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MULTICOMMODITY FLOWS AND CUTS IN POLYMATROIDAL
NETWORKS∗

CHANDRA CHEKURI† , SREERAM KANNAN‡, ADNAN RAJA§ , AND PRAMOD

VISWANATH¶

Abstract. We consider multicommodity flow and cut problems in polymatroidal networks where
there are submodular capacity constraints on the edges incident to a node. Polymatroidal networks
were introduced by Lawler and Martel [Math. Oper. Res., 7 (1982), pp. 334–347] and Hassin [On
Network Flows, Ph.D. dissertation, Yale University, New Haven, CT, 1978] in the single-commodity
setting and are closely related to the submodular flow model of Edmonds and Giles [Ann. Discrete
Math., 1 (1977), pp. 185–204]; the well-known maxflow-mincut theorem holds in this more general
setting. Polymatroidal networks for the multicommodity case have not, as far we are aware, been
previously explored. Our work is primarily motivated by applications to information flow in wireless
networks. We also consider the notion of undirected polymatroidal networks and observe that they
provide a natural way to generalize flows and cuts in edge and node capacitated undirected networks.
We establish flow-cut gap results in several scenarios that have been previously considered in the
standard network flow models where capacities are on the edges or nodes. Our results are based
on analyzing the dual of the flow relaxations via continuous extensions of submodular functions,
in particular, the Lovász extension. For directed graphs we rely on a simple yet useful reduction
from polymatroidal networks to standard networks. For undirected graphs we rely on the inter-
play between the Lovász extension of a submodular function and line embeddings with low average
distortion introduced by Matousek and Rabinovich [Israel J. Math., 123 (2001), pp. 285–301]; this
connection is inspired by, and generalizes, the work of Feige, Hajiaghayi, and Lee on node-capacitated
multicommodity flows and cuts. Our results have found applications in wireless network information
flow [S. Kannan and P. Viswanath, IEEE Trans. Inform. Theory, 60 (2014), pp. 6303–6328] and
we anticipate others in the future.
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1. Introduction. Consider a communication network represented by a directed
graph G = (V,E). In the so-called edge-capacitated scenario, each edge e has an
associated capacity c(e) that limits the information flowing on it. We consider a more
general network model called the polymatroidal network introduced by Lawler and
Martel [37] and independently by Hassin [31]. This model is closely related to the
submodular flow model introduced by Edmonds and Giles [21]. Both models capture
as special cases single-commodity s-t flows in edge-capacitated directed networks, and
polymatroid intersection, hence their importance. Moreover the models are known to
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be equivalent (see Chapter 60 in [53], in particular section 60.3b). The polymatroidal
network flow model is more directly and intuitively related to standard network flows
and one can easily generalize it to the multicommodity setting which is the focus in
this paper.

The polymatroidal network flow model differs from the standard network flow
model in the following way. Consider a node v in a directed graph G and let δ−G(v) be
the set of edges in to v and δ+G(v) be the set of edges out of v. In the standard model
each edge (u, v) has a nonnegative capacity c(u, v) that is independent of other edges.
In the polymatroidal network for each node v there are two associated submodular
functions (in fact polymatroids1) ρ−v and ρ+v which impose joint capacity constraints
on the edges in δ−G(v) and δ+G(v), respectively. That is, for any set of edges S ⊆ δ−G(v),
the total capacity available on the edges in S is constrained to be at most ρ−v (S),
and similarly for δ+G(v). Note that an edge (u, v) is influenced by ρ+u and ρ−v . Lawler
and Martel considered the problem of finding a maximum s-t flow in this model.
The results in [37, 31] show that various important properties that hold for s-t flows
in standard networks generalize to polymatroid networks; these include the classical
maxflow-mincut theorem of Ford and Fulkerson (and Menger) and the existence of an
integer valued maximum flow when capacities are integral.

The original motivation for the Lawler–Martel model came from an application
to a scheduling problem [44]. More recently, there have been several applications of
polymatroid network flows (and submodular flows), and their generalizations such as
linking systems [54], to information flow in wireless networks [1, 4, 57, 28, 50, 34].
Our main motivation comes from the study of wireless networks. A node in a wire-
less network communicates with several nodes over a broadcast medium and hence
the channels interfere with each other; this imposes joint capacity constraints on the
channels. Several interference scenarios of interest can be modeled by submodular
functions. Most of the work on this topic so far has focused on the case of a single
source. In this paper we consider multicommodity flows and cuts in polymatroidal
networks where several source-sink pairs (s1, t1), (s2, t2), . . . , (sk, tk) independently
communicate while sharing the capacity of the network. In the communications lit-
erature this is referred to as the multiple unicast setting. Our primary motivation
is applications to (wireless) network information flow; see the companion paper [34]
that builds on results of this paper. Another motivation is to understand the ex-
tent to which techniques and results that were developed for multicommodity flows
and cuts in standard networks generalize to polymatroidal networks. We note that
polymatroidal networks allow for a common treatment of edge and node capacities;
an advantage is that one can define cuts with respect to edge removals while the
cost is based on nodes. As far as we are aware, multicommodity flows and cuts in
polymatroidal networks have not been studied previously.

Flow-cut gaps in polymatroidal networks: The maxflow-mincut theorem for
single-commodity flows does not generalize to the multicommodity case even when the
number of source-sink pairs is is three or more (two or more in case of directed graphs).
See [53] for some special cases where flow-cut equivalent holds. Cuts typically upper
bound the corresponding flows (in terms of value); the worst-case ratio between the
two is referred to as the flow-cut gap. Obtaining tight bounds on flow-cut gaps has
been an active and fruitful area of research in theoretical computer science, starting

1A set function f : 2N → R over a finite ground set N is submodular iff f(A) + f(B) ≥
f(A ∩B) + f(A ∪B) ∀A,B ⊆ N , equivalently, f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) ∀A ⊂ B and
i 	∈ B. It is monotone if f(A) ≤ f(B) ∀A ⊂ B. In this paper a polymatroid refers to a nonnegative
monotone submodular function with f(∅) = 0.
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with the seminal work of Leighton and Rao [41]. The initial motivation was approx-
imation algorithms for NP-hard cut and separator problems. There has been a sub-
stantial amount of subsequent work that led to a tight bound of O(log k) on flow-cut
gaps in undirected graphs in a variety of settings [26, 42, 7, 25]. Strong lower bounds
exist for flow-cut gaps in directed graphs; for instance, the gap is O(min{k, nδ}) be-
tween the maximum concurrent flow and the sparsest cut [52, 19], where δ is a fixed
constant. However, polylogarithmic upper bounds on the gaps are known for the case
of symmetric demands in directed graphs [36, 22].

The focus of this paper is understanding multicommodity flow-cut gaps in
polymatroidal networks. In communication networks, cuts can be used to provide
information-theoretic upper bounds on achievable rates, while flows allow one to de-
velop lower bounds on achievable rates by combining a variety of routing and coding
schemes. Flow-cut gaps are therefore of much interest in understanding the capacity
of communication networks. We show that several of the flow-cut gap results that
have been established in standard networks can be extended to polymatroid networks.
In addition to applications to wireless networks [34], our results lead to approximation
algorithms for cut problems in polymatroidal networks which could have applications.

Bidirected and undirected polymatroidal networks. As we mentioned al-
ready, strong lower bounds exist on flow-cut gaps for directed networks. Positive
results in the form of polylogarithmic upper bounds on flow-cut gaps for standard
networks hold when the demands are symmetric or when the supply graph is undi-
rected. A natural model for wireless networks is the bidirected polymatroidal network.
For two nodes u and v in a wireless network, it is a reasonable approximation to as-
sume that the channel from u to v is similar to that from v to u; hence one can assume
that the underlying graph G is bidirected in that if the edge (u, v) is present, then so
is (v, u). Moreover, we assume that for any node v and S ⊆ δ−(v), ρ−v (S) = ρ+v (S

′),
where S′ ⊆ δ+(v) is the set of edges that correspond to the reverse of the edges in
S. Within a factor of 2, bidirected polymatroidal networks can be approximated by
undirected polymatroidal networks. In such a network we are given an undirected
graph G, and for each node v, a single polymatroid ρv that constrains the capacity of
δG(v), the set of edges incident on v. The main advantage of undirected polymatroid
networks is that we can use existing tools and ideas from metric embeddings to obtain
bounds on the flow-cut gap. Undirected polymatroidal networks have not been con-
sidered previously. We observe that they allow a natural way to capture both edge-
and node-capacitated flows in undirected graphs. To capture node-capacitated flows2

we set ρv(S) = 2c(v) ∀∅ �= S ⊆ δ(v), where c(v) is the capacity of v. We mention
an advantage of using polymatroidal networks even when considering the special case
of node-capacitated flows and cuts: one can define cuts with respect to edges even
though the cost is on the nodes. This is in fact quite natural and simplifies certain
aspects of the algorithms in [25].

1.1. Overview of results. We do a systematic study of flow-cut gaps in mul-
ticommodity polymatroidal networks, both directed and undirected. Let G = (V,E)
be a polymatroidal network on n nodes with k source-sink pairs (s1, t1), . . . , (sk, tk).
We consider two flow problems and their corresponding cut problems: (i) maximum
throughput flow and multicut and (ii) maximum concurrent flow and sparsest cut.

2The factor of 2 is needed since a flow path p through an internal node v uses two edges. On the
other hand, it is not needed for the sources and sinks. This technical issue is a minor inconvenience
with undirected polymatroidal networks; we note that this also arises in treating node-capacitated
multicommodity flows [25].
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Table 1

Summary of results.

Setting Max. Concurrent Flow/ Max. Throughput Flow/
Sparsest Cut Gap Multicut Gap

Undirected
polymatroidal network Θ(log k) Θ(log k)

Directed
polymatroidal network O(min{log2 k, O(min{log3 k,
(symmetric demands) logn log logn}) log2 n log logn})
Planar undirected

polymatroidal network O(log k) Θ(1)

Formal definitions of these terms can be found in section 2. The main bounds we
obtain are summarized below and in Table 1.

• For directed networks we show a reduction based on the dual that estab-
lishes a correspondence between flow-cut gaps in polymatroidal networks
and the standard edge-capacitated networks. This allows us to obtain poly-
logarithmic upper bounds for flow-cut gaps in directed polymatroidal net-
works with symmetric demands via results in [36, 22]. In particular we obtain
an O(min{log3 k, log2 n log logn}) gap between the maximum concurrent flow
and sparsest cut. The reduction is applicable only to directed graphs.
• We show that line embeddings with low average distortion [45, 49] lead to
upper bounds on flow-cut gaps in polymatroidal networks—this connection is
inspired by the work in [25] for node-capacitated flows. For undirected poly-
matroidal networks this leads to an optimal O(log k) gap between maximum
concurrent flow and sparsest cut. We also obtain an optimal O(log k) gap
between throughput flow and multicut. These imply corresponding results
for bidirected networks.
• We consider polymatroidal networks that exclude a fixed graph Kh as minor
(this includes planar graphs). We show an O(h2) gap between the maximum
throughput flow and minimum multicut for these networks. As a corollary,
we obtain a constant factor approximation for node-weighted multicut in such
graphs. Our result is based on interpreting the network decomposition theo-
rem in [35] as a line embedding.

Most of the literature on multicommodity flow-cut gaps is based on analyzing the
dual of the linear program for the flow. The dual linear program can be viewed as a
fractional relaxation for the corresponding cut problem. A flow-cut gap is established
by showing the existence of a cut within some factor of this relaxation. In standard
edge-capacitated networks, the dual linear program has length variables on the edges
which induce distances on the nodes. The situation is more involved in polymatroidal
networks, in particular, the definition of the cost of a cut is somewhat complex and
is discussed in more detail in section 2.2. Our starting point is the use of the Lovász
extension of a submodular function [43] to cleanly rewrite the dual of the flow linear
programs. This simplifies the constraint structure of the dual at the expense of mak-
ing the objective a convex function. However, we are able to exploit properties of the
Lovász extension in several ways to obtain our results. Our techniques give two new
dual-based proofs of the maxflow-mincut theorem for single-commodity polymatroid
networks that was first established by Lawler and Martel (also Hassin [31]) algorithmi-
cally [37] via an augmenting path-based approach. We believe that the applicability of
embedding-based methods for polymatroidal networks is of independent mathemati-
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cal interest. For the most part we ignore algorithmic issues in this paper, although all
the flow-cut gap results lead to polynomial-time algorithms for finding approximate
cuts.

1.2. Related work. We have already mentioned several relevant results on mul-
ticommodity flows and cuts. We refer the reader to an article by Shmoys [55] and
some more recent papers [19, 25, 40]. For several cut problems, approximation algo-
rithms that improve over the flow-cut gap bounds have been obtained via semidefinite
programming-based relaxations, starting with the seminal work of Arora, Rao, and
Vazirani [5]—see [6, 3, 25].

Schrijver [53] has extensive treatment of classical results on submodular functions
in combinatorial optimization; the equivalence between the submodular flow model
of Edmonds and Giles [21] and the polymatroid network flow model of Lawler and
Martel [37] can be found there. Federgruen and Groenevelt [24] consider a slight gen-
eralization of the Lawler–Martel model to single-source and multiple sinks which can
be reduced to the single commodity case relatively easily. As we already remarked,
the multicommodity flows in polymatroidal networks do not appear to have been
considered previously. There has been a resurgence of interest in submodular func-
tions and their applications. Continuous extension-based approaches to optimizing
with submodular objectives, for minimization via the Lovász extension [43] and for
maximization via the multilinear extension [10], have led to several new algorithmic
results [11, 17, 32, 27, 15, 16]. Our work here demonstrates another application of
this approach.

1.3. Organization. The rest of this paper is organized as follows. Formal def-
initions of multicommodity flows and cuts in polymatroidal networks are described
in section 2. Section 3 describes the convex programming relaxations for cut prob-
lems that are equivalent to the dual of the linear programs for the corresponding
flow problems. These relaxations are exploited in section 4 to show flow-cut gaps for
directed polymatroidal networks by using a reduction from the polymatroidal net-
work problem to the standard network problem. In section 5, flow-cut gap bounds
are shown for undirected polymatroidal networks via line embeddings. Section 5.3
describes an O(1) bound on the gap between multicut and throughput flow in planar
and minor-free graphs.

2. Multicommodity flows and cuts in polymatroidal networks. We let
G = (V,E) represent a graph whether directed or undirected. We use (u, v) for an
ordered pair of nodes and uv to denote an unordered pair. In a directed graph G, for a
given node v, δ−G(v) and δ+G(v) denote the set of incoming and outgoing edges at v. In
undirected graphs we use δG(v) to denote the set of edges incident to v. We omit the
subscript G if it is clear from the context. We are interested in multicommodity flows
and cuts. In addition to the graph, the input consists of a set of k source-sink pairs
(s1, t1), . . . , (sk, tk) that wish to communicate independently and share the network
capacity.

In a directed polymatroidal network, each node v ∈ V has two associated polyma-
troids ρ−v and ρ+v with ground sets as δ−(v) and δ+(v), respectively. These functions
constrain the joint capacity on the edges incident to v as follows. If S ⊆ δ−(v), then
ρ−v (S) upper bounds the total capacity of the edges in S; similarly, if S ⊆ δ+(v), then
ρ+v (S) upper bounds the total capacity of the edges in S. We assume that the func-
tions ρ−v (·), ρ+v (·), v ∈ V , are provided via value oracles. In undirected polymatroidal
graphs we have a single function ρv(·) at a node v that constrains the capacity of
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the edges incident to v. Continuous extensions of submodular functions, namely, the
Lovász extension [43] and the convex closure, are important technical tools in inter-
preting and analyzing the duals of the linear programs for multicommodity flow in
the polymatroid setting. We discuss these in section 2.2. We first discuss the two flow
problems of interest, namely, maximum throughput flow and maximum concurrent
flow.

2.1. Flows. A multicommodity flow for a given collection of k source-sink pairs
(s1, t1), . . . , (sk, tk) consists of k separate single-commodity flows, one for each pair
(si, ti). The flow for the ith commodity can be viewed as either an edge-based flow
fi : E → R+ or a path-based flow fi : Pi → R+, where Pi is the set of all simple paths
between si and ti in G. We use path-based flows since they allow us to treat directed
and undirected graphs in a unified fashion, and also for writing the linear programs
for flows and cuts in a convenient way. However, it is easier to argue polynomial-time
solvability of the linear programs via edge-based flows. Given path-based flows fi,
i = 1, . . . , k, for the k source-sink pairs, the total flow on an edge e is defined as
f(e) =

∑k
i=1

∑
p∈Pi

fi(p). The total flow for commodity i is Ri =
∑

p∈Pi
fi(p), where

Ri is interpreted as the rate of commodity flow i. In directed polymatroidal networks,
the flow is constrained to satisfy the following capacity constraints:

∑
e∈S

f(e) ≤ ρ−v (S) ∀S ⊆ δ−(v),(2.1)

∑
e∈S

f(e) ≤ ρ+v (S) ∀S ⊆ δ+(v).(2.2)

The constraints in undirected polymatroidal networks are

∑
e∈S

f(e) ≤ ρv(S) ∀v ∀S ⊆ δ(v).(2.3)

A rate tuple (R1, . . . , Rk) is said to be achievable if commodities 1, . . . , k can
be sent at rates R1, . . . , Rk simultaneously between the corresponding source-sink
pairs. For a given polymatroidal network and source-sink pairs the set of achievable
rate tuples is easily seen from the above constraints to be a polyhedral set. We let
P (G, T ) denote this rate region, where G is the network and T is the set of given
source-sink pairs. In the maximum throughput multicommodity flow problem the goal
is to maximize

∑k
i=1 Ri over P (G, T ). In the maximum concurrent multicommodity

flow problem each source-sink pair has an associated demand Di and the goal is
to maximize λ such that the rate tuple (λD1, . . . , λDk) is achievable, that is, the
tuple belongs to P (G, T ). It is easy to see that both these problems can be cast as
linear programming problems. The path formulation results in an exponential (in
n the number of nodes of G) number of variables and we also have an exponential
number of constraints due to the polymatroid constraints at each node. However, one
can use an edge-based formulation and solve the linear programs in polynomial time
via the ellipsoid method and polynomial-time algorithms for submodular function
minimization.

Networks with symmetric demands. In directed polymatroidal networks we
are primarily interested in symmetric demands: node si intends to communicate with
ti and node ti intends to communicate with si at the same rate. Conceptually one can
reduce this to the general setting by having two commodities (si, ti) and (ti, si) for a
pair siti and adding a constraint that ensures their rates are equal. To be technically
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consistent with previous work we do the following. We will assume that we are
given k unordered source-sink pairs s1t1, . . . , sktk. Now consider the 2k ordered pairs
(s1, t1), . . . , (sk, tk), (t1, s1), . . . , (tk, sk). We are interested in achievable rate tuples
of the form (R1, . . . , Rk, R

′
1, . . . , R

′
k), where R′

i = Ri. In the maximum throughput

setting we maximize
∑k

i=1(Ri +R′
i). Note that even though the rates for (si, ti) and

(ti, si) are the same, the flow paths along which they route can be different. In the
maximum concurrent flow setting both (si, ti) and (ti, si) have a common demand
Di and we find the maximum λ such that rate tuple (λD1, . . . , λDk, λD1, . . . , λDk) is
achievable for the pairs (s1, t1), . . . , (sk, tk), (t1, s1), . . . , (tk, sk).

2.2. Cuts. The multicommodity flow problems have natural dual cut problems
associated with them. Given a graph G = (V,E) and a set of edges F ⊆ E we say
that the ordered node pair (s, t) is separated by F if there is no path from s to t in the
graph G[E \F ]. In directed graphs F may separate (s, t) but not (t, s). In undirected
graphs we say that F separates the unordered node pair st if s and t are in different
connected components of G[E \ F ]. In the standard network model the cost of a cut
defined by a set of edges F is simply

∑
e∈F c(e), where c(e) is the cost of e (capacity

in the primal flow network). In polymatroid networks the cost of F is defined in a
more involved fashion. Each edge (u, v) in F is assigned to either u or v; we say that
an assignment of edges to nodes g : F → V is valid if it satisfies this restriction. A
valid assignment partitions F into sets {g−1(v) | v ∈ V }, where g−1(v) (the preimage
of v) is the set of edges in F assigned to v by g. For a given valid assignment g of F
the cost of the cut νg(F ) is defined as

νg(F ) :=
∑
v

(
ρ−v (δ

−(v) ∩ g−1(v)) + ρ+v (δ
+(v) ∩ g−1(v))

)
.

In undirected graphs the cost for a given assignment is
∑

v ρv(g
−1(v)).

Given a set of edges F we define its cost to be the minimum over all possible valid
assignments of F to nodes, the expression for the cost as above. We give a formal
definition below.

Definition 1. Cost of edge cut. Given a directed polymatroid network G =
(V,E) and a set of edges F ⊆ E, its cost denoted by ν(F ) is

(2.4) min
g:F→V, g valid

∑
v

(
ρ−v (δ

−(v) ∩ g−1(v)) + ρ+v (δ
+(v) ∩ g−1(v))

)
.

In an undirected polymatroid network ν(F ) is

(2.5) min
g:F→V, g valid

∑
v

ρv(g
−1(v)).

Lemma 1. Consider a feasible multicommodity flow in a polymatroidal network
G = (V,E), where f(e) is the total flow value on edge e over all commodities. Then∑

e f(e) ≤ ν(F ).
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Proof. We consider directed graphs; the argument is similar for undirected graphs.
Fix any valid assignment g : F → V . The constraints (2.1) and (2.2) that apply to
any feasible flow imply that

∑
e∈F

f(e) =
∑
v

∑
e∈g−1(v)

f(e)

≤
∑
v

(
ρ−v (δ

−(v) ∩ g−1(v)) + ρ+v (δ
+(v) ∩ g−1(v))

)
.

Since the above applies to any valid assignment g, the claim follows.
The lemma below easily follows from subadditivity of nonnegative submodular

functions and Definition 1.
Lemma 2. The cut cost function is subadditive, that is, ν(F ∪ F ′) ≤ ν(F ) +

ν(F ′) ∀F, F ′ ⊆ E.
We now define the two cut problems of interest.
Definition 2. Given a collection of source-sink pairs (s1, t1), . . . , (sk, tk) in

G = (V,E) and associated demand values D1, . . . , Dk, and a set of edges F ⊆ E,
the demand separated by F , denoted by D(F ), is

∑
i:(si,ti) separated by F Di. F is a

multicut if all the given source-sink pairs are separated by F . The sparsity of F is

defined as ν(F )
D(F ) .

The above definitions extend naturally to undirected graphs. Given the above
definitions two natural optimization problems that arise are the following. The first
is to find a multicut of minimum cost for a given collection of source-sink pairs. The
second is to find a cut of minimum sparsity. These problems are NP-hard even in
edge-capacitated undirected graphs and have been extensively studied from an approx-
imation point of view [41, 26, 42, 7, 5, 2]. The lemma follows easily from Lemma 1.

Lemma 3. Given a multicommodity polymatroidal network instance, the value of
the maximum throughput flow is at most the cost of a minimum multicut. The value
of the maximum concurrent flow is at most the minimum sparsity.

Networks with symmetric demands. For a directed network with symmetric
demands the notion of a “cut” has to be defined appropriately. We say that a set
of edges F separates a pair siti if it separates (si, ti) or (ti, si). With this notion of
separation, the definitions of multicut and sparsest cut extend naturally. A multicut
is a set of edges F whose removal separates all the given pairs. Similarly for a set
of edges F its sparsity is defined as ν(F )/D(F ), where D(F ) is the total demand
of pairs separated; note that if both (si, ti) and (ti, si) are separated by F we count
Di twice in D(F ). This is to be consistent with the definition of flows given earlier.
Lemma 3 extends to the symmetric demand case with the definition of flows given for
symmetric demands in the previous section.

A key question of interest is to quantify the relative gap between the cut and flow
values. These gaps are relatively well-understood in standard networks and the goal
of this paper is to obtain results for polymatroid networks.

3. Relaxations for cuts. Lemma 3 gives a way to lower bound the value of
multicut and sparsest cut via corresponding flow problems. The flow problems can be
cast as linear programs. The duals of these linear programs can be directly interpreted
as linear programming relaxations for integer programming formulations for the cut
problems. Here we take the approach of writing the formulation with a convex ob-
jective function and linear constraints; this simplifies and clarifies the constraints and
aids in the analysis. For one of the cases we show the equivalence of the formulation
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with the dual of the corresponding flow linear program. We first discuss continuous
extensions of submodular functions.

3.1. Continuous extensions of submodular functions. Given a submodular
set function ρ : 2N → R on a finite ground set N , it is useful to extend it to a function
ρ′ : [0, 1]N → R defined over the cube in |N | dimensions. That is, we wish to assign
a value for each x ∈ [0, 1]N such that ρ′(1S) = ρ(S) ∀S ⊆ N , where 1S is the
characteristic vector of the set S. For minimizing submodular functions a natural
goal is to find an extension that is convex. We describe two extensions below and
refer the reader to [20] for more details on their equivalence.

Convex closure. For a set function ρ : 2N → R (not necessarily submodular) its
convex closure is a function ρ̃ : [0, 1]N → R with ρ̃(x) defined as the optimum value
of the following linear program:

ρ̃(x) = min
∑
S⊆N

αSρ(S)

s.t.∑
S

αS = 1,

∑
S:i∈S

αS = xi ∀i ∈ N,

αS ≥ 0 ∀S.

The function ρ̃ is convex for any ρ. Moreover, when ρ is submodular, for any given x,
the linear program above can be solved in polynomial time via submodular function
minimization and hence ρ̃(x) can be computed in polynomial time (assuming a value
oracle for ρ). It is known and not difficult to show that if ρ is a polymatroid (monotone
and f(∅) = 0) the value of the linear program does not change if we drop the constraint
that

∑
S αS = 1.

Lovász extension. For a set function ρ : 2N → R (not necessarily submodular) its
Lovász extension [43] denoted by ρ̂ : [0, 1]N → R is defined as follows:

ρ̂(x) =

∫ 1

0

ρ(xθ)dθ,

where xθ = {i | xi ≥ θ}. This is not the standard way the Lovász extension is stated
but is entirely equivalent to it. The standard definition is the following. Given x let
i1, . . . , in be a permutation of {1, 2, . . . , n} such that xi1 ≥ xi2 ≥ · · · ≥ xin ≥ 0. For
ease of notation define x0 = 1 and xn+1 = 0. For 1 ≤ j ≤ n let Sj = {i1, i2, . . . , ij}.
Then

ρ̂(x) = (1 − xi1)ρ(∅) +
n∑

j=1

(xij − xij+1 )ρ(Sj).

It is typical to assume that ρ(∅) = 0 and omit the first term in the right-hand side
of the preceding equation. Note that it is easy to evaluate ρ̂(x) given a value oracle
for ρ.

We state some well-known facts.
Lemma 4. For a submodular set function ρ, ρ̃(x) = ρ̂(x) for any x ∈ [0, 1]N .

Therefore the convex closure coincides with the Lovász extension and ρ̂(·) is convex.
Proposition 1. For a monotone submodular function ρ and x ≤ x′ (coordinate-

wise), ρ̂(x) ≤ ρ̂(x′).
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The equivalence of ρ̃ and ρ̂ also implies that an optimum solution to the linear
program defining ρ̃(x) is obtained by a solution ᾱ where the support of ᾱ is a chain on
N (a laminar family whose tree representation is a path). In fact we have the following.
Given x ∈ [0, 1]N consider the ordering of the coordinates and the associated sets as
in the definition of the ρ̂(x). One can verify that αSj = xij − xij−1 for 1 ≤ j ≤ n,
α∅ = (1 − xin), and αS = 0 for all other sets S is an optimum solution to the linear
program that defines ρ̃(x).

3.2. Multicut. We now consider the multicut problem. Recall that we wish to
find a subset F ⊆ E such that F separates all the given source-sink pairs so as to
minimize the cost ν(F ). The only difference between the polymatroid networks and
standard networks is in the definition of the cost. We first focus on expressing the
constraint that F is a feasible set for separating the pairs. For each edge e we have a
variable �(e) ∈ [0, 1] in the relaxation that represents whether e is cut. For feasibility
of the cut we have the condition that for any path p from si to ti (that is, p ∈ Pi)
at least one edge in p is cut; in the relaxation this corresponds to the constraint
that

∑
e∈p �(e) ≥ 1. In other words dist�(si, ti) ≥ 1, where dist�(u, v) is the distance

between u and v with edge lengths given by �(e) values.
We now consider the cost of the cut. Note that ν(F ) is defined by valid assign-

ments of F to the nodes and submodular costs on the nodes. In the relaxation we
model this as follows. For an edge e = (u, v) we have variables �(e, u) and �(e, v) which
decide whether e is assigned to u or v. We have a constraint �(e, u) + �(e, v) = �(e)
to model the fact that if e is cut, then it has to be assigned to either u or v. Now
consider a node v and the edges in δ+(v). The variables �(e, v), e ∈ δ+(v) in the
integer case give the set of edges S ⊆ δ+(v) that are assigned to v and in that case
we can use the function ρ+v (S) to model the cost. However, in the fractional setting
the variables lie in the real interval [0, 1] and here we use the extension approach to
obtain a convex programming relaxation; we can rewrite the convex program as an
equivalent linear program via the definition of ρ̃. Let d−

v be the vector consisting of
the variables �(e, v), e ∈ δ−(v), and similarly let d+

v denote the vector of variables
�(e, v), e ∈ δ+(v). The relaxation for the directed case is formally described in Figure
1 in the top box. For the symmetric demands case the relaxation is similar, but since
we need to separate either (si, ti) or (ti, si) the constraint dist�(si, ti) ≥ 1 is replaced
by the constraint dist�(si, ti) + dist�(ti, si) ≥ 1.

For the undirected case we let dv denote the vector of variables �(e, v), e ∈ δ(v)
and the resulting relaxation is shown on the bottom in Figure 1.

One can replace ρ̂v in the above convex programming relaxations by ρ̃v the convex
closure; further, one can use the definition of ρ̃v via a linear program to convert the
convex program into an equivalent linear program. The resulting linear program can
be shown to be equivalent to the dual of the maximum throughput flow problem as
captured by the following lemma, whose proof can be found in Appendix A.

Lemma 5. For a polymatroidal network, the dual of the maximum throughput
flow problem is equivalent (in terms of value) to the program given in Figure 1.

3.3. Sparsest cut. Now we consider the sparsest cut problem. In the sparsest
cut problem we need to decide which pairs to disconnect and then ensure that we pick
edges whose removal separates the chosen pairs. Moreover we are interested in the
ratio of the cost of the cut to the demand separated. We follow the known formulation
in the edge-capacitated case with the main difference, again, being in the cost of the
cut. There is a variable yi which determines whether pair i is separated. We again
have the edge variables �(e), �(e, u), �(e, v) to indicate whether e = (u, v) is cut and
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min
∑
v

(ρ̂−v (d
−
v ) + ρ̂+v (d

+
v ))

�(e, u) + �(e, v) = �(e) e = (u, v) ∈ E

dist�(si, ti) ≥ 1 1 ≤ i ≤ k

�(e), �(e, u), �(e, v) ≥ 0 e = (u, v) ∈ E.

min
∑
v

ρ̂v(dv)

�(e, u) + �(e, v) = �(e) e = uv ∈ E

dist�(si, ti) ≥ 1 1 ≤ i ≤ k

�(e), �(e, u), �(e, v) ≥ 0 e = uv ∈ E.

Fig. 1. Lovász-extension-based relaxations for multicut in directed and undirected polymatroidal
networks, respectively.

min
∑
v

ρ̂−v (d
−
v ) + ρ̂+v (d

+
v ))

�(e, u) + �(e, v) = �(e) e = (u, v) ∈ E

k∑
i=1

Di · dist�(si, ti) = 1

�(e), �(e, u), �(e, v) ≥ 0 e = (u, v) ∈ E.

min
∑
v

ρ̂v(dv)

�(e, u) + �(e, v) = �(e) e = uv ∈ E

k∑
i=1

Di · dist�(si, ti) = 1

�(e), �(e, u), �(e, v) ≥ 0 e = (u, v) ∈ E.

Fig. 2. Relaxations for sparsest cut in directed and undirected polymatroidal networks.

whether e’s cost is assigned to u or v. If pair i is to be separated to the extent of yi
we ensure that dist�(si, ti) ≥ yi. To express sparsity, which is defined as a ratio, we
normalize the demand separated to be 1. Figure 2 has a formal description on the
top for the directed case. For the symmetric demands case we have essentially the
same relaxation; the constraint

∑
i Didist�(si, ti) = 1 is replaced by the constraint∑

iDi(dist�(si, ti) + dist�(ti, si)) = 1.
The relaxation for the undirected case is shown on the bottom in Figure 2, where

dv is the vector of variables �(e, v), e ∈ δ(v).



FLOWS AND CUTS IN POLYMATROIDAL NETWORKS 923

4. Flow-cut gaps in directed polymatroidal networks. In this section we
consider flow-cut gaps in directed polymatroidal networks. We show via a reduction
that these gaps can be related to corresponding gaps in directed edge-capacitated net-
works that have been well studied. We note that this reduction is specific to directed
graphs and does not apply to undirected polymatroidal networks. The embedding-
based approach for the undirected case that we discuss in section 5 is also applicable
to directed graphs.

The reduction is similar at a high level for both gap questions of interest and
is based on the relaxations for the two cut problems that we described in section 3.
We take a feasible fractional solution for relaxation of the cut problem in question
and produce an instance of a cut problem in an edge-capacitated network and a
feasible fractional solution to the corresponding cut problem. We also provide a
correspondence between feasible integer solutions to the edge-capacitated network
instance and the original problem such that the cost of the solution is preserved. These
correspondences allow us to translate known gap results for the edge-capacitated
networks to polymatroidal networks.

4.1. Details of the reduction. Let G = (V,E) be a directed graph and let
� : E → R+ be a length function on the edges. We let dist�(u, v) be the shortest path
distance from u to v in G with edge lengths �. Moreover, for each edge (u, v) let �(e, u)
and �(e, v) be two nonnegative numbers such that �(e) = �(e, u) + �(e, v). For a node
v let d+

v be the vector of �(e, v) values for all edges e ∈ δ+(v) and similarly d−
v is the

vector of �(e, v) values for edges in δ−(v). In the polymatroidal setting the cost induced
by the edge length variables is given by

∑
v∈V (ρ̂

−(d−
v ) + ρ̂+(d+

v )). Note that for
multicut we have that dist�(si, ti) ≥ 1 for each demand pair (si, ti), while in sparsest
cut we are interested in the ratio of the cost to

∑
iDi · dist�(si, ti). We now describe

the construction of a graph H = (VH , EH), an edge length function �′ : EH → R+,
and an edge-cost (or capacity in the primal sense) function c : EH → R+ with the
following properties:

• VH = V � V ′. The nodes of G are also in H .
• For all u, v ∈ V , dist�(u, v) = dist�′(u, v). Distances between nodes in V are
the same in G and H .
• For any set of edges F ′ ⊆ EH there is a corresponding set F ⊆ E such that
ν(F ) ≤ c(F ′), and (u, v) ∈ V × V is separated in G− F if (u, v) is separated
in H − F ′. In other words there is a correspondence between cuts in G and
H in terms of the separated pairs and the cost.
•
∑

e∈EH
c(e)�′(e) =

∑
v∈V (ρ̂

−
v (d

−
v ) + ρ̂+v (d

+
v )). The objective function values

are equal.
Before we describe the construction of the graph H = (V � V ′, EH) in detail, we

first give an overview of the construction to aid the reader. Consider a node v ∈ V
and the incoming edges δ−(v) and outgoing edges δ+(v). In H we have nodes of V
and build an in-tree T−

v and an out-tree T+
v that are rooted at v. The leaves of T−

v

are the edges in δ−(v) and the leaves of T+
v are the edges in δ+(v). Note that an edge

(u, v) will thus participate in T+
u and T−

v . Now for the formal details. The nodes
of H , denoted by VH , consist of the nodes V of G and additional nodes V ′. V ′ has
two types of nodes. First, for each edge e ∈ E there is a node γe. Second, for each
node v ∈ V we create two sets of nodes N−(v) and N+(v), where |N−(v)| = n−

v =
|δ−G(v)| and |N+(v)| = n+

v = |δ+G(v)|, thus one node for each edge in δ−(v) ∪ δ−(v);
these will be the internal nodes of the trees T−

v and T+
v , respectively. For notational

convenience we refer to the jth node in N−(v) as v−j and similarly v+j for the jth node

in N+(v).
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Fig. 3. Illustration of the reduction. Only δ+G(u) and δ−G(v) are shown. The costs on edges

in H are shown but not their lengths. The lengths of the infinite cost edges is 0 and �′(u+
2 , u+

1 ) =

�(a, u)− �(e, u) and �′(v−3 , v−4 ) = �(c, v) − �(d, v).

Now we describe the construction in detail. The edge set is essentially prescribed
by specifying the trees T−

v and T+
v for each v ∈ V . Consider the vector d−(v) of

values �(e, v) for e ∈ δ−G(v). Recall the definition of the Lovász extension ρ̂−(d−
v ). We

order the edges in δ−(v) as e1, e2, . . . , en−
v
where �(ej, v) ≥ �(ej+1, v) for 1 ≤ j < n−

v

and then ρ̂−(d−
v ) =

∑
j(�(ej , v) − �(ej+1, v))ρ

−
v (Sj) where Sj = {e1, . . . , ej}. We

associate the node v−j with the set Sj . The edge set of T−
v is defined as follows.

For ease of notation we let v−
n−
v +1

represent the node v. We create a directed path

v−1 → v−2 → · · · → v−
n−
v
→ v−

n−
v +1

= v with edge lengths �′(v−1 , v−2 ) = �(e1, v) −
�(e2, v), �

′(v−2 , v−3 ) = �(e2, v) − �(e3, v), . . . , �
′(v−

n−
v
, v) = �(en−

v
, v) − 0. The costs of

these edges are defined as follows: c(v−j , v−j+1) = ρ−v (Sj) for 1 ≤ j ≤ n−
v . For each j

we add the edge (γej , v
−
j ) with length 0 and cost ∞ (for computational purposes a

sufficiently large number M would do); this connects the node γej corresponding to

the edge ej to v−j that corresponds to Sj . See Figure 3.

The construction of T+
v is quite similar except that the edge directions are re-

versed; assuming that the edges in δ+(v) are ordered such that �(e1, v) ≥ �(e2, v) ≥
· · · ≥ �(en+

v
, v), we create a path v → v+

n+
v
→ . . . v+2 → v+1 with edge lengths

�(en+
v
, v) − 0, . . . , �(ej, v) − �(ej+1, v), . . . , �(e1, v) − �(e2, v). The costs for the edges

in this path are set to ρ+v (Sn+
v
), . . . , ρ+v (S1), where Sj = {e1, . . . , ej}. For each j we

add an edge (v+j , γej ) with length 0 and cost ∞. This finishes the description of H .
We now describe various properties of the graph H . Several of these properties are
straightforward from the description of the construction and we omit proofs of the
easy claims.
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The proposition below asserts the cost of the fractional solution in the edge-
capacitated network H is the same as the cost of the fractional solution in the poly-
matroidal network G.

Proposition 2.

∑
e∈EH

c(e) · �′(e) =
∑

v∈V (ρ̂
−(d−

v ) + ρ̂+(d+
v )).

Proposition 3. For any edge e ∈ δ−G(v) the length of the unique path in T−
v

from the node γe to v is equal to �(e, v). Similarly for e ∈ δ+G(v), the length of the
unique path in T+

v from the node v to the node γe is equal to �(e, v).

We now establish a correspondence between paths in G and H that connect nodes
in V . Let e = (u, v) be an edge in G. We obtain a canonical path q(u, v) from u to
v in H as follows: concatenate the unique path from u to γe in T+

v with the unique
path from γe to v in T−

v . For any two nodes s, t ∈ V let PG(s, t) be the set of
(simple) s-t paths on G and similarly let PH(s, t) be the paths in H . We create a
map g : PG(s, t) → PH(s, t) as follows. Consider a path p ∈ PG(s, t); we obtain a
path p′ ∈ PH(s, t) corresponding to p as follows. We replace each edge (u, v) ∈ p by
the canonical path q(u, v).

Lemma 6. The map g is a bijection. Moreover, for any two nodes u, v ∈ V ,
dist�′(u, v) = dist�(u, v).

Now we establish a correspondence between cuts in G and H . For a given set
of edges F ⊆ E let sepG(F ) be a set of node pairs in V × V separated by F in the
graph G. Similarly for a set of edges F ′ ⊆ EH let sepH(F ′) be the set of node pairs
in V × V separated by F ′ in the graph H . We say that a set of edges F is minimal
with respect to separating node pairs if there is no proper subset of F that separates
the same node pairs as F .

Proposition 4. Let F ′ ⊆ EH be minimal with respect to separating node pairs
in V × V and of finite cost. Then for any v ∈ V , F ′ contains at most one edge from
T−
v and at most one edge from T+

v .

Proof. Consider a node v and edge sets F ′ ∩ T−
v and F ′ ∩ T+

v . For an edge e ∈ E
there is a node γe ∈ VH and there is exactly one edge coming into γe and exactly one
edge going out of γe and both are of infinite cost. Therefore, if F ′ is of finite cost,
F ′ ∩ T−

v consists of some edges in the path v−1 → v−2 . . . → v−
n−
v
→ v contained in

T−
v . Since the only way to reach v is through T−

v it follows that if F ′ contains an
edge (v−j , v

−
j+1), then it is redundant to remove an edge (v−i , v

−
i+1) for i < j. Thus

minimality of F ′ implies F ′ contains exactly one edge from T−
v . The reasoning for

T+
v is similar.

Lemma 7. Let F ′ ⊆ EH be minimal with respect to separating node pairs in V ×V
and of finite cost. There exists a set of edges F ⊆ E such that sepG(F ) ⊇ sepH(F ′)
and ν(F ) ≤ c(F ′).

Proof. Given a minimal F ′ we obtain a set of edges F ⊆ E as follows. From the
proof of Proposition 4 we see that for any node v, F ′ contains at most one edge from
T−
v and in particular if it contains an edge, then it is an edge (v−j , v

−
j+1) for some

1 ≤ j ≤ n−
v (for simplicity we identify v with v−

n−
v +1

). Suppose there is such an edge

e′ = (v−j , v
−
j+1) in F ′. Note that e′ corresponds to the set Sj = {e1, . . . , ej} of edges in

δ−G(v) ordered in increasing order by �(e, v) values. We add Sj to F and assign these
edges to v in upper bounding ν(F ): by construction c(e′) = ρ−v (Sj). We do a similar
procedure if e′ ∈ F ∩ T+

v . It follows that the edge set F that we construct satisfies
the property that ν(F ) ≤ c(F ′).

We now show that sepG(F ) ⊇ sepH(F ′). Consider a pair (s, t) such that s is
separated from t by F ′ in H . Suppose (s, t) is not separated by F in G. Let p
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be an s-t path that remains in G \ F . From Proposition 3 there is a unique path
g(p) ∈ PH(s, t). For every edge e = (u, v) ∈ p consider the canonical path q(u, v) in
H . Since e is not in F it implies that u can reach γe in H \ F ′ and that γe can reach
v in H \ F ′. This means that q(u, v) exists in H \ F ′. This would imply that g(p)
exists in H \ F ′, contradicting that assumption that (s, t) is separated by F ′.

We recall and summarize the high-level properties of the reduction. We assume
that we have a polymatroidal network G = (V,E) with k demand pairs (si, ti), . . . ,
(sk, tk) with associated demand valuesD1, . . . , Dk. For all the cut problems of interest,
the relaxations in section 3 produce a length function � : E → R+ and for each e =
(u, v) associated nonnegative values �(e, u) and �(e, v) such that �(e) = �(e, u)+�(e, v).
As before we use d−

v and d+
v to denote the vector of �(e, v) values for the incoming

and outgoing edges at v. The reduction produces an edge-capacitated network H =
(VH , EH), a length function �′ : EH → R+, and an edge-cost function c : EH → R+

with the following properties:

• each node of V is a node in VH ,
• for all u, v ∈ V , dist�(u, v) = dist�′(u, v),
•
∑

e∈EH
c(e)�′(e) =

∑
v∈V (ρ̂

−
v (d

−
v ) + ρ̂+v (d

+
v )),

• for any set of edges F ′ ⊆ EH there is a corresponding set F ⊆ E such that
sepG(F ) ⊇ sepH(F ′) and ν(F ) ≤ c(F ′).

We also note that the reduction can be carried out in polynomial time. Moreover,
given a set F ′ ⊆ EH , a set F ⊆ E that satisfies the last property in the list above can
be found in polynomial time.

We build on the reduction to obtain flow-cut gap results, all of which are based on
using the relaxations from section 3 which are dual to the corresponding flow problems.
We argue via the reduction and known results on edge-capacitated networks that there
exist integral cuts within some factor α of the fractional solution.

4.2. Multicut. We consider the multicut problem for arbitrary demand pairs as
well as symmetric demands. The relaxation satisfies the constraint that dist�(si, ti) ≥
1 for each demand pair (si, ti). The reduction from the preceding section produces a
graph H = (VH , EH) and a fractional solution �′ : EH → R+ such that dist�′(si, ti) ≥
1. We note that �′ is a feasible solution for the standard distance-based relaxation for
multicut in edge-capacitated networks which is the dual for the maximum throughput
multicommodity flow problem. The integrality gap of this relaxation has been studied
and several results are known. Let β =

∑
e∈EH

c(e)�′(e) be the fractional solution
value. Then one can obtain an integral multicut F ′ with cost c(F ′) that can be
bounded in terms of β. We summarize the known results:

• The single commodity case corresponds to k = 1. In this case the classical
maxflow-mincut theorem for standard edge-capacitated graphs implies that
there is a cut F ′ separating s and t of cost at most β.
• Cheriyan, Karloff, and Rabani [18] showed that there exists an F ′ such that
c(F ′) ≤ O(1) · β3; this was improved by Gupta [29] to show the existence
of a multicut F ′ such that c(F ′) ≤ O(1) · β2. These results hold under the
assumption that c(e) ≥ 1∀e.
• Agrawal, Alon, and Charikar [2] improving the results in [18, 29] showed the
existence of a cut F ′ such that c(F ′) = Õ(n11/23) · β. Here n is the number
of nodes in the graph.
• Saks, Samorodnitsky, and Zosin [52] showed that there exist instances on
which every integral multicut has a value Ω(k) · β.



FLOWS AND CUTS IN POLYMATROIDAL NETWORKS 927

• Chuzhoy and Khanna [19] showed that there exist instances in which every
multicut has a value Ω̃(n1/7) · β. Further, they showed that the multicut

problem is hard to approximate to within a factor of Ω(2log
1−ε n) unless NP ⊆

ZPP .
Since polymatroidal networks generalize edge-capacitated networks it follows that

all the lower bounds in the above hold for the polymatroidal network case as well.
The reduction also allows us to obtain an upper bound for polymatroidal networks.
We have to be careful when using bounds that depend on the number of nodes in
the graph. The reduction takes G with n nodes and m edges and produces an edge-
capacitated graph H with n+ 2m nodes. In the worst case H has Ω(n2) nodes. We
thus obtain the following theorem.

Theorem 1. In a directed polymatroidal network G on n nodes, for any given
multicommodity flow instance with k pairs, if β is the maximum throughput multi-
commodity flow, then

• if k = 1, then there is a feasible cut separating s1 and t1 of cost at most β;
• there is a feasible multicut F ′ such that ν(F ′) ≤ O(1) · β2 assuming that ρ+v
and ρ−v are integer valued for all v ∈ V ;
• there is a feasible multicut F ′ such that ν(F ′) ≤ Õ(n22/23) · β.

Moreover, there exist polynomial-time algorithms to find multicuts guaranteed as above.
Remark 1. In the preceding theorem the bound ν(F ′) ≤ Õ(n22/23) ·β is obtained

via a black box application of the result in [2] and our reduction that blows up the
number of nodes. A closer examination of the proof in [2] may lead to an improved
bound.

Symmetric demands. We now consider the symmetric demand case when a mul-
ticut corresponds to separating (si, ti) or (ti, si) for a given demand pair siti. The
relaxation for this has a constraint that dist�(si, ti) + dist�(ti, si) ≥ 1. In contrast to
the strong negative results for the general multicut problem, polylogarithmic upper
bounds on flow-cut gaps are known for symmetric demands in standard networks. In
particular Klein et al. [36] show that if β is the cost of a fractional solution, then there
exists an integral multicut of cost O(log2 k) · β. Even et al. [22] showed the existence
of a multicut of cost O(log n log logn) · β. Note that these bounds are incomparable
in that depending on the relationship between k and n one is better than the other.
It is also known that there exist instances on which the gap is at least Ω(logn). Via
the reduction we obtain the following.

Theorem 2. In a directed polymatroidal network G on n nodes, for any given
multicommodity flow instance with symmetric demands on k pairs, the minimum mul-
ticut is O(min{log2 k, logn log logn}) · β, where β is maximum throughput multicom-
modity flow for the symmetric demands.

Remark 2. The flow-cut gap in polymatroidal networks for multiterminal flows3

can be shown to be 2 via the reduction and the result of Naor and Zosin [46].

4.3. Sparsest cut. Now we consider the sparsest cut problem where the goal is
to find a set of edges F to minimize ν(F )/D(F ), where D(F ) is the total demand of
the pairs separated by F . The relaxation corresponds to finding edge length variables
� to minimize the fractional cost subject to the constraint that

∑
i Di · dist�(si, ti) =

1. Via the reduction we produce an edge-capacitated network H such that
∑

iDi ·

3In multiterminal flows we have a set of k terminals {s1, s2, . . . , sk} and flow can be sent between
any pair of terminals; the goal is to maximize the total flow. The corresponding cut is referred to
as multiterminal cut or multiway cut, in which the goal is to remove a minimum-cost set of edges to
disconnect every (ordered) pair of terminals.
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dist�′(si, ti) = 1 and with the fractional cost preserved. In edge-capacitated networks
there is a generic strategy that translates the flow-cut gap for multicut into a flow-cut
gap for sparsest cut at an additional loss of an O(log

∑
iDi) factor due to Kahale [33]

(see also [55]); this has been refined via a more intricate analysis in [48] to lose only
an O(log k) factor, although one needs to apply it carefully. In [2] a simple reduction
that loses an O(log n) factor is given (this builds on [33]). For directed graphs the
known gaps for sparsest cut are essentially based on using the corresponding gap
for multicut and translating via the above mentioned schemes. We thus obtain the
following results.

Theorem 3. In a directed polymatroidal network G on n nodes, for any given
multicommodity flow instance with k pairs, if β is the value of the maximum concur-
rent flow, then there is a cut of sparsity at most Õ(n22/23) · β.

Theorem 4. In a directed polymatroidal network G on n nodes, for any given
multicommodity flow instance with symmetric demands on k pairs, there is a cut of
sparsity O(min{log3 k, log2 n log log n}) · β, where β is maximum concurrent flow.

5. Flow-cut gaps in undirected polymatroidal networks. In this section
we consider flow-cut gaps in undirected polymatroidal networks. As we already noted,
node-capacitated flows are a special case of polymatroidal flows. We show that line
embeddings with low average distortion introduced by Matousek and Rabinovich [45]
(and further studied in [49]) are useful for bounding the gap between the maximum
concurrent flow and sparsest cut; we are inspired to make this connection from [25],
who considered node-capacitated flows. For multicut we show that the region growing
technique from [41] that was used in [26] for edge-capacitated multicut can be adapted
to the polymatroidal setting.

5.1. Maximum concurrent flow and sparsest cut. We start with the defi-
nition of line embeddings and average distortion.

Let (V, d) be a finite metric space. A map g : V → R is an embedding of V into
a line; it is a contraction (also called 1-Lipschitz) if ∀u, v ∈ V ,

|g(u)− g(v)| ≤ d(u, v).

Given a demand function w : V × V → R+ and a contraction g : V → R, its average
distortion with respect to w is defined as

avgdw(g) =

∑
u,v∈V w(u, v) · d(u, v)∑

u,v∈V w(u, v) · |g(u)− g(v)| .

The following theorem is implicit in [8]; see [25] for a sketch.
Theorem 5 (Bourgain [8]). For every n-point metric space (V, d) and every

weight function w : V × V → R+ there is a polynomial-time computable contraction
g : V → R such that avgdw(g) = O(log n). Moreover, if the support of w is k there is
a map g such that avgdw(g) = O(log k).

Using the above we prove the following.
Theorem 6. In undirected polymatroidal networks, for any given multicommodity

flow instance with k pairs, the ratio between the value of the sparsest cut and the value
of the maximum concurrent flow is O(log k). Moreover, there is an efficient algorithm
to compute an O(log k) approximation to the sparsest cut problem.

Recall the relaxation for the sparsest cut from section 3.3 and the associated
notation. To prove the theorem we consider an optimum solution to the relaxation
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and show the existence of a cut whose sparsity is O(log k) times the value of the
relaxation. Let (V, d) be the metric induced on V by shortest path distances in the
graph with edge lengths given by � : E → R+ from the optimum fractional solution.
Let g : V → R be line embedding guaranteed by Theorem 5 with respect to d and the
weight function given by the demands Di, that is, w(si, ti) = Di for a demand pair
and is 0 for any pair of nodes that do not correspond to a demand. Without loss of
generality we can assume that g maps V to the interval [0, β] for some β > 0. For
θ ∈ (0, β) let Sθ = {u | g(u) ≤ θ}. We show that there is a θ such that δ(Sθ) is an
approximately good sparse cut. Let D(δ(Sθ)) be the total demand of pairs separated
by Sθ, that is, D(δ(Sθ)) =

∑
i:Sθ separates siti

Di.
Lemma 8.

intβ0D(δ(Sθ))dθ = Ω

(
1

log k

)
.

Proof. From the definition of D(δ(Sθ)),

∫ β

0

D(δ(Sθ))dθ =

∫ β

0

⎛
⎝ ∑

i:Sθ separates siti

Di

⎞
⎠ dθ(5.1)

=
k∑

i=1

Di ·
∫ β

0

1Sθ separates sitidθ =
k∑

i=1

Di · |g(si)− g(ti)|.

From the properties of g,

∑
iDi · d(si, ti)∑

iDi · |g(si)− g(ti)|
≤ O(log k).

We have the constraint
∑

i Di · d(si, ti) = 1 from the LP relaxation; this combined
with the above inequality proves the lemma.

The main insight in the proof is the following lemma. A version of the lemma
also holds for directed graphs that we address in a remark following the proof.

Lemma 9.

∫ β

0

ν(δ(Sθ))dθ ≤ 2
∑
u

ρ̂u(du).

Proof. Consider an edge uv ∈ δ(Sθ) and without loss of generality, assume g(u) <
g(v). The length of e in the embedding is �′(e) = |g(v) − g(u)| ≤ �(e). The edge
(u, v) ∈ δ(Sθ) iff θ is in the interval [g(u), g(v)]. Note that the cost ν(δ(Sθ)) is in
general a complicated function to evaluate. We upper bound ν(δ(Sθ)) by giving an
explicit way to assign e = uv to either u or v as follows. Recall that in the relaxation
�(e) = �(e, u) + �(e, v), where �(e, u) and �(e, v) are the contributions of u and v to

e. Let r = �(e,u)
�(e) and let �′(e, u) = r�′(e) and �′(e, v) = (1 − r)�′(e). We partition

the interval [g(u), g(v)] into [g(u), g(u) + �′(e, u)) and [g(u) + �′(e, u), g(v)]; if θ lies
in the former interval we assign e to u; otherwise we assign e to v. This assignment
procedure allows us to upper bound ν(δ(Sθ)) for each θ. Now we consider the quantity∫ β

0 ν(δ(Sθ))dθ and upper bound it as follows.
Consider a node u and let Lu = {uv ∈ δ(u) | g(v) < g(u)} be the set of edges

uv that go from u to the left of u in the embedding g. Similarly Ru = {uv ∈
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δ(u) | g(v) ≥ g(u)}. Note that Lu and Ru partition δ(u). Let d′
u be the vector of

dimension |δ(u)| consisting of the values �′(e, u) for e ∈ δ(u). We obtain dL
u from d′

u

by setting the values for e ∈ Ru to 0 and similarly dR
u from d′

u by setting the values
for e ∈ Lu to 0. Since 0 ≤ �′(e, u) ≤ �(e, u) for each e ∈ δ(u) we see that d′

u ≤ du and
(componentwise) and hence dL

u ≤ du and dR
u ≤ du. Since ρu is monotone we have

that ρ̂u(d
L
u ) ≤ ρ̂u(du) and ρ̂u(d

R
u ) ≤ ρ̂u(du) (see Proposition 1).

We claim that

∫ β

0

ν(δ(Sθ))dθ ≤
∑
u∈V

(ρ̂u(d
L
u ) + ρ̂u(d

R
u )),

which would prove the lemma.

To see the claim consider some fixed θ and ν(δ(Sθ)). Fix a node u and consider the
edges in δ(u)∩Sθ assigned to u by the procedure we described above; denote this set of
edges by Aθ,u. First assume that θ < g(u), then Aθ,u = {e ∈ Lu | θ > g(u)− �′(e, u)}.
Similarly, if θ > g(u), Aθ,u = {e ∈ Lu | θ < g(u) + �′(e, u)}. From these definitions
we have

∫ β

0

ν(δ(Sθ))dθ ≤
∑
u∈V

∫ β

0

ρu(Aθ,u)dθ.

For a fixed node u,

∫ β

0

ρu(Aθ,u)dθ =

∫ g(u)

0

ρu(Aθ,u)dθ +

∫ β

g(u)

ρu(Aθ,u)dθ.

Let Lu = {e1, e2, . . . , eh}, where 0 ≤ �′(e1, u) ≤ �′(e2, u) ≤ . . . ≤ �′(eh, u). Then

∫ g(u)

0

ρu(Aθ,u)dθ =

h∑
j=1

(�′(ej , u)− �′(ej−1, u))ρ({e1, e2, . . . , ej}).

The right-hand side of the above is, by construction and the definition of the Lovász

extension, equal to ρ̂u(d
L
u ). Similarly,

∫ β

g(u) ρu(Aθ,u)dθ = ρ̂u(d
R
u ).

We need a slight generalization of Lemma 9 for later use.

Lemma 10. Let g : V → [0, β] be a contraction, and let 0 ≤ a0 ≤ a < b ≤ b0 ≤ β
and Sθ = {u | g(u) < θ}. Suppose for every edge e = uv ∈ ∪θ∈[a,b]δ(Sθ), g(u) and
g(v) are both in [a0, b0]. Then,

∫ b

a

ν(δ(Sθ))dθ ≤ 2
∑

v:g(v)∈[a0,b0]

ρ̂v(dv).

Proof. The proof is very similar to that of Lemma 9 and hence we only sketch it.

We need to bound the quantity
∫ b

a
ν(δ(Sθ))dθ. For a given θ we upper bound ν(δ(Sθ))

by assigning each edge uv ∈ δ(Sθ) to u or v exactly as before; let Aθ,u be the set of
edges assigned to u. We obtain as before that

∫ b

a

ν(δ(Sθ))dθ ≤
∑
u∈V

∫ b

a

ρu(Aθ,u)dθ.
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The simple observation is that the sum on the right-hand side can omit a node u
where g(u) �∈ [a0, b0]. This is from the assumption in the lemma statement; no edge
e ∈ ∪θ∈[a,b]δ(Sθ) can be incident to such a node. Thus, we have

∫ b

a

ν(δ(Sθ))dθ ≤
∑

u∈V :g(u)∈[a0,b0]

∫ b

a

ρu(Aθ,u)dθ ≤
∑

u∈V :g(u)∈[a0,b0]

∫ β

0

ρu(Aθ,u)dθ.

As we saw before,

∫ β

0

ρu(Aθ,u)dθ ≤ (ρ̂u(d
L
u ) + ρ̂u(d

R
u )) ≤ 2ρ̂u(du).

Putting the preceding two inequalities together proves the lemma.
We now finish the proof of Theorem 6 via the preceding two lemmas.

min
θ∈(0,β)

ν(δ(Sθ))

D(δ(Sθ))
≤

∫ β

0 ν(δ(Sθ))dθ∫ β

0
D(δ(Sθ))dθ

≤ 2
∑
u

ρ̂u(du) · O(log k) = O(log k)
∑
u

ρ̂u(du).

The above shows that the sparsity of Sθ for some θ is at mostO(log k) times
∑

u ρ̂u(du)
which is the value of the relaxation. Given a line embedding g there are only n − 1
distinct cuts of interest and one can try all of them to find the one with the smallest
sparsity; in fact, due to the definition of the cost, there are at most m distinct values
of θ that we need to try to find the partition and the corresponding assignment of the
cut edges. The efficiency of the algorithm therefore depends on complexity of solving
the fractional relaxation and the complexity of finding a line embedding guaranteed
by Theorem 5. Since both have polynomial-time algorithms, one can find an O(log k)
approximation to the sparsest cut in polynomial time.

Remark 3. Node-weighted flows and cuts/separators can be cast as special cases
of flows and cuts in polymatroid networks. Our algorithm produces edge cuts from line
embeddings in a simple way even for node-weighted problems—the ν cost of the edge
cut automatically translates into an appropriate node-weighted cut. In contrast, the
algorithm in [25] has to solve several instances of s-t separator problems in auxiliary
graphs obtained from the line embedding.

A remark on directed polymatroidal networks. An examination of the proof of
Lemma 9 explains the factor of 2 on the right-hand side; the edges in δ(v) can be
both to the left and to the right of v in the line embedding and each side contributes
ρ̂u(dv) to the cost. This is related to the technical issue about undirected polymatroid
networks where the flow through v takes up capacity on two edges incident to v. For
directed graphs the same proof outline can be used to show a related statement. Let
g : V → [0, β] be an embedding of the nodes into the interval [0, β] such that the
following property is true: if g(u) < g(v) and (u, v) is an edge, then g(v) − g(u) ≤
�(u, v). For θ ∈ [0, β] let δ+(Sθ) be the set of edges leaving Sθ. Then,

(5.2)

∫ β

0

ν(δ+(Sθ))dθ ≤
∑
u

(ρ̂−u (d
−
u ) + ρ̂+u (d

+
u )).

Notice that there is no factor of 2 since one treats the incoming and outgoing edges
separately. The preceding inequality gives an embedding-based proof of the maxflow-
mincut theorem for single-commodity directed polymatroidal networks as follows.
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Consider the relaxation in section 3.2 with k = 1, that is, there is a single pair
(s, t). Let �(e), e ∈ E be the edge lengths given by an optimum solution. Define a
line embedding g : V → [0, β], where g(v) is the shortest path distance from s to v
according to the edge lengths �; note that the distance from s to v is not necessarily
the same as the distance from v to s since the graph is now directed. Since � is a
feasible solution to the relaxation, we have g(t) = 1. It is not hard to see that in an
optimum solution g(v) ≤ 1∀v. We can now apply (5.2) to find a θ ∈ (0, 1) such that
ν(δ+(Sθ)) ≤

∑
u(ρ̂

−
u (d

−
u ) + ρ̂+u (d

+
u )). This is a valid s-t cut and its cost is at most

the value of the relaxation.
Sparsest bi-partition cut. We have so far worked with general edge cuts, but for

certain applications, it is necessary to work with a special type of edge cut called
the bi-partition cut. In an undirected polymatroidal network, an edge cut F is said
to be a bi-partition cut if there exists a set S ⊆ V such that F := {e = uv : u ∈
S, v ∈ Sc or v ∈ S, u ∈ Sc}; we denote such an edge cut by FS . In the case of edge-
capacitated undirected networks, it is well known that a sparsest bi-partition cut is
also a sparsest edge cut.4 While this no longer continues to be true for polymatroidal
networks, a factor 2 gap can indeed be shown between the sparsest cut and the sparsest
cut restricted to only bi-partition cuts. This is captured in the theorem below, whose
proof can be found in section B.

Theorem 7. Given any edge cut for an undirected polymatroidal network, there
exists a bi-partition cut whose sparsity is at most two times the sparsity of the edge
cut. Furthermore this factor is tight.

Now, Theorems 6 and 7 together imply a logarithmic gap between maximum
concurrent flow and sparsest bi-partition cut. This is formally stated in the following
corollary.

Corollary 1. In undirected polymatroidal networks, for any given multicom-
modity flow instance with k pairs, the ratio between the value of the sparsest bi-
partition cut and the value of the maximum concurrent flow is O(log k).

5.2. Maximum throughput flow and multicut. We prove the following the-
orem in this section.

Theorem 8. In undirected polymatroidal networks, for any given multicommodity
flow instance with k pairs, the ratio between the value of the minimum multicut and
the value of the maximum throughput flow is O(log k). Moreover, there is an efficient
algorithm to compute an O(log k) approximation to the minimum multicut problem.

We recall the relaxation for the minimum multicut problem from section 3.2.
Consider an optimum solution to the relaxation given by edge lengths �(e), e ∈ E and
the partition of �(e) for each e = uv between u and v given by the variables �(e, u)
and �(e, v). We will show that there exists a multicut F ⊆ E for the given pairs such
that ν(F ) = O(log k)(

∑
v ρ̂v(dv)).

Given a graph G with edge lengths � : E → R+, a node v, and radius r, let
B�

G(v, r) = {u | dist�(v, u) ≤ r} denote the ball of radius r around v according to edge
lengths �. We omit � and G if they are clear from the context. For a set of nodes
X ⊆ V we let vol(X) =

∑
v∈X ρ̂v(dv) denote the total contribution of the nodes in

X to the objective function.
Lemma 11. Let δ < 1 and suppose �(e) < δ

2 log k∀e. Then, for any given node s

and k ≥ 2 there exists a r ∈ [0, δ) such that ν(δ(B(s, r)) ≤ a log k · 1δ (vol(B(s, r)) +
vol(V )/k), with a = 28.

4Simple examples such as the directed butterfly network show that this does not hold for directed
networks. See also [13, 19] for results on the approximability of the two variants.
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Proof. For simplicity we assume here that log k is an integer multiple of 3. Order
the nodes in increasing order of distance from s: this produces a line embedding
gs : V → R+. For integer i ≥ 0 define ri =

i·δ
2 log k . Define α0 = vol(V )/k and for i ≥ 1

let αi = α0 + vol(B(s, ri)).
Consider any 1 ≤ j ≤ 2 log k. We apply Lemma 10 to the embedding gs and

the interval [rj−1, rj ]; note that �(e) < δ
2 log k , which implies that we can indeed

apply the lemma. Also any edge e ∈ ∪θ∈[rj−1,rj ]δ(Sθ) satisfies the property that

g(u) ∈ [rj−2, rj+1] and g(v) ∈ [rj−2, rj+1] since �(e) < δ
2 log k . Thus∫ rj

rj−1

ν (δ(B(s, θ))) dθ ≤ 2
∑

v:gs(v)∈[rj−2,rj+1]

ρ̂v(dv)

≤ 2(αj+1 − αj−2).(5.3)

We claim that there is some 1 ≤ j < 2 log k such that αj+1 ≤ 8αj−2. Suppose

not; then α3i > 8α3(i−1)∀1 ≤ i ≤ 2 log k
3 . This implies that α3i > 8iα0 = 23iα0.

Therefore, with i = 2 log k
3 , this implies that α2 log k > 22 log k vol(V )

k > 4vol(V ), which
is impossible.

Thus there exists a j such that αj+1 ≤ 8αj−2. For this specific j, (5.3) implies
that ∫ rj

rj−1

ν(δ(B(s, θ)))dθ ≤ 2(αj+1 − αj−2)

≤ 2(7αj−2).

If we pick r uniformly at random from the interval [rj−1, rj ], where j satisfies the
above property, the expected cost of ν(δ(B(s, r))), from the preceding inequality and
the fact that rj − rj−1 = δ

2 log k , is

1

rj − rj−1

∫ rj

rj−1

ν(δ(B(s, θ)))dθ ≤ 28 log k

δ
αj−2.

Hence there exists an r ∈ [rj−1, rj ] such that ν(δ(B(s, r))) ≤ 28 log k
δ αj−2. Since

αj−2 − α0 ≤ vol(B(s, r)), the lemma follows.
Now we consider the following algorithm for finding a multicut from a given

fractional solution.
• Let F ← {e | �(e) ≥ 1

4 log k}.
• G′ ← G[E \ F ].
• Until there exists a pair siti connected in G′, do the following:

– Let sjtj be a pair connected in G′.
– Via Lemma 11 with δ = 1/2 find r < 1/2 such that ν(δG′(BG′(sj , r))) ≤

2a log k · (vol(BG′(sj , r)) + vol(V )/k).
– F ← F ∪ δG′(BG′(sj , r)).
– Remove the vertices BG′(sj , r) and edges incident to them from G′.

• Output F as the multicut.
Lemma 12. The set of edges F output by the algorithm is a feasible multicut for

the given instance.
Proof. The proof is by induction on the number of iterations in the until loop.

We consider the first step. The diameter of the ball BG′(sj , r) is 2r < 1 and hence
the end points of any pair cannot both be inside this ball. We remove the edges
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δ(BG′(sj , r)) and by the preceding observation there is no need to recurse on this
ball. The algorithm recurses on the remaining graph G′−BG′(sj , r) and by induction
separates any pair with both end points in that graph.

Now we argue about the cost of the set F output by the algorithm. Let F0 ←
{e | �(e) ≥ 1

4 log k} be the initial set of edges added to F and let Fi be the set of edges
added in the i’th iteration of the while loop.

Lemma 13. ν(F0) ≤ 8 log k ·
∑

v ρ̂v(dv).
Proof. For v ∈ V let Av = {e ∈ δ(v)∩F0 | �(e, v) ≥ 1

8 log k}. We can upper bound

ν(F0) by
∑

v ρv(Av) since the latter term counts each edge uv ∈ F0 in at least one of
Au and Av since �(e, u) + �(e, v) = �(e) ≥ 1

4 log k . From the definition of the Lovász
extension

ρ̂v(dv) =

∫ 1

0

ρv(d
θ
v)dθ ≥

∫ 1/(8 log k)

0

ρv(d
θ
v)dθ ≥

1

8 log k
ρv(Av),

where we used nonnegativity of ρv for the first inequality above and monotonicity for
the second.

Lemma 14.

∑
i≥1 ν(Fi) ≤ 4a log k

∑
v ρ̂v(dv).

Proof. From the algorithm description, Fi = δ(BG′(sj , r)) for some terminal
sj and radius r < 1/2, where G′ is the remaining graph in iteration i. Moreover,
ν(Fi) ≤ 2a log k · (vol(BG′(sj , r)) + vol(V )/k). Since the nodes in BG′(sj , r) are
removed from the graph, a node u is charged only once inside a ball. Hence

∑
i

ν(Fi) ≤
∑
i

2a log k · vol(V )/k + 2a log k
∑
v

ρ̂v(dv) ≤ 4a log k
∑
v

ρ̂v(dv),

since there are at most k iterations of the while loop; each iteration separates at least
one pair.

Since ν is subadditive (see Lemma 2)

ν(F ) ≤ ν(F0) +
∑
i≥1

ν(Fi) ≤ (8 + 4a) log k
∑
v

ρ̂v(dv).

This finishes the proof of Theorem 8.

5.3. Max throughput flow and multicut in planar and minor-free graphs.
We now consider the flow-cut gaps in undirected planar polymatroidal networks5 and
more generally networks (equivalently graphs) that exclude the complete graph Kh

as a minor6 for some fixed h. Klein, Plotkin, and Rao [35] proved an important
network decomposition theorem for such graphs that leads to two results in edge-
capacited graphs. First, it gives an O(1) bound on the gap between concurrent flow
and sparsest cut for product multicommodity flows. Second, as shown in [56], it
leads to an O(1) bound on the gap between throughput flow and multicut. Gupta et
al. [30] conjectured that the concurrent flow-sparsest cut gap is O(1) for these net-
works. This is still an important open problem but some nontrivial results have been
shown in support of this conjecture. Rao [51] proved an upper bound of O(

√
logn),

thereby improving upon the gap for general graphs which can be Ω(logn) in the

5By a planar polymatroidal network we simply mean that the underlying graph G is planar.
6A graph H is called a minor of a graph G if H can be obtained by G by a sequence of edge

deletions, vertex deletions, and contraction of edges (i.e., collapsing two nodes connected by an edge
into a single node).
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worst case. The gap for series parallel graphs is known to be 2 [12], and the gap for
k-outerplanar graphs is known to be 2O(k) [14]—see [40] for further results. Much less
is known for node-capacitated planar and minor-free graphs; the only result that we
are aware of is an O(

√
logn) gap for series-parallel graphs due to Brinkman, Kara-

giozova, and Lee [9]. In fact, the O(1) gap between throughput flow and multicut
has not been generalized to node-capacitated graphs. Here, we show that an O(1)
bound for the throughput flow-multicut gap in planar and minor-free polymatroidal
graphs.

Our result, not surprisingly, is based on the KPR network decomposition theo-
rem [35]. Rabinovich [49] used the KPR theorem to give a line embedding theorem for
planar and minor-free graphs with O(1) average distortion when restricted to product
multicommodity flows; this interpretation gives an O(1) bound on concurrent flow
and sparsest cut for node-capacitated case [25] and, from the discussion in section
5.1, also for the polymatroidal case. The line embedding theorem does not directly
lead to a bound for the gap between throughput flow and multicut. We observe that
the KPR decomposition is based on O(1) iterations, each of which can be thought of
as providing a line embedding. We use these iterative line embeddings to derive our
result that is formally stated below.

Theorem 9. Let G be an undirected polymatroidal network such that the under-
lying graph excludes Kh as a minor. Then, for any multicommodity instance on G,
the minimum multicut is within a factor O(h2) of the maximum throughput flow.

As an easy corollary we obtain the following result.
Corollary 2. There is an O(h2)-approximation for finding a minimum node-

weighted multicut in a graph that excludes Kh as a minor.
The rest of this section is dedicated to proving Theorem 9. We prove a weaker

bound of O(h3) via the KPR network decomposition theorem and then indicate how
the bound can be improved to O(h2) via the result from [23]. Consider an optimum
solution to the relaxation for the minimum multicut problem from section 3.2; let
�(e), e ∈ E, be the edge lengths given by the solution, and for e = uv, �(e, u) and
�(e, v) are the values such that �(e, u) + �(e, v) = �(e). The goal is to show that there
exists a multicut F ⊆ E such that F separates each source from its corresponding
sink and ν(F ) = O(h3)

∑
v ρ̂v(dv).

Chopping operation. We describe a chopping operation, which is used to partition
the network. We use the terminology of [39] to describe this process.

Given a connected graph H , a special node v0 ∈ V (H), positive numbers τ and
γ, and a metric � on the nodes, we define a partitioning operation, called τ -chop of H
rooted at v0 with offset γ, as follows. Consider a line embedding of the nodes V (H),
induced by the shortest path distance from v0 using the metric �; i.e., g : V → R+ is
defined as

g(u) = dist�(u, v0) ∀u ∈ V (H).

Since the graph is connected, g(u) is bounded, and therefore define

dmax = max
u∈V (H)

g(u).

The τ -chop partitioning operation divides V into partitions Vi defined as follows:

Vi = {v ∈ V (H) : γ + (i − 1)τ ≤ g(v) < γ + iτ}, i = 1, 2, . . . ,
�dmax�

τ
.
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Clearly V (H) =
⊎

i Vi. This partitioning operation disconnects the edges,

F := {e = uv ∈ E(H) : ∃i �= j s.t. u ∈ Vi, v ∈ Vj}.

Thus we can think of F as the cut associated with the τ -chop. The cost of the τ -chop is
equal to the cut cost ν(F ). More generally, a τ -chop on a disconnected graph is defined
as the result of performing a τ -chop on each of its connected components. When we
perform a sequence of τ -chops, the ith chop performs partitioning individually on
each of the partitions created by the i− 1th chop.

Figure 4 shows an example of a graph with distances and the application of two
successive τ -chops. In the figure, the root node for the chop is shown in a transparent
circle, whereas the other nodes are shown as filled circles. Observe that in each
iteration, for each connected component, we use a different line embedding depending
upon the root node selected.

Fig. 4. Example of a weighted graph and two successive τ -chop operations.

We will show that there exists a “good” offset γ such that the cost of the cut is
within a constant factor of the dual cost.

Lemma 15. Given a graph G = (V,E), a distance metric � satisfying �(e) <
τ ∀e ∈ E, any root node v0 ∈ V , and a positive number τ , let the offset γ be uniformly
random in [0, τ ] and Fγ be the random cut corresponding to the τ-chop rooted at v0
with offset γ. Then the expected value of the random cut Fγ is

E [ν(Fγ)] ≤
6

τ

∑
v

ρ̂v(dv).

Proof. We consider the case when the graph comprises a single connected com-
ponent. The case of a disconnected (partitioned) graph can be dealt with by dealing
with each of the connected components (partitions) separately.

We begin by considering the line embedding g(u) induced by the shortest path
distance from v0 using distances �, i.e., g(u) = dist�(u, v0), ∀u ∈ V (H). Let β be the
maximum distance of a node from v0. We partition the interval [0, β] into � = �β/τ�
intervals (0, τ ], (τ, 2τ ], . . . , ((� − 1)τ, �τ ]. For any given γ ∈ [0, τ ] and 0 ≤ i < � let
Fγ,i ⊆ Fγ be the set of edges in δ(Sθ), where θ = iτ + γ. By the assumption that
�(e) < τ we see that Fγ = ��−1

i=0Fγ,i.



FLOWS AND CUTS IN POLYMATROIDAL NETWORKS 937

We start with

(5.4) E [ν(Fγ)] =
1

τ

∫ τ

γ=0

ν(Fγ) ≤
1

τ

�−1∑
i=0

∫ τ

γ=0

ν(Fγ,i),

where the inequality follows from the subadditivity of ν and the observation that
Fγ = ��−1

i=1Fγ,i. From the definition of Fγ,i we have

∫ τ

γ=0

ν(Fγ,i) =

∫ (i+1)τ

iτ

ν(δ(Sθ))dθ,

which we can upper bound, using Lemma 10, by the quantity 2
∑

u:g(u)∈[(i−1)τ,(i+2)τ ]

ρ̂u(du); here we use the fact that the length of each edge, by assumption, is at most
τ . Putting the observations together,

E [ν(Fγ)] ≤
1

τ

�−1∑
i=0

∫ (i+1)τ

iτ

ν(δ(Sθ))dθ

≤ 1

τ

�−1∑
i=0

⎛
⎝2

∑
u:g(u)∈[(i−1)τ,(i+2)τ ]

ρ̂u(du)

⎞
⎠

≤ 6

τ

∑
u

ρ̂u(du).

Remark 4. The preceding proof uses Lemma 10 as a black box. A slightly more
careful analysis of the cost of τ -chop, using similar arguments, shows that the bound
in Lemma 15 can be improved to 2

τ

∑
v ρ̂v(dv).

We use the following lemma from [35] that shows that if a graph excludes Kh as a
minor, then a sequence of h− 1 τ -chops will yield components with diameter O(h2τ).

Lemma 16 (see [35]). If G = (V,E) with distances �(e), e ∈ E excludes Kh as a
minor, then for any τ ≥ 1, any sequence of h − 1 iterated τ-chops on V results in a
partition V = S1 ∪ S2 ∪ · · · ∪ Sm such that diam(Si) ≤ O(h2τ), where diam refers to
the diameter in G using the shortest path distance dist�.

The algorithm for finding a multicut is as follows:

• Compute the optimal solution to the relaxation. This can be done efficiently
using the ellipsoidal algorithm, since the separation oracle for the dual is a
simple shortest path computation.
• Initialize F ← F0 := {e | �(e) ≥ τ}, i.e., remove all edges greater than length
τ .
• Set G′ ← G[E \ F ] with distance function �(e), e ∈ E(G′).
• Perform h− 1 τ -chops sequentially on G′ as follows. For the ith chop, choose
an arbitrary node in each connected component as the corresponding root
node and use uniformly independently chosen offsets γ ∈ [0, τ ]. Let Fi be the
cut associated with the ith τ -chop. For each i = 1, 2, . . . , h− 1, update

(5.5) F ← F ∪ Fi.

• Output F as the multicut.
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Since the graph avoids Kh as a minor, by Lemma 16, the diameter of every
component will be smaller than O(h2τ). By setting τ = 


Ch2 , with C large enough,
the diameter of every component will be smaller than�. We set� = 1

2 , which implies
that for 1 ≤ i ≤ k, si and ti are not in the same connected component.

Theorem 10. The algorithm outputs a multicut F such that

E [ν(F )] ≤ O(h3)
∑
v

ρ̂v(dv).

Proof. We compute the cost of the multicut F as follows:

(5.6) E [ν(F )] ≤ ν(F0) +

h−1∑
i=1

E [ν(Fi)] ,

since the cost function ν(.) is subadditive (see Lemma 2).
We first compute the cost ν(F0) as follows. Since for each edge e = uv ∈ E,

�(e) ≥ τ , either �(e, u) ≥ τ
2 or �(e, v) ≥ τ

2 as �(e) = �(e, u) + �(e, v). Define for v ∈ V ,
Av = {e ∈ δ(v) ∩ F0 | �(e, v) ≥ τ

2}. We can upper bound ν(F0) by
∑

v ρv(Av) since
the latter term counts each edge uv ∈ F0 in at least one of Au or Av. From the
definition of the Lovász extension,

ρ̂v(dv) =

∫ 1

0

ρv(d
θ
v)dθ ≥

∫ τ/2

0

ρv(d
θ
v)dθ ≥

τ

2
ρv(Av),

where we used nonnegativity of ρv for the first inequality above. The second inequality
follows from the fact that Av ⊆ dθ

v whenever θ ≤ τ
2 and the monotonicity of ρv. Thus,

we get

(5.7) ν(F0) ≤
∑
v

ρv(Av) ≤
2

τ

∑
v

ρ̂v(dv).

By Lemma 15 (and Remark 4), we get that, for the ith τ -chop, the expected cost
is

(5.8) E [ν(Fi)] ≤
2

τ

∑
v

ρ̂v(dv).

Substituting this into (5.6), we get

E [ν(F ] ≤ 2h

τ

∑
v

ρ̂v(dv) =
2Ch3

� ρ̂v(dv)(5.9)

= O(h3)
∑
v

ρ̂v(dv),(5.10)

using the choice � = 1
2 , which concludes the proof of the theorem.

Theorem 10 implies a weaker version of Theorem 9 with a bound of O(h3). Now
we sketch how the result of [23] implies the claimed bound of O(h2). The algorithm
in [35], in each iteration, chooses the root node v0 in each connected component of
the current graph, in an arbitrary fashion. In [23] it is shown that one can choose the
root nodes in a careful fashion such that after h − 1 iterations the diameter of each
connected component is at most O(hτ). The multicut algorithm is now modified to
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use the choice of the roots given by the algorithm from [23] and τ can be chosen to
be C/h rather than C/h2. This gives the desired improvement.

Proof of Corollary 2. A multicut in a node-weighted graph G can therefore be
modeled by a multicut in a polymatroidal network G′ obtained from G as follows. For
each v with weight w(v) we define the function ρv as ρv(S) = w(v) for each S ⊆ δ(v),
S �= ∅. Note that the multicut in the polymatroidal network G′ is defined as a set of
edges F but its cost ν(F ) takes into account the minimum weight set of nodes whose
removal ensures that all edges of F are removed. For instance, if an edge uv ∈ F is
assigned to u in the evaluation of ν(F ), then the node u will be part of the multicut
in the original graph G.

6. Concluding remarks. We considered multicommodity flows and cuts in
polymatroidal networks and derived flow-cut gap results in several settings. These re-
sults generalize some existing results for the well-studied edge and node-capacitated
networks. We briefly mention two results that can be obtained via the line em-
beddings technique that we did not include in this paper. A multicommodity flow
instance in an undirected network G = (V,E) is a product multicommodity flow in-
stance if there is a nonnegative weight function π : V → R+ and the demand Duv

between u and v is π(u) · π(v). The associated cut problem is interesting because
it corresponds to finding sparse separators in graphs, which in turn can be used to
find balanced separators; these have several applications. Arora, Rao, and Vazirani
[5] gave an O(

√
logn)-approximation, via a semidefinite programming relaxation, for

the sparsest cut problem in an undirected edge-capacitated network. Note that this
is not a traditional flow-cut gap result since the SDP-based relaxation used is strictly
stronger than the dual of the multicommodity flow relaxation. By interpreting the
main technical result in [5] as a line-embedding theorem, [25] obtained an O(

√
logn)-

approximation for sparsest cut in node-capacitated graphs; this can also be extended
to the polymatroidal setting via the techniques in section 5.1. It may also be possible
to extend the results of Agarwal et al. [3] on O(

√
logn) approximation for directed

cut problems to the polymatroidal setting.

Flow-cut gap questions for node-capacitated problems are less well understood
than the corresponding questions for edge-capacitated problems; line embeddings
provide a tool to obtain upper bounds on the gap but they do not provide a tight
characterization as �1-embeddings do for the edge-capacitated case. We hope that
polymatroidal networks and their applications to network information flow provide
a new impetus for understanding these questions. Recently, partially motivated by
our work, Lee, Mendel, and Moharrami [38] obtained results for node-capacitated and
polymatroidal versions of the well-known Okamura–Seymour theorem [47].

Appendix A. Proof of Lemma 5.

Proof. We will show the proof for the undirected case; the proof for the directed
case is similar. The program for maximum throughput flow is given by

max
∑
i

∑
p∈P(si,ti)

f(p)

s.t.∑
e:e∈S

∑
p:e∈p

f(p) ≤ ρv(S) ∀S ⊆ δ(v) ∀v ∈ V,

f(p) ≥ 0 ∀p ∈ P(si,ti), ∀i = 1 . . . k.



940 C. CHEKURI, S. KANNAN, A. RAJA, AND P. VISWANATH

The dual of the flow linear program can now be written. Let the dual variables
dv(Sv) correspond to the nontrivial constraint in the above linear program. Then the
dual linear program is

Pd := min
∑
v∈V

∑
S⊆δ(v)

dv(S)ρv(S)

s.t.

∑
e=uv:e∈p

⎛
⎝ ∑

S⊆δ(u):e∈S

du(S) +
∑

S⊆δ(v):e∈S

dv(S)

⎞
⎠ ≥ 1 ∀p ∈ P(si,ti), where e = uv,

du(S) ≥ 0 ∀u ∈ V ∀S ⊆ δ(u).

This can be rewritten equivalently as

Pd := min
∑
v∈V

∑
S⊆δ(v)

dv(S)ρv(S)

s.t.

�(e) :=

⎛
⎝ ∑

S⊆δ(u):e∈S

du(S) +
∑

S⊆δ(v):e∈S

dv(S)

⎞
⎠ ,

dist�(si, ti) ≥ 1, 1 ≤ i ≤ k,

du(S) ≥ 0 ∀u ∈ V ∀S ⊆ δ(u).

Let us define new variables �(e, u), �(e, v) for each edge e = uv and rewrite the
linear program:

min
∑
v∈V

∑
S⊆δ(v)

dv(S)ρv(S)

s.t.

�(e) := �(e, u) + �(e, v), where e = uv,

�(e, u) =
∑

S⊆δ(u):e∈S

du(S) ∀e ∈ E, e = uv,

�(e, v) =
∑

S⊆δ(v):e∈S

dv(S) ∀e ∈ E, e = uv,

dist�(si, ti) ≥ 1, 1 ≤ i ≤ k,

du(S) ≥ 0,

�(e, u), �(e, v) ≥ 0 ∀u ∈ V ∀S ⊆ δ(u).

The minimization is over the variables �(e, u) and dv(S). Observe for any fixed
v the variables dv(S), S ⊆ δ(v) influence only the variable �(e, v), e ∈ δ(v). Hence,
for any v and a fixed assignment set of values �(e, v), e ∈ δ(v) the optimal choice of
variables dv(S), S ⊆ δ(v) can be obtained by solving the following linear program:

min
∑

S⊆δ(v)

dv(S)ρv(S)

s.t.∑
S⊆δ(v):e∈S

dv(S) = �(e, v) ∀e ∈ E, e = uv,

du(S) ≥ 0, S ⊆ δ(v) ∀v ∈ V.
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Recalling the definition of the convex closure of a function, one sees that the value
of the above linear program is equal to ρ̃v(dv); note that for polymatroids we can
drop the constraint

∑
S dv(S) = 1 in the linear program for the convex closure. Since

the convex closure is equval to the Lovász extension (see section 3.1) we obtain the
desired equivalence of the formulations.

Appendix B. Proof of Theorem 7.

Proof. Let F be a set of edges that corresponds to an edge cut. Let V1, V2, . . . , Vh

be the nodes of the connected components in G−F . The sparsity of F is ν(F )/D(F ),
where D(F ) is the sum of the demands of pairs that are separated by F .

Construct an undirected graphH with nodes v̂1, . . . , v̂h and edges v̂iv̂j with weight
wij equal to the demand between partition Vi and Vj in the original graph G. For
graph H , there exists a weighted max-cut, whose value is greater than half the sum
of all the weights (since a random bi-partition of H where each edge gets cut with
probability half has expected weight equal to half the sum of all weights). Let this
max-cut partition H into sets A and V \ A and let S = ∪i:v̂i∈AVi. Now consider the
bi-partition cut FS consisting of the edges between S and V \S. From the construction
of S, we have D(FS) ≥ D(F )/2. Moreover, since FS ⊆ F we have ν(FS) ≤ ν(F ).
Thus, the sparsity of FS is at most twice that of F .

To see that this factor is tight, consider a polymatroidal network with n + 1
nodes v0, v1, . . . ,vn, with edge ei between v0 and vi, for each i ∈ {1, 2, . . . , n} and
assume for simplicity that n is even; the network is a star with center v0. The only
capacity constraint is a polymatroidal constraint at node v0, which constrains the total
capacity of every nonempty subset of {e1, . . . , en} to be 1 (in effect this simulates a
node capacity of 1 at v0). The demand graph is a complete graph on v1, . . . , vn with
each demand value set to 1.

Now consider an edge cut F which removes all the edges: ν(F ) = 1 and D(F ) =(
n
2

)
, and hence the sparsity is 2

n(n−1) . Consider a bi-partition cut (S, V \S) such that S

does not contain v0 and let FS = δ(S). We have ν(FS) = 1 and D(FS) = |S|(n−|S|);
the sparsity is minimized when |S| = n

2 and is given by 4
n2 . Thus the sparsity of the

best bi-partition cut is a factor of 2(n−1)
n bigger than the sparsity of the best edge

cut. This factor approaches 2 as n approaches ∞.
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subject to a matroid constraint, in Proceedings of IPCO, 2007, pp. 182–196.

[11] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a submodular set function
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