications is provided in Section
5.

We organized the paper in a sequential fashion with
full proofs rather than move them to the appendix. The
reader is encouraged to skim the high-level ideas and
skip the low-level proofs as they see fit.

Other related work: There is a vast literature on
fast approximation schemes for LPs and convex pro-
gramming problems. Several important techniques have
been developed by many authors. It is infeasible to do
justice to this literature here. We refer the reader to
Arora, Hazan, and Kale [4] for a broad survey on the
utility of MWU in theoretical computer science. Our
work is inspired by several ideas and results in the pa-
pers of Young [36, 22, 34, 35] which incorporate ideas
from other papers including Garg and Könemann [13]
and Fleischer [11]. Some of our motivation for revis-
iting MWU based methods comes from applications to
implicit problems that arise in combinatorial and ge-
ometric settings [1, 6, 7]. Several papers in computa-
tional geometry exploit MWU (where it is referred to
as reweighting technique) for covering and hitting set
problems; typically the algorithms do not explicitly re-
fer to the LP relaxation and combine the rounding and
LP solving in a single framework for deriving (approx-
imation) algorithms. We believe that separating the
problem of solving the LP from that of rounding, and
separating the generic high-level MWU framework from
its specific implementation for a concrete application, is
helpful.

Although we have mainly focused on linear pro-
gramming problems here, Lagrangian relaxation based
algorithms are applicable to the broader context of con-
vex programming [18], and also for submodular function
maximization [8]. We believe that our randomized vari-
ant should also generalize to these settings. Lagrangian
relaxation via logarithmic barrier function also yield
width-independent algorithms with O(1/ε2) iterations
— see [9, 17] and references therein. These methods
are less well-known in the computer science algorithms
literature, and appear to be more difficult to exploit via
data structures and other techniques.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

3 Randomized multiplicative weight updates in
the oracle model

In this section, we analyze random-mwu in the oracle
model with line [2] unspecified and prove Theorem 2.1.

random-mwu is an iterative algorithm that (as writ-
ten) is indexed by a continuous “time” variable t that
increases from 0 to 1. For each iteration ` ∈ N, let v`,
w`, and t` denote the values of v, w, t at the beginning
of the `th iteration. We let y` and δ` denote the values
of y and δ computed during the `th iteration. We let
ˆ̀∈ N denote the total number of iterations (when it ter-
minates), and denote v̂ = lim`→∞ v`, ŵ = lim`→∞ w`,
and t̂ = lim`→∞ t` denote the values of v, w, and t at the
end of the algorithm (or the possibly unbounded limit
if it does not terminate). For ` ∈ N, we let Q` denote
the value of Q at the beginning of the `th iteration if
the algorithm has not yet terminated, or to Qˆ̀ if the
algorithm has terminated and ` > ˆ̀.

The analysis shows that the packing constraints
are not violated by more than a (1 + ε)-factor and
that the covering constraints are satisfied to within a
(1 − ε) factor with high probability. This is non-trivial
even in the deterministic setting. In our analysis we
use the time variable t to link the evolution of the
packing and covering weights. The main task in the
analysis is to show that the randomized algorithm’s
state closely follows the deterministic invariants. For
this purpose we rely repeatedly on Theorem 2.2. We
consider packing and covering constraints separately,
and then consider the number of iterations after which
we tie things together.

3.1 Packing constraints
We begin by showing that the randomized weight up-
date follows the approximates MWU framework in ex-
pectation.

Lemma 3.1. For each iteration `, with the outcomes of
iterations 1 through ` − 1 fixed, and for each packing
constraint i ∈ P, we have

E
[
ln
(
v`+1
i

)]
= ln

(
v`i
)

+ δ`η
〈
ei, Ay

`
〉

and E
[
v`+1
i

]
≤ exp

(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i .

Proof. The first inequality is immediate from the ran-
domized step in the algorithm. For the second, we have

E
[
v`+1
i

]
=
(
δ`η
〈
ei, Ay

`
〉
/ε
)

exp(ε)v`i +
(
1− δ`η

〈
ei, Ay

`
〉
/ε
)
v`i

by [4],

= v`i + (exp(ε)− 1)
(
δ`η
〈
ei, Ay

`
〉
/ε
)
v`i ,

≤ v`i + (1 + ε)δ`η
〈
ei, Ay

`
〉
v`i

since exp(ε) ≤ 1 + ε+ ε2 for ε sufficiently small,

≤ exp
(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i

since 1 + z ≤ exp(z) for all z. �

The second lemma analyzes the sum of weights
〈v,1〉 for the packing constraints. In particular, it shows
that the expected increase in the logarithm of the sum of
packing constraints during an iteration is proportional
to the step size.

Lemma 3.2. Let ` ∈ N be an iteration and fix the
outcomes of iterations 1 through `− 1. We have,

E
[〈
v`+1,1

〉]
≤ exp

(
(1 +O(ε))δ`η

)〈
v`,1

〉
and E

[
ln
(〈
v`+1,1

〉)]
≤ (1 +O(ε))δ`η + ln

(〈
v`,1

〉)
.

Proof. By Lemma 3.1 and linearity of expectation, we
have

E
[〈
v`+1,1

〉]
≤
∑
i∈P

exp
(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i .

The sum on the right hand side is essentially the sum
for the standard (exact and deterministic) multiplicative
weight update. Standard analysis of MWU, given at the
end of the proof for the sake of completeness, implies the
following inequality (3.2).

∑
i∈P

exp
(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i ≤ exp

(
(1 +O(ε))δ`η

)〈
v`,1

〉(3.2)

Assuming (3.2), we have,

E
[〈
v`+1,1

〉]
≤ exp

(
(1 +O(ε))δ`η

)〈
v`,1

〉
,

for the first inequality. To obtain the second inequality,
applying Jensen’s inequality, we have

E
[
ln
(〈
v`+1,1

〉)]
≤ ln

(
E
[〈
v`+1,1

〉])
≤ (1 +O(ε))δ`η + ln

(〈
v`,1

〉)
,

as desired.
We now prove (3.2). Let αi =

〈
ei, Ay

`
〉
. The choice

of δ` ensures that e δ`ηαi ≤ ε for all i ∈ P. Using the
fact that exp(z) ≤ 1 + z + z2 for z ∈ [0, 1/2) and ε is
sufficiently small,∑

i∈P
exp
(
(1 + ε)δ`η

〈
ei, Ay

`
〉)
v`i

=
∑
i∈P

exp
(
(1 + ε)δ`ηαi

)
v`i

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

≤
∑
i∈P

v`i
(
1 + (1 + ε)δ`ηαi + ((1 + ε)δ`ηαi)

2
)

=
∑
i∈P

v`i + (1 + ε)
∑
i∈P

v`i δ
`αi(1 + (1 + ε)δ`ηαi)

≤
∑
i∈P

v`i + (1 +O(ε))δ`η
∑
i∈P

v`iαi

=
〈
v`,1

〉
+ (1 +O(ε))δ`η

〈
v,Ay`

〉
≤
∑
i∈P

v`i + (1 +O(ε))δ`η
〈
v`,1

〉
as y` satisfies 〈v,Ax〉 ≤ 〈v,1〉,

= (1 + (1 +O(ε))δ`η)
〈
v`,1

〉
≤ exp

(
(1 +O(ε))δ`η

)〈
v`,1

〉
,

as desired. The last inequality uses the fact that 1+z ≤
exp(z). �

In the deterministic version of MWU the weight
of a packing constraint i is exponential in the load
of constraint i. The next lemma shows that the
randomized weight tracks the load closely. Here it
is more convenient to work with the logarithm of the
weight.

Lemma 3.3. For sufficiently small ε > 0, any i, any
L ∈ N, and any ζ > 0,

P
[
(1− ε)η

〈
ei, Ax

L+1
〉
≥ ln

(
vL+1
i

)
+ ζ
]
≤ (1− ε)ζ/ε.

Proof. For each index ` ∈ [L], let

X` =
ln
(
v`+1
i

)
− ln

(
v`i
)

ε
and Y` =

η
〈
ei, Ay

`
〉

ε
.

Then

ε

L∑
`=1

X` = ln
(
vL+1
i

)
and ε

L∑
`=1

Y` = η
〈
ei, Ax

`+1
L

〉
,

so

P
[
(1− ε)η

〈
ei, Ax

L+1
〉
≥ ln

(
vL+1
i

)
+ ζ
]

= P

[
L∑
`=1

X` ≤ (1− ε)
L∑
`=1

Y` −
ζ

ε

]
.

Moreover, by line [4], we have X` ∈ [0, 1], and by
Lemma 3.1, we have E[X` | X1, . . . , X`−1, Y1, . . . , Y`] =
Y`. Therefore, by Theorem 2.2 (b), we have

P

[
L∑
`=1

X` ≤ (1− ε)
L∑
`=1

Y` −
ζ

ε

]
≤ (1− ε)ζ/ε,

as desired. �

The next lemma shows that logarithm of the total
sum of packing weights closely tracks the time with
appropriate normalization.

Lemma 3.4. For sufficiently small ε > 0, any L ∈ N,
and any ζ > 0,

P
[
ln
(〈
vL+1,1

〉)
≥ ln(m) + (1 +O(ε))ηtL+1 + ζ

]
≤ (1 + ε)

−ζ/ε
.

Proof. For each index ` ∈ [L], let

X` =
ln
(〈
v`+1,1

〉)
− ln

(〈
v`,1

〉)
ε

and Y` =
ηδ`

ε
,

where X` = Y` = 0 for indices ` > ˆ̀ after the algorithm
has ended. Then

ε

L∑
`=1

X` = ln
(〈
vL+1,1

〉)
− ln(m) and ε

L∑
`=1

Y` = ηtL+1,

so

P
[
ln
(〈
vL+1,1

〉)
≥ ln(m) + (1 +O(ε))ηtL+1 + ζ

]
= P

[
L∑
`=1

X` ≥ (1 +O(ε))

L∑
`=1

Y` +
ζ

ε

]
.

Moreover, for each index `, we have X` ∈ [0, 1] by
line [4], and E[X`] ≤ (1 +O(ε))Y` by Lemma 3.2.
Therefore, by Theorem 2.2 (a),

P

[
L∑
`=1

X` ≥ (1 +O(ε))

L∑
`=1

Y` +
ζ

ε

]
≤ (1 + ε)

−ζ/ε
,

as desired. �

Lemma 3.5. For sufficiently small ε > 0, any i, any
L ∈ N, and η ≥ ln(m)/ε,

P
[〈
ei, Ax

L+1
〉
≥ 1 +O(ε)

]
≤ 1

poly(m)
.

Proof. Let L ∈ N, and let ζ > 0 be a parameter to be
fixed later. We have

(1− ε)η
〈
ei, Ax

L+1
〉
≤ ln

(
vL+1
i

)
+ ζ

by Lemma 3.3,

≤ ln
(〈
vL+1,1

〉)
+ ζ

since v̂ ≥ 1,

≤ ln(m) + ηtL+1 + 2ζ

by Lemma 3.4,

≤ ln(m) + η + 2ζ

since tL+1 ≤ 1, with total probability of failure, by the
union bound, of at most (1 + ε)

−ζ/ε
+ (1− ε)ζ/ε. For

ζ = O(lnm), the claim follows. �

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

3.2 Covering constraints
We now prove that random-mwu approximately satisfies
the covering constraints with high probability. The
first lemma observes that the randomized weight update
does the “right thing” (per the MWU framework) in
expectation.

Lemma 3.6. Let ` ∈ [L] be an iteration and let the
outcomes of iterations 1 through `−1 be fixed. For each
remaining covering constraint i ∈ Q`, we have

E
[
ln
(
w`+1
i

)]
≥ ln

(
w`i
)
− δ`η

〈
ei, By

`
〉

and E
[
w`+1
i

]
≤ exp

(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i .

Proof. The first inequality is immediate from the algo-
rithm. For the second, we have

E
[
w`+1
i

]
=
δ`η
〈
ei, By

`
〉

ε
exp(−ε)w`i +

(
1−

δ`η
〈
ei, By

`
〉

ε

)
w`i

= w`i − (1− exp(−ε))

(
δ`η
〈
ei, By

`
〉

ε

)
w`i

≤ w`i − (1− ε)δ`η
〈
ei, By

`
〉
w`i

since exp(−ε) ≤ 1− ε+ ε2 for ε > 0,

≤ exp
(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i

since 1− z ≤ exp(−z) for z ≥ 0, as desired. �

We now consider the sum of covering weights of the
active constraints and the expectation of the change in
a single iteration.

Lemma 3.7. Let ` ∈ [L] be an iteration and let the
outcomes of iterations 1 through `− 1 be fixed. Then

E
[〈
w`+1,1

〉
Q`

]
≤ exp

(
−(1−O(ε))ηδ`

)〈
w`,1

〉
Q`

(3.3)

and

E
[
ln
(〈
w`+1,1

〉
Q`

)]
≤ ln

(〈
w`,1

〉
Q`

)
− (1−O(ε))ηδ`.

Proof. By Lemma 3.6 and linearity of expectation, we
have

E
[〈
w`+1,1

〉
Q`

]
≤
∑
i∈Q`

exp
(
(1− ε)δ`η

〈
ei, By

`
〉)
w`i .

The right hand side is essentially the sum if the weight
update were executed exactly and deterministically.

The standard analysis for (deterministic) MWU, sim-
ilar to the proof of (3.2) above, implies the following
inequality: ∑

i∈Q`

exp
(
−(1− ε)δ`η

〈
ei, By

`
〉)
w`i

≤ exp
(
−(1−O(ε))δ`η

)〈
w`,1

〉
Q`

(3.4)

By (3.4), we have,

E
[〈
w`+1,1

〉
Q`

]
≤ exp

(
−(1−O(ε))δ`η

)〈
w`,1

〉
Q` ,

as desired. For the second inequality, by Jensen’s
inequality, we have,

E
[
ln
(〈
w`+1,1

〉
Q`

)]
≤ ln

(
E
[〈
w`+1,1

〉
Q`

])
≤ ln

(
exp
(
−(1−O(ε))ηδ`

)〈
w`,1

〉
Q`

)
by (3.3),

= ln
(〈
w`,1

〉
Q`

)
− (1−O(ε))ηδ`,

as desired. �

The lemma below shows that the logarithm of the
covering weight wi tracks the load of covering constraint
i closely.

Lemma 3.8. For sufficiently small ε > 0, any i, any
L ∈ N, and any ζ > 0,

P
[
(1 + ε)η

〈
ei, Bx

L+1
〉
≤ ln

(
wL+1
i

)
− ζ
]
≤ (1− ε)ζ/ε.

Proof. For each index ` = 1, . . . , L, let

X` =
ln
(
w`i
)
− ln

(
w`+1
i

)
ε

and Y` =
δ`η
〈
ei, By

`
〉

ε
,

where X` = Y` = 0 for indices ` > ˆ̀ after the algorithm
terminates. Then

ε

L∑
`=1

X` = ln
(
w1
i

)
− ln(ŵi) = ln(ŵi) and

ε

L∑
`=1

Y` = η
〈
ei, Bx

L+1
〉
,

so

P[(1 + ε)η〈ei, Bx̂〉 ≤ − ln(ŵ)− ζ]

= P

[
L∑
`=1

X` ≥ (1 + ε)

L∑
`=1

Y` +
ζ

ε

]
.

By line [5], X` ∈ [0, 1] for each itera-
tion `. By Lemma 3.6, for each iteration `,

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

E[X` | X1, . . . , X`−1, Y1, . . . , Y`] = Y`. Therefore,
by Theorem 2.2 (a), we have

P

[
L∑
`=1

X` ≥ (1 + ε)

L∑
`=1

Y` +
ζ

ε

]
≤ (1 + ε)

−ζ/ε
,

as desired. �

Lemma 3.9. For L ∈ N, and any i,
−(1 + ε) ln

(
wL+1
i

)
≥ − ln

(〈
1, wL+1

〉
QL+1

)
.

Proof. Since QL+1 6= ∅, and wL+1
i ≥ exp(−(1 + ε)η) for

any i ∈ QL+1, we have

ln
(〈

1, wL+1
〉
QL+1

)
≥ −(1 + ε)η.

If i /∈ Q̂, then wL+1
i ≤ exp(−η) because i is made

inactive only if wi drops below exp(−η). Therefore,

−(1 + ε) ln
(
wL+1
i

)
≥ (1 + ε)η ≥ − ln

(〈
1, wL+1

〉
QL+1

)
.

If i ∈ Q̂, then wL+1
i ≤

〈
wL+1,1

〉
QL+1 since all weights

are nonnegative, and

− ln
(
wL+1
i

)
≥ − ln

(〈
wL+1,1

〉
QL+1

)
,

as desired. �

The lemma below relates the evolution of the loga-
rithm of the sum of covering weights and the time vari-
able.

Lemma 3.10. For sufficiently small ε > 0, any L ∈ N,
and any ζ > 0,

P
[
ln
(〈

1, wL+1
〉
QL+1

)
≥ ln(m)− (1−O(ε))ηtL+1 + ζ

]
≤ (1− ε)ζ/ε.

Proof. For ` = 1, . . . , L, let

X`
def
=

ln
(〈
w`,1

〉
Q`

)
− ln

(〈
w`+1,1

〉
Q`

)
ε

, and

Y`
def
= ηδ`,

where each variable takes value 0 on indices ` > ˆ̀ after
the algorithm terminates. Then

L∑
`=1

X` ≤ ln(m)− ln
(〈

1, wL+1
〉
QL+1

)
and

L∑
`=1

Y` =
η

ε
tL+1,

so

P
[
ln
(〈

1, wL+1
〉)
QL+1 ≥ ln(m)− (1−O(ε))ηtL+1 + ζ

]
= P

[
ln(m)− ln

(〈
1, wL+1

〉)
QL+1 ≤ (1−O(ε))ηtL+1 − ζ

]
≤ P

[
L∑
`=1

X` ≤ (1−O(ε))

L∑
`=1

Y` − ζ/ε

]
.

For each `, we have X` ∈ [0, 1], and by Lemma 3.7,

E[X` | X1, . . . , X`−1, Y1, . . . , Y`] ≥ (1−O(ε))Y`.

By Theorem 2.2, we have

P

[
L∑
`=1

X` ≤ (1−O(ε))

L∑
`=1

Y` − ζ/ε

]
≤ (1− ε)ζ/ε,

as desired. �

Now we relate the load on covering constraint i to
time.

Lemma 3.11. For sufficiently small ε > 0, and η =
O(ln(m)/ε), and any i,

P
[〈
ei, Bx

L+1
〉
≥ (1−O(ε))tL+1 −O(ε)

]
≤ 1

poly(m)
.

Proof. Let ζ > 0 be a parameter to be specified later.
We have

(1 + ε)η
〈
ei, Bx

L+1
〉

≥ − ln
(
wL+1
i

)
− ζ by Lemma 3.8,

≥ −(1− ε) ln
(〈
wL+1,1

〉
QL+1

)
− ζ by Lemma 3.9,

≥ (1−O(ε))(η + lnm)tL+1 − 2ζ

with total probability of failure ≤ (1− ε)ζ/ε +

(1 + ε)
−ζ/ε by the union bound. For ζ = O(lnm),

we have ζ/η = O(ε) and (1− ε)ζ/ε + (1 + ε)
−zη/ε

=
1/ poly(m), as desired. �

The preceding lemma shows that all covering con-
straints will be satisfied with high probability if the al-
gorithm terminates with t ≥ (1−O(ε)).

3.3 Iterations
In this section, we analyze the number of iterations
taken by random-mwu, which we have yet to even show
is finite.

Lemma 3.12. With probability 1−1/ poly(m), random-
mwu terminates within O

(
(mc + min{mp, n}) ln(m)/ε2

)
iterations and within O

(
m ln(m)/ε2

)
individual updates

to weights.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Consider the first L iterations, where L ∈ N
is chosen to be sufficiently large as specified in the
statement. We will argue that the algorithm will
terminate with high probability in less than L iterations.

Every iteration ` ∈ [L], by choice of δ` in line [3],
there exists either a packing constraint i ∈ P such that

δ`η
〈
ei, Ay

`
〉

= ε,

or a covering constraint i ∈ Q` such that

δ`η
〈
ei, By

`
〉

= ε.

This constraint has its weight updated by a multiplica-
tive factor of exp(ε) deterministically. That is, every
iteration updates at least one weight deterministically.

Since the algorithm terminates once w ≤ exp(−η)1,
each covering constraint wi is only updated by a factor
of exp(ε) at most η/ε = O

(
ln(m)/ε2

)
times before

before i is removed from Q`. Thus, the total number
of weight updates to covering constraints is at most
O
(
m ln(m)/ε2

)
. Now we consider weight updates to

packing constraints. With high probability, by Lemma
3.4, we have

〈
vL+1,1

〉
≤ mO(1/ε). In particular, we have

vL+1
i ≤ mO(1/ε) with high probability for each packing
constraint i ∈ P. In such an event, a packing constraint
vi can only be increased by a factor of exp(ε) at most
lnexp(ε)

(
mO(1/ε)

)
= O

(
ln(m)/ε2

)
before vi ≥ mO(1/ε).

Thus, with high probability, each constraint has
its weight updated by a factor of exp(ε) at most
O
(
ln(m)/ε2

)
times. The total number of weight up-

dates, then, is with high probability, O
(
m ln(m)/ε2

)
. If

we charge each iteration to a constraint updated by a
factor of exp(ε), then there are at most O

(
m ln(m)/ε2

)
iterations. Thus the algorithm terminates, with high
probability, in O

(
m ln(m)/ε2

)
iterations.

We obtain a refined bound as follows. Recall that
each iteration ` picks a solution y` which has a sin-
gle non-zero coordinate j ∈ [n]. Every time we se-
lect j, we either decreases a covering weight by a
(1 + ε)-multiplicative factor, or increase the same pack-
ing weight by a (1 + ε) multiplicative-factor; this pack-
ing constraint corresponds to the bottleneck packing
constraint for j (the row with the largest coefficient
in j’s column). If a packing weight is increased by
an (1 + ε)-multiplicative factor, then we can only select
coordinate j O

(
ln(m)/ε2

)
times before this particular

packing weight hits the upper bound. Thus, charging
each iteration to either a covering weight decreasing by a
(1 + ε)-multiplicative factor, or increase the same pack-
ing weight per coordinate by a (1 + ε)-multiplicative fac-
tor, there are at most O

(
(mc + n) ln(m)/ε2

)
iterations.

Taking the minimum of the two upper bounds gives the
upper bound we seek. �

Remark 3.1. The two concentration bounds – one en-
suring correctness, and the other bounding the running
time – are obtained not separately but jointly: bottleneck
operations are amortized against the same invariants of
the framework that ensure the correctness of the output.

3.4 Tying it all together
We restate and complete the proof of Theorem 2.1.

Theorem 2.1 1. Let A ∈ Rmp×n
≥0 and B ∈ Rmc×n

≥0 be
nonnegative matrices for which there exists a nonneg-
ative x ∈ Rn≥0 such that Ax ≤ 1 and Bx ≥ 1. Let
m = mp+mc, and let N be the total number of nonzero
coefficients in A and B.

With probability 1 − 1/ poly(m), random-
mwu(A,B,ε) returns a point x̂ such that
Ax̂ ≤ (1 +O(ε))1 and Bx̂ ≥ (1−O(ε))1 in
O
(
(mc + min{mp, n}) ln(n)/ε2

)
iterations and,

excluding the time spent in lines [2] and [3],
Õ
(
N +m ln(n)/ε2

)
time. Each packing weight

vi, i ∈ P increases along integral powers of exp(ε) from
1 to (at most) exp(ln(mp)/ε). Each covering weight
wi, i ∈ C decreases along integral powers of exp(ε) from
1 to exp(− ln(mc)/ε).

Proof. Let L = Θ((mc + min{mp, n}) ln(m)/ε2) be a
sufficiently large but fixed number. Lemma 3.12 shows
that with probability 1 − 1/poly(m) the algorithm
terminates in less than L iterations. Let E be the
event that the algorithm terminates before L iterations.
Conditioning on E , there is a finite and well-defined total
number of iterations, ˆ̀≤ L, a final time, t̂ = t

ˆ̀+1, and
output x̂ = x

ˆ̀+1. Note that the algorithm terminates
only if the time variable reaches 1 or if Q is empty.
Hence t̂ = 1 or Qˆ̀

= ∅.
Conditioning on E , Lemma 3.5, Lemma 3.11,

Lemma 3.8 when applied to the fixed iteration L im-
ply that they hold for the last iteration ˆ̀< L since all
the variables are frozen after the algorithm terminates.

By Lemma 3.5 and union bound, Ax̂ ≤ (1 +O(ε)).
By Lemma 3.11, Bx̂ ≥ (1−O(ε))t̂ − O(ε). If t̂ = 1,
then Bx̂ ≥ (1−O(ε)), as desired. If t̂ < 1, then
w`+1
i ≤ exp(−η) for all i ∈ [mc], so Bx̂ ≥ (1−O(ε)) by

Lemma 3.8 and the union bound. Thus, conditioned on
E , we have Ax̂ ≤ (1 +O(ε)) and Bx̂ ≥ (1−O(ε)) with
probability 1−1/ poly(m). Since P[E] ≥ 1−1/ poly(m)
we have that the desired claim on both the correctness
of the output and the number of iterations. �

4 Approximating nonnegative matrices
We recall Theorem 2.3 which describes a data structure
for online maintenanace of Ax as x monotonically
increases. Since we also need to handle the case when

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

x monotonically decreases we set up the data structure
and the setting in more generality.

Remark 4.1. For notational simplicity we choose the
dimensions as A ∈ Rm≥0× and x ∈ Rn≥0. However, when
we apply the results in this section to analyze rand-mwu,
we will be using it for the transpose of m× n matrices,
and m and n are swapped in the time bounds.

The data structure has two main routines. init
takes as input a nonnegative matrix A ∈ Rm×n≥0 , error
tolerance ε, and δ which controls the failure probability.
inc takes two inputs, a real value α and a coordinate
j ∈ [n] to which the increment of α is to be applied.
The data structure maintains at all times maintains an
estimate y of Ax which can be directly accessed. Here
we state the setting with additional details that will be
useful in our application.

Setting 4.1. Let ε, δ > 0 with ε sufficiently small and
δ sufficiently large. Let A ∈ Rm×n≥0 be a nonnegative
matrix with N nonzeroes. Consider an instance of
apx-matrix initialized by init(ε,δ,A). Let L be a
fixed parameter, and let inc(α1,j1), . . . , inc(αL,jL)
be a sequence of calls to inc delivered online. For
` = 0, . . . , L, let x` = 1 +

∑`
k=1 αkejk . The online

sequence is constrained in two ways.

(i) Every αi has the same sign; i.e., x` is either mono-
tonically increasing or monotonically decreasing.

(ii) For a fixed parameter β > 0, for every ` ∈ [L], and
every nonzero Aij` 6= 0 incident to the `th update
inc(α`,ej`), we have

1

β
〈ei, A1〉 ≤

〈
ei, Ax

`−1
〉
≤ β〈ei, A1〉.

apx-matrix maintains an estimate y of Ax. For ` ∈
[L], let y` be the value of y after the `th call to inc.

High-level idea: The data structure is based in a
simple idea related to online randomized maintenance
of counters [26, 10]. Consider the online maintenance
of a single number x (the one dimensional case) as
we provide increments α1, . . . , αk. We maintain an
estimate y. If the current increment αi is small relative
to the current estimate y we update y probabilistically;
the cost here is to actually add to y while we ignore the
time to check αi/y. On the other hand if αi is large we
update y deterministically for otherwise we would incur
too much variance. The key is take this idea to higher-
dimensional setting where y is a vector and each output
coordinate is influenced by multiple coordinates of A.
To handle this we maintain the relative importance of

each coordinate with respect to the current estimate
y (these are the values θij) and periodically reset and
rescale when the estimate y changes significantly (by
a constant factor relatively) in any coordinate. Given
increment α to coordinate j we cannot afford to evaluate
all the nonzero coordinates in row i for that would defeat
the purpose of improving the run-time. The same idea
of correlated random choice for weight updates is again
used here.

Now we formally prove that our scheme maintains
the estimate y correctly with high probability when
parameters are set appropriately. We will subsequently
analyze the running time.

Lemma 4.1. Assuming Setting 4.1,

P
[
y` /∈ (1±O(ε))Ax` for any ` ∈ L

]
≤ L2m · poly(δ).

(4.5)

Proof. Fix a row i ∈ [m]. We analyze the probability
that yi ≈ 〈ei, Ax〉 after each increment, and then take
a union bound over all the rows at the end.

Let a “phase” be the sequence of calls to inc between
consecutive calls to reset(i) (including the last inc
that triggers reset(i)). The last phase does not
necessarily end with a reset. At the beginning of a
phase, yi is recomputed exactly in line [6]. We argue
that, for a fixed phase, apx-matrix maintains yi close
to 〈ei, Axi〉 throughout the phase with high probability;
we then take a union bound over all the phases.

Fix a phase. Let x̄0 be the value of x at the begin-
ning of the phase, and let ȳ0

i = Ax̄0 mark the (recom-
puted) value of yi at the beginning of the phase. Let
α1ej1 , α2ej2 , . . . be the increments during the phase. By
assumption, there are at most L increments in a phase,
and padding the end of the sequence with “zero” in-
crements, we simply assume there are exactly L incre-
ments. For ` = 1, . . . , L, let x̄` = x̄0 +

∑`
k=1 αkejk

and ȳ`i the value of yi after the `th increment is pro-
cessed. When the all the increments are positive or all
the increments are negative, both

{
ȳ`i
}

and
{
x̄`
}

are
monotonic sequences in the same direction as the incre-
ments. Moreover, once y`i leaves the ranges [ȳ0

i /2, 2ȳ
0
i],

the phase ends and all the increments thereafter are
zero. We want to show that ȳ`i ≈ x̄` for every ` ∈ [L]
with high probability.

We first consider the increasing case, where α` ≥
0 for each `. Then

{
x̄`
}

and
{
ȳ`i
}

are monotoni-
cally increasing, and the phase ends when ȳ`i ≥ 2ȳ0

i .
Noting that γ = 1/δ, we define random variables

Z1, Z2, . . . ZL ≥ 0 by Z` =
ln(γ)(ȳ`i−ȳ

`−1
i)

ε2ȳ0i
. For each

` ∈ [L], we have E[Z`] =
ln(γ)α`Aij`

ε2ȳ0i
. If α` 6= 0, then

y`i ≤ 2ȳ0
i . By choice of the importance sampling thresh-

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

apx-matrix

init(ε,δ,A)
x← 1
γ ← 1/δ
for each i ∈ [m]
reset(i)

reset(i)
[6] yi ←

∑
Aij 6=0

Aijxj

ỹi ← yi
for each Aij 6= 0

[7] log θij ←
⌊

log
ε2ỹi

ln(γ)Aij

⌋

inc(α ∈ R,j ∈ [n])
xj ← xj + α
let π ∈ [0, 1] random

[8] for each i s.t.
|α|
θij
≥ π

[9] yi ← yi + sign(α)Aij max{θij , |α|}
unless yi/2 ≤ ỹi ≤ 2yi
reset(i)

Figure 2: apx-matrix is a randomized data structure that, given a nonnegative matrix
A ∈ Rm×n

≥0 , efficiently maintains a relative and uniform approximation for Ax over the
lifetime of a nonnegative vector x ∈ Rn

≥0 initialized to 1 and monotonically either increasing
or decreasing (see Theorem 4.1).

olds θij in line [7], we have ln(δ)θij`Aij`

ε2ȳ0i
≤ 1, hence

Z` > 1 only if |α`| > θij` only if Z` = α`Aij`
deterministically.

Each Z`, conditional on the preceding ` − 1 incre-
ments, still satisfies E

[
(1 + ε)

Z`

]
≤ (1 + ε)

E[Z`] and

E
[
(1− ε)Z`

]
≤ (1− ε)E[Z`]

, so the conclusion of Theo-
rem 2.2 still holds (and can be re-derived with standard
techniques). By Theorem 2.2, we have

P
[
y`i ≥ (1 + ε)

〈
ei, Ax̄

`
〉]

= P
[
ȳ`i − ȳ0

i ≥ (1 + ε)
〈
ei, Ax̄

`
〉
− ȳ0

i

]
= P

[
ȳ`i − ȳ0

i ≥ (1 + ε)
〈
ei, A

(
x̄` − x̄0

)〉
+ εȳ0

i

]
= P

[∑̀
k=1

Zk ≥
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk +
ln(γ)

ε

]
≤ (1 + ε)

− ln(γ)/ε
= poly(δ)

and

P
[
ȳ`i ≤ (1− ε)

〈
ei, Ax̄

`
〉]

≤ P
[
ȳ`i − y0

o ≤ (1− ε)
〈
ei, A

(
x̄` − x̄0

)〉
− εȳ0

i

]
= P

[
ȳ`i − ȳ0

i ≤ (1− ε)
〈
ei, A(x̄` − x̄0)

〉
− εȳ0

i

]
= P

[∑̀
k=1

Zk ≤
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk −
ln(γ)

ε

]
≤ (1 + ε)

− ln(γ)/ε
= poly(δ).

There are at most L increments in the phase. By the
union bound, we have

P
[
ȳ`i /∈ (1± ε)

〈
ei, Ax̄

`
〉
for any ` ∈ [L]

]
≤ 2Lpoly(δ).

(4.6)

There are also at most L phases. By the union bound,
all increments in all phases are accurate in the sense
of (4.6) with probability of failure L · 2Lpoly(δ) =
2L2 poly(δ). Finally, we take a union bound over all
coordinates i ∈ [m], and conclude that the probability
of any coordinate failing is at most L2m poly(δ).

The decreasing case, where α` ≤ 0 for each `, is
somewhat symmetric, with additional care required at
the end. We confine our attention to a single phase. The
sequences

{
ȳ`i
}
and

{
x̄`
}
are monotonically decreasing,

and freeze when ȳ`i ≤ ȳ0
i /2. We define Z1, Z2, · · · ≥ 0

by the scaled decrease, Z` =
ln(γ)(ȳ`−1

i −ȳ`i)
ε2ȳ0i

. For each

` ∈ [L], we have E[Z`] =
ln(γ)α`Aij`

ε2ȳ0i
. By choice of the

sampling threshold θij` in [7], we have ln(δ)θij`Aij`

ε2ȳ0i
≤ 1,

hence

Z` > 1 only if |α| > θij` only if Z` =
ln(δ)Aij`

α`

ε2ȳ0i
deterministically.

Each Z`, conditional on the previous `−1 iterations, still
satisfies E

[
(1 + ε)

Z`

]
≤ (1 + ε)

E[Z`] and E
[
(1− ε)Z`

]
≤

(1− ε)E[Z`]
, so the proof and theorem of Theorem 2.2

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

still holds. By Theorem 2.2, then, we have

P
[
ȳ`i ≤

〈
ei, Ax̄

`
〉
− 2εȳ0

i

]
= P

[
ȳ0
i − ȳ`i ≥ (1 + ε)

〈
ei, A(x̄0 − x̄`)

〉
− εȳ0

i

]
= P

[∑̀
k=1

Zk ≥
(1 + ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αjAijk +
ln(γ)

ε

]
≤ (1 + ε)

− ln(γ)/ε
= poly(δ)

and

P
[
ȳ`i ≥

〈
ei, Ax̄

`
〉

+ 2εȳ0
i

]
= P

[
ȳ0
i − ȳ`i ≤ (1− ε)

〈
ei, A(x̄0 − x̄`)

〉
− εȳ0

i

]
= P

[∑̀
k=1

Zk ≤
(1− ε) ln(γ)

ε2ȳ0
i

∑̀
k=1

αkAijk −
ln(γ)

ε

]
≤ (1− ε)ln(γ)/ε

= poly(δ).

If ȳ`i < ȳ0
i /2, then apx-matrix will recompute ȳ`i and

ensure exact accuracy. If ȳ`i ≥ ȳ0
i /2, then we have

(1− 4ε)ȳ`i ≥
〈
ei, Ax̄

`
〉
only if ȳ`i ≥

〈
ei, Ax̄

`
〉

+ εȳ0
i , and

(1 + 4ε)ȳ`i ≤
〈
ei, Ax̄

`
〉
only if ȳ`i ≤

〈
ei, Ax̄

`
〉
− εȳ0

i ,

as desired. As in the increasing case, via the union
bound, the above holds for all L increments of all L
phases and over all coordinates i ∈ [m] with probability
L2mpoly(δ). (4.5) then follows. �

Now we analyze the running time of the data
structure for a sequence of L increments. Note that the
parameter β does not play a role in the correctness but
it does play a role in the running time. This is natural
for the following reason. Imagine a setting in which
all increments are double the current sum. Then the
algorithm will be forced to deterministically compute
the exact sum in each step to be accurate. The lemma
below bounds the number of times that reset is called
for each row i ∈ [m].

Lemma 4.2. Assuming Setting 4.1, with probability 1−
poly(m,L, δ), reset(i) is called O(log β) times for each
row i ∈ [m].

Proof. With probability 1−poly(m,L) poly(δ), we have
y ∈ (1± ε)Ax at all times. Assume this is the case, and
fix i ∈ [m].

In the increasing case, where α` ≥ 0 for all `, we
have 〈ei, A1〉 ≤ 〈ei, Ax〉 ≤ β〈ei, A1〉 for any constraint
i. reset(i) is invoked only when yi > 2ỹi, where ỹi was
the exact value of 〈ei, Ax〉 earlier in the process, and
then both yi and ỹi are reset to the current, exact value
of 〈ei, Ax〉. Consider a call to inc(α,j) that triggers a
reset(i). Let y′i and x′ denote the values of yi and x

before the call, and let y′′i and x′′ denote the values of
yi and x after line [9] (but before invoking reset(i)).
If y′′i − y′i ≤ 2ε2

δ y
′
i, then

〈ei, Ax′′〉 ≥ 〈ei, Ax′〉 ≥ (1− ε)y′i
≥ (1−O(ε))y′′i ≥ 2(1−O(ε))ỹi,

hence 〈ei, Ax〉 has increased by a (constant) multiplica-
tive factor of (1−O(ε))2. If y′′i − y′i ≥ 2ε2

δ y
′
i, then

α > θij and y′′i − y′i = αAij , hence

〈ei, Ax′′〉 = 〈ei, Ax′〉+ y′′i − y′i
≥ (1−O(ε))y′i + 2ỹi − y′i
≥ 2(1−O(ε))ỹi,

so again 〈ei, Ax〉 has increased by a multiplicative factor
of 2(1−O(ε)). It follows that reset(i) is called at most
O
(

log(1−O(ε))2 β
)

= O(log β) times.
In the decreasing case, where α` ≥ 0 for all `, we

have 1
β 〈ei, Ax〉 ≤ 〈ei, Ax〉 ≤ 〈ei, Ax〉 for any constraint

i. We claim that each time we call reset(i), 〈ei, Ax〉
has decreased by a (1±O(ε))2 multiplicative factor.
Indeed, consider a call to inc(α,ej) that triggers a
reset(i). Let y′i and x′ denote the values of yi and
x before the call, and let y′′i and x′′ denote the values of
yi and x after line [9] (but before invoking reset(i)).
If y′i − y′′i ≤ 2ε2

δ y
′
i, then

〈ei, Ax′〉 = (1 + ε)y′i ≤ (1 +O(ε))y′′i ≤
(1 +O(ε))ỹi

2
,

so 〈ei, Ax′′〉 has dropped by a (constant) multiplicative
factor of (1−O(ε))2. If y′i − y′′i ≥ 2ε2

δ y
′
i, then α > θij

and y′i − y′′i = αAij , so

〈ei, Ax′′〉 = 〈ei, Ax′〉+ y′′i − y′i

≤ (1 +O(ε))y′i +
ỹi
2
− y′i

≤ (1 +O(ε))ỹi
2

,

so 〈ei, Ax′′〉 is a constant multiple of (1−O(ε))2 smaller
than ỹi. Since 〈ei, Ax〉 lies in a range contained in a
multiplicative factor of β, reset(i) is invoked at most
O
(

log(1−O(ε))2(β)
)

= O(log(β)) times. �

The final step in the analysis is to specify how the
loop in line [8] is implemented.

Lemma 4.3. Fix j ∈ [n]. One can organize the thresh-
olds {θij : Aij 6= 0} such that for a call inc(α,j),
all coordinates i satisfying line [8] can be listed in
O(logm) time plus O(1) per satisfying coordinate. The
total time to initialize and maintain the data structure
is O(N log(β) log(m)).

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Setting 4.1 implies that each coordinate of
Ax that is still subject to change lies within a β-
multiplicative factor of its initial value in A1. For each
column j, we build a balanced binary tree over the
nonzeroes Aij 6= 0 keyed by θij . All the trees can be
built in O(N logm) time total. For a call inc(α,j),
the first coordinate i satisfying line [8] can be found
in log(m) time in the tree; each subsequent coordinate
takes O(1) time per coordinate. Whenever a threshold
θij changes, the corresponding tree can be updating in
O(logm) time. Each θij is updated at most log β times.
The running time follows.

�

To finish the analysis we note that each yi is
updated O(log(1/δ)

ε2) time between two reset opera-
tions. Thus the total work for satisfied coordinates is
O
(
m log β log(1/δ)

ε2

)
. Combining the above, we have the

following.

Theorem 4.1. Assuming Setting 4.1, for
δ = 1/ poly(m,L), apx-matrix maintains

y ∈ (1±O(ε))Ax in O

(
L(log(m) + log log β) +

N(log(m) + log log β) log β +m log(β)(logm+logL)
ε2

)
total

time with probability of failure 1/ poly(m,L).

4.1 Finalizing random-mwu

In this section, we gather the different components
developed in Section 3 and Section 4 to prove Theorem
1.1. We first obtain crude bounds on the variation of
nonzeroes within each column of A or B.

Lemma 4.4. Without loss of generality, for each j ∈
[n],

maxiAij
mini{Aij : Aij 6= 0}

= O(poly(n, 1/ε)),

maxi{Bij}
mini{Bij : Bij 6= 0}

= O(poly(n, 1/ε)).

Proof. For each j, let αj = maxiAij . Then x ≤
1/α for any feasible solution x to (NMPC), and x ≤
(1 +O(ε))/α for any (1±O(ε))-feasible solution.

Let A′ ∈ Rmp×n
≥0 be defined by

A′ij =

{
Aij if Aij ≥ αj

poly(n,1/ε) ,

0 otherwise.

Any x satisfying A′x ≤ (1 +O(ε))1 must satisfy
x ≤ (1 +O(ε))α. Moreover, since 0 ≤ Aij − A′ij ≤
αj/ poly(n, 1/ε), for any x with A′x ≤ (1 +O(ε)), we

have

Ax = A′x+ (A−A′)x ≤ A′x+
1

poly(n, 1/ε)
1

≤ (1 +O(ε))1.

Replacing A with A′, it suffices to assume that αjAij ≥
αj/ poly(n, 1/ε) for every nonzero Aij .

As for B, we first observe that Bij ≥ poly(n, 1/ε)α,
then adding (1/ poly(n, 1/ε)α)ej meets the covering
constraint for row i, while Aej/α poly(n, 1/ε) ≤ ε/n has
negligible effect on the packing constraints. Removing
any row i with such a large Bij and rewriting the
system as though we have taken (1/ poly(n, 1/ε)α)ej
can be done in linear time, and allows us to assume
that Bij ≤ poly(n, 1/ε)αj for all i, j. Finally, define
B′ ≤ B by

B′ij =

{
Bij if B′ij ≥ α/poly(n, 1/ε),

0 otherwise.

Clearly, Bx ≥ (1−O(ε)) only if B′x ≥ 1 − O(ε). On
the flip side, if Ax ≤ 1 + O(ε) but 〈ei, B′x〉 ≤ 1 + O(ε)
for some i, then x ≤ (1 +O(ε))/α,

〈ei, Bx〉 ≤ 〈ei, B′x〉+ α〈ei, (B −B′)1〉
≤ 1−O(ε) + poly(ε/n) ≤ (1−O(ε)).

Thus we may work with B′ instead of B without loss of
generality. �

We now restate and prove Theorem 1.1.

Theorem 1.1 2. Given a normalized mixed packing
and covering problem (NMPC), random-mwu returns a
ε-relative approximation in

O

 N log2m
ε + m log2m

ε2

+n log(m)(log(m)+log(n))
ε3

 = Õ

(
N

ε
+
m

ε2
+
n

ε3

)

time with probability 1− 1/ poly(m).

Proof. By Theorem 2.1, it remains to implement lines
[2] and [3] within the running time stated.

Recall that if the original problem (NMPC) is
feasible, then any feasible solution to (NMPC) satisfies
(*) and (**) of line [2] even without the (1±O(ε))
factors. Moreover, if (NMPC) is feasible, then [2] is
solved by finding an approximately best bang-for-buck
coordinate j such that

〈w,Bej〉Q
〈v,Aej〉

≥ (1−O(ε)) max
̂∈[n]

〈w,Be̂〉Q
〈v,Ae̂〉

,

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

and taking

y =
〈w,B1〉Q
〈w,Bej〉Q

ej .

We employ the apx-matrix data structure to main-
tain (1±O(ε))-relative coordinate-wise approximations
of AT v and BTw. By Lemma 4.4, all the nonzero coeffi-
cients within a row of A or within a row of B lie within
a poly(n, 1/ε)-multiplicative factor of one another. The
vectors v and w both start at 1, and any nonzero co-
ordinate is in the range m−O(1/ε) or mO(1/ε). We also
know that there are at most O

(
m log(m)/ε2

)
iterations.

Thus, maintaining AT v and BTw approximately corre-
sponds to Setting 4.1 for β = mO(1/ε) poly(n, 1/ε) and
L = O

(
(min{mp, n}+mc) log(m)/ε2

)
. Also recall that

since we are working with AT and BT the roles of m,n
have to be interchanged in the bounds guaranteed by
Theorem 4.1. By Theorem 4.1, the data structure main-
tains an (1± ε)-approximation of every coordinate of
AT v and BTw at all times in

O


(min{mp,n}+mc) log2m

ε2

+N log2m
ε

+n log(m)(log(m)+log(n))
ε3

 = Õ

(
N

ε
+
m

ε2
+
n

ε3

)

total time, with probability of failure 1/poly(m), as de-
sired. We observe that the randomness in the internals
of the data structure is independent of the randomness
in weight update step.

Beyond maintaining each coordinate of AT v and
BTw, implementing the oracle in [2] within the stated
bounds is easy by the following well-known “lazy-
greedy” technique. To satisfy [2], it suffices to find
a coordinate j approximately maximizing the ratio

〈w,Bej〉Q
〈v,Aej〉

and returning y =
〈w,1〉Q
〈w,Bej〉

ej .

The coordinate-wise approximations provided by apx-
matrix allow us to compute a (1±O(ε))-approximation
of a coordinates ratio in constant time. To repeat-
edly find an approximately best coordinate, let λ =
supj〈1, Bej〉/〈1, Aej〉 be the maximum ratio initially.
When line [2] is invoked, we process the coordinates
in round robin order until we either find a coordinate
j with ratio ≥ (1−O(ε))λ or, should no satisfying co-
ordinate j, setting λ ← (1−O(ε))λ and repeating the
search. (A round-robin sweep always begins where the
last round-robin search ended in the previous oracle
call.) Every time we compute a ratio can be charged
to the oracle call (if the coordinate is returned) or the
current value of λ. Moreover, the range of values taken

by λ lies within a β2-multiplicative factor of its initial
value, where β = mO(1/ε) poly(n/ε). Therefore, λ is
decreased at most

O
(

log1/(1−O(ε)) β
2
)

= O

(
log(m)

ε2
+

log(n)

ε

)
times over the course of the algorithm. It fol-
lows that the total time processing coordinates is
O
(
m
(
log(m)/ε2 + log(n)/ε

))
plus O(1) for each itera-

tion, as desired. �

5 An overview of applications
In this section we give a brief overview of some abstract
and concrete applications where mixed packing and
covering problems arise. Theorem 1.1 applies to any
explicitly given problem and gives a speed up if the
matrices A,B are sufficiently dense. Here we also point
out implicit instances where the randomized version is
useful.

5.1 Linear system solving in the positive or-
thant

Consider the problem of solving Ax = 1, x ≥ 0 where
A ∈ Rm×n≥0 is a non-negative matrix. It is easy to see
that it is a special case of (NMPC). Young [35] points
out applications of this problem to x-ray tomography.
We also observe that this formulation captures the
LP relaxation of the perfect b-matching problem in
graphs and hypergraphs. See [12] for an application
of hypergraph matching in the field of medicine via the
solution of the LP relaxation and randomized rounding.

5.2 Separating over non-negative polytopes
and an application to spanning trees

Another basic application of solving Ax = 1, x ≥ 0 is
the following problem. Suppose we are given a polytope
P and a point p, both in the non-negative orthant Rd≥0.
We would like to decide if p ∈ P and if it is, express p as
a convex combination of the vertices of P . Depending on
the application, P can be given explicitly as a the convex
hull of a given set of of n points V = {v1, v2, . . . , vn} in
Rd≥0, or implicitly. We consider the explicit case first.
p is in the convex hull of V iff the following system is
feasible: Ax = p,

∑
i xi = 1, x ≥ 0 where the columns of

A are v1, . . . , vn. Thus, it is a special case of (NMPC).
In the implicit setting there are a number of appli-

cations in combinatorial optimization. We give a con-
crete example. Consider the following problem. Given a
graph G = (V,E) let ST(G) be the spanning tree poly-
tope of G; in other words it is the convex hull of the
characteristic vectors of the spanning trees of G (note
that the dimension of the polytope is m where m is
the number of edges of G). Given z ∈ Rm≥0 we would

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

like to know whether z ∈ ST(G) and if so decompose
z into a convex combination of spanning trees. This a
fundamental problem and there are a number of appli-
cations including recent rounding algorithms for TSP
and ATSP (see [32]).

In recent work [6] we developed a near-linear time
approximation scheme to pack the maximum number
of spanning trees in a given graph by using fast MWU
based algorithm. As a corollary, [6] obtains a separation
oracle for the dominant of ST(G). In particular, if
z ∈ ST(G), the algorithm outputs a convex combination
of spanning trees such that the load on any edge e
is at most (1 + ε)ze. However, it does not guarantee
that the load on e is at least (1 − ε)ze. Hence many
edges with strictly positive ze value can be unused in
the convex decomposition. This is acceptable in several
applications but not in others. Via the algorithm in
this paper for (NMPC), and some of the ideas in [6],
we can obtain a near-linear time randomized algorithm
for separating over ST(G), which in particular implies
that we can approximately decompose a given point
z ∈ ST(G) into a convex combination of spanning trees
in near-linear time. The decomposition guarantees a
convex combination such that for each edge e the load
on e from the convex combination is between (1 − ε)ze
and (1 + ε)ze.

5.3 Min-Max Linear/Integer Programs and
Resource Allocation

A number of applications in resource allocation, routing,
and scheduling can be cast as min-max integer programs
and their LP relaxations turn out to be mixed packing
and covering LPs. Randomized rounding via sophis-
ticated techniques including the Lovasz-Local-Lemma
and its constructive versions have led to a number of
important results in approximation — see [30, 16] for
the general framework, rounding algorithms, and appli-
cations. Here we point out a simple application, namely,
routing paths to minimize congestion which finds ap-
plications in several areas including VLSI and optical
networks. The input consists of a (directed) graph
G = (V,E) and k source-sink pairs (si, ti), i ∈ [k]. In
the explicit setting we are given for each pair (si, ti) a
collection of `i paths Pi that connect si to ti. The goal
is to choose for each pair i, exactly one path from Pi,
to minimize the edge congestion from the chosen paths.
We can model this as follows. For each pair i we have
`i indicator variables xij , j ∈ [`i]. The goal is to solve
the following integer program

minλ

Ax ≤ λ1

∑
j∈[`i]

xij ≥ 1 i ∈ [k]

xij ∈ {0, 1} i ∈ [k], j ∈ [`i]

where A is the incidence matrix between the path col-
lection ∪iPi and the edges of G. The LP relaxation is a
mixed packing and covering LP (for a given guess of λ)
and is extensively used in approximation algorithm de-
sign. Using the LP one can obtain an O(log d/ log log d)-
approximation for the minimum congestion problem
where d is the maximum path length in ∪iPi [30, 16].
In the version we described above, the paths are explic-
itly given for each pair. In the implicit setting Pi is the
set of all paths from si to ti (or say all paths with at
most some prescribed length), and the resulting LP is
the maximum concurrent multicommodity flow problem
which has been extensively studied.

Another way to interpret the allocation constraints
in min-max integer program is the following. We think
of them as inducing a partition matroid base constraint
on the variables. One can further extend the framework
by allowing an arbitrary matroid base constraint on
the variables. These constraints also result in a mixed
packing LP. One can then use a variety of dependent
randomized rounding techniques.

5.4 Constrained Set Cover
Set cover is a fundamental and abstract problem that
arises in numerous applications. In the explicit version
we are given a collection of sets S1, S2, . . . , Sm over
a universe U of n elements and the goal is to find a
minimum cardinality or minimum cost sub-collection of
the given sets whose union is U . One can express the LP
relaxation of this problem as a pure covering problem
and there is extensive work in analyzing the integrality
gap in various settings. We note that when expressed as
a covering LP, the number of nonzeroes N in the matrix
corresponds to the number of set-element edges in the
bipartite graph representation of the set system.

There are several natural and simple generalizations
of set cover that result in a mixed packing and covering
LP. One variant is the multicover problem with bounds
on the sets. Here each element e ∈ U has an integer
requirement re for the number of distinct sets that
e should be covered by. Moreover each set Si has
an upper bound ui on the number of copies it can
be used for; the simplest setting being that ui =
1 for all i. The upper bounds naturally lead to
a mixed packing and covering LP. A generalization
of this problem to covering integer programs with
upper bounds was considered in Kolliopoulos and Young
[20]. We also mention that more sophisticated upper
bound constraints on the sets, such as partition matroid

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

constraints, appear in various applications [31].

5.5 Implicit problems with structured inci-
dences

In [6] we consider the following simple geometric prob-
lem. We are given n closed intervals I1, . . . , In on the
real line specified by their endpoints Ii = [ai, bi]. Each
interval has a nonnegative value vi and a non-negative
size di. We are also given m points p1, . . . , pm ∈ R on
the real line, and each point pj has a capacity gj > 0.
The goal is to choose a subset of the intervals of max-
imum value such that the total size of chosen intervals
at any point is at most the capacity of the point. This
is equivalent to the well-studied unsplittable flow prob-
lem (UFP) on paths. These problems and their variants
have been well-studied in a variety of contexts and have
numerous applications. Note that the problem descrip-
tion size is O(m+n). The underlying LP relaxation for
the preceding problem, if written explicitly, can have
N = Ω(mn) nonzeroes corresponding to the incidences
between the intervals and points. [6] showed that MWU
techniques for packing problems with some data struc-
tures can be adapted to obtain a (1 + ε) approximation
to the LP relaxation in Õ

(
(m+ n)/ε2

)
time, avoiding

the need to explicitly work with the incidence matrix.
The techniques in this paper can extend those results
for mixed packing and covering setting; for instance,
the points can have lower bounds on how many inter-
vals need to cover them. The main data structure that
enabled the speedup in the case of intervals is the seg-
ment tree which interfaces cleanly with the needs of the
deterministic MWU framework in [6].

As we remarked, the randomized version of MWU in
this paper was motivated by applications that did not
admit a similar improvement. Consider the problem
where we have disks and points in the plane and we
wish to solve problems such as the maximum weight
independent set or the minimum cost set cover. Here
too the problem description size is considerably more
compact than the explicit matrix that encodes the
incidences between the given disks and points. Unlike
intervals and rectangular boxes, disks and other more
complex objects do not admit the same type of dynamic
range search data structures that can be used in the
framework of [6]. In contrast, random-mwu and apx-
mtarix considerably simplify the requirements on the
data structure. This is enabled by the particularly
simple threshold based sampling used in both of them.
For instance, one can use ideas from emptiness and
approximate depth estimation oracles [3] instead of
using dynamic range reporting data structures that have
strong lower bounds even in 2 and 3 dimensions. We
defer formal details to a future paper.

5.6 Facility Location and k-median
Facility location and k-median are extensively studied
optimization problems. The natural LP for facility
location and k-median is not a positive LP. However,
one can reformulate facility location as an implicit
covering LP. Young [36] shows that one can obtain an
Õ(nm/ε2) run-time to solve a facility location LP with n
facilities and m clients. The k-median and its minimum
cost versions can be cast as implicit mixed packing and
covering LPs and [34] gives a (1 + ε)-approximation in
Õ
(
kmn/ε2

)
time. We note that the assumption here

is that all distances between facilities and clients are
explicitly given and they may not form a metric. Here
the natural problem size is mn. In future work we plan
to address whether we can obtain a running time of the
form Õ(mn/ε+ (m+ n)/ε3) for these problems via the
techniques in this paper.

Acknowledgments: CC thanks Jayram Thathachar
and Jan Vondrák for discussions during their work on
[8]. The deterministic version of rand-mwu is in the
timed framework of that paper. We thank Neal Young
for comments and clarifications on his extensive work on
Lagrangian relaxation algorithms, and encouragement.
We thank Sariel Har-Peled for discussions and clarifica-
tions on geometric data structures.

References
[1] P. K. Agarwal and J. Pan. Near-linear algorithms

for geometric hitting sets and set covers. In Proc.
30th Annu. Sympos. Comput. Geom. (SoCG), page
271, 2014.

[2] Z. Allen-Zhu and L. Orecchia. Nearly-linear time
positive LP solver with faster convergence rate. In
Proc. 47th Annu. ACM Sympos. Theory Comput.
(STOC), pages 229–236, 2015.

[3] B. Aronov and S. Har-Peled. On approximating
the depth and related problems. SIAM Journal on
Computing, 38(3):899–921, 2008.

[4] S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta-algorithm and
applications. Theory of Computing, 8(1):121–164,
2012.

[5] D. Bienstock and G. Iyengar. Approximating
fractional packings and coverings in O(1/epsilon)
iterations. SIAM J. Comput., 35(4):825–854, 2006.

[6] C. Chekuri and K. Quanrud. Near-linear time ap-
proximation schemes for some implicit fractional
packing problems. In Proc. 28th ACM-SIAM Sym-
pos. Discrete Algs. (SODA), pages 801–820, 2017.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

[7] C. Chekuri and K. Quanrud. Approximating the
Held-Karp bound for Metric TSP in nearly–linear
time. In Proc. of IEEE FOCS, 2017.

[8] C. Chekuri, T. Jayram, and J. Vondrák. On multi-
plicative weight updates for concave and submod-
ular function maximization. In Proc. 6th Conf. In-
nov. Theoret. Comp. Sci. (ITCS), pages 201–210,
2015.

[9] F. Diedrich and K. Jansen. Faster and simpler
approximation algorithms for mixed packing and
covering problems. Theoretical computer science,
377(1-3):181–204, 2007.

[10] P. Flajolet. Approximate counting: A detailed
analysis. BIT, 25(1):113–134, 1985.

[11] L. K. Fleischer. Approximating fractional multi-
commodity flow independent of the number of com-
modities. SIAM Journal on Discrete Mathematics,
13(4):505–520, 2000.

[12] H. Fohlin, L. Kliemann, and A. Srivastav. Ran-
domized algorithms for mixed matching and cov-
ering in hypergraphs in 3D seed reconstruction in
brachytherapy, chapter 4, pages 71–102. Springer
New York, New York, NY, 2008.

[13] N. Garg and J. Könemann. Faster and simpler al-
gorithms for multicommodity flow and other frac-
tional packing problems. SIAM J. Comput., 37
(2):630–652, 2007. Preliminary version in Proc.
39th Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS)(1998).

[14] M. D. Grigoriadis and L. G. Khachiyan. Fast
approximation schemes for convex programs with
many blocks and coupling constraints. SIAM J.
Optim., 4(1):86–107, 1994.

[15] M. D. Grigoriadis and L. G. Khachiyan. A
sublinear-time randomized approximation algo-
rithm for matrix games. Oper. Res. Lett., 18:53–58,
1995.

[16] B. Haeupler, B. Saha, and A. Srinivasan. New
constructive aspects of the lovÁsz local lemma. J.
ACM, 58(6):28:1–28:28, Dec. 2011. ISSN 0004-
5411. doi: 10.1145/2049697.2049702. URL http:
//doi.acm.org/10.1145/2049697.2049702.

[17] K. Jansen and H. Zhang. Approximation al-
gorithms for general packing problems and their
application to the multicast congestion problem.
Mathematical Programming, 114(1):183–206, 2008.

[18] R. Khandekar. Lagrangian relaxation based algo-
rithms for convex programming problems. PhD the-
sis, Indian Institute of Technology Delhi, 2004.

[19] P. N. Klein and N. E. Young. On the number
of iterations for Dantzig-Wolfe optimization and
packing-covering approximation algorithms. SIAM
J. Comput., 44(4):1154–1172, 2015.

[20] S. G. Kolliopoulos and N. E. Young. Approxima-
tion algorithms for covering/packing integer pro-
grams. J. Comput. Syst. Sci., 71(4):495–505, 2005.
doi: 10.1016/j.jcss.2005.05.002. URL https://
doi.org/10.1016/j.jcss.2005.05.002.

[21] C. Koufogiannakis and N. E. Young. Beating
simplex for fractional packing and covering linear
programs. In Proc. 48th Annu. IEEE Sympos.
Found. Comput. Sci. (FOCS), pages 494–506, 2007.

[22] C. Koufogiannakis and N. E. Young. A nearly
linear-time PTAS for explicit fractional packing
and covering linear programs. Algorithmica, 70
(4):648–674, 2014. Preliminary version in Proc.
48th Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS), 2007.

[23] P. K. Lehre and C. Witt. Concentrated hitting
times of randomized search heuristics with variable
drift. In Proceedings of 25th International Sympo-
sium on Algorithms and Computataion (ISAAC),
pages 686–697, 2014.

[24] M. Luby and N. Nisan. A parallel approximation
algorithm for positive linear programming. In Pro-
ceedings of ACM Symposium on Theory of Com-
puting, STOC ’93, pages 448–457, 1993.

[25] M. W. Mahoney, S. Rao, D. Wang, and P. Zhang.
Approximating the solution to mixed packing and
covering lps in parallel o (epsilonˆ{-3}) time.
In Proceedings of ICALP, LIPIcs-Leibniz Inter-
national Proceedings in Informatics, volume 55.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

[26] R. Morris. Counting large numbers of events in
small registers. Commun. ACM, 21(10):840–842,
1978.

[27] A. Mądry. Faster approximation schemes for frac-
tional multicommodity flow problems via dynamic
graph algorithms. In Proc. 42nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 121–130,
2010.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://doi.acm.org/10.1145/2049697.2049702
http://doi.acm.org/10.1145/2049697.2049702
https://doi.org/10.1016/j.jcss.2005.05.002
https://doi.org/10.1016/j.jcss.2005.05.002

[28] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast
approximation algorithms for fractional packing
and covering problems. Math. of Oper. Res., 20
(2):257–301, 1995.

[29] F. Shahrokhi and D. W. Matula. The maximum
concurrent flow problem. J. Assoc. Comput. Mach.,
37(2):318–334, 1990.

[30] A. Srinivasan. An extension of the lovász local
lemma, and its applications to integer program-
ming. SIAM J. Comput., 36(3):609–634, 2006.
doi: 10.1137/S0097539703434620. URL https:
//doi.org/10.1137/S0097539703434620.

[31] S. Umetani, M. Arakawa, and M. Yagiura. Re-
laxation heuristics for the set multicover problem
with generalized upper bound constraints. CoRR,
abs/1705.04970, 2017. URL http://arxiv.org/
abs/1705.04970.

[32] J. Vygen. New approximation algorithms for the
TSP. OPTIMA, 90:1–12, 2012.

[33] D. Wang, S. Rao, and M. W. Mahoney. Unified ac-
celeration method for packing and covering prob-
lems via diameter reduction. In Proc. 43rd Inter-
nat. Colloq. Automata Lang. Prog. (ICALP), pages
50:1–50:13, 2016.

[34] N. E. Young. K-medians, facility location, and the
chernoff-wald bound. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algo-
rithms, pages 86–95. Society for Industrial and Ap-
plied Mathematics, 2000.

[35] N. E. Young. Sequential and parallel algorithms
for mixed packing and covering. In Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 538–546. IEEE, 2001.

[36] N. E. Young. Nearly linear-time approximation
schemes for mixed packing/covering and facility-
location linear programs. CoRR, abs/1407.3015,
2014. URL http://arxiv.org/abs/1407.3015.

A Jensen’s inequality
Lemma A.1. (Jensen’s inequality) Let X ∈ R be a
random variable and f : R→ R a function.

(a) If f is convex, then f(E[X]) ≤ E[f(X)].

(b) If f is concave, then f(E[X]) ≥ E[f(X)].

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1137/S0097539703434620
https://doi.org/10.1137/S0097539703434620
http://arxiv.org/abs/1705.04970
http://arxiv.org/abs/1705.04970
http://arxiv.org/abs/1407.3015

	Introduction
	Randomized MWU and Overview of Techniques
	Approximating monotonic linear maps

	Randomized multiplicative weight updates in the oracle model
	Packing constraints
	Covering constraints
	Iterations
	Tying it all together

	Approximating nonnegative matrices
	Finalizing random-mwu

	An overview of applications
	Linear system solving in the positive orthant
	Separating over non-negative polytopes and an application to spanning trees
	Min-Max Linear/Integer Programs and Resource Allocation
	Constrained Set Cover
	Implicit problems with structured incidences
	Facility Location and k-median

	Jensen's inequality

