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Abstract

We consider the Maximum Node Disjoint Paths
(MNDP) problem in undirected graphs. The input con-
sists of an undirected graph G = (V,E) and a collection
{(s1, t1), . . . , (sk, tk)} of k source-sink pairs. The goal is
to select a maximum cardinality subset of pairs that can
be routed/connected via node-disjoint paths. A relaxed
version of MNDP allows up to c paths to use a node,
where c is the congestion parameter. We give a poly-
nomial time algorithm that routes Ω(OPT/poly log k)
pairs with O(1) congestion, where OPT is the value of
an optimum fractional solution to a natural multicom-
modity flow relaxation. Our result builds on the recent
breakthrough of Chuzhoy [17] who gave the first poly-
logarithmic approximation with constant congestion for
the Maximum Edge Disjoint Paths (MEDP) problem.

1 Introduction

In this paper, we consider the Maximum Node Disjoint
Paths (MNDP) problem in undirected graphs. An
instance of MNDP consists of an undirected graph G =
(V,E) and a collection M = {(s1, t1), . . . , (sk, tk)} ⊆
V × V of k source-sink pairs. The goal is to route a
maximum cardinality subset of the source-sink pairs via
node-disjoint paths. Formally, the goal is to select a
maximum cardinality subset M′ ⊆ M and a collection
of node-disjoint1 paths P such that, for each pair
(si, ti) ∈ M′, there is a path in P with endpoints
si and ti. MNDP is an optimization version of the
classical decision problem NDP in which the goal is to
decide whether all the pairs in M can be routed in G
via node disjoint paths. NDP and MNDP are related
to, and generalize, the corresponding problems EDP
and MEDP where the paths for the pairs are required
to be edge-disjoint. These disjoint paths problems
have been well-studied because of their connections
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1It is important that the paths do not share endpoints as well

as internal nodes. This is in contrast to some settings in which
one may want the paths to be disjoint only on the internal nodes.

to algorithms, combinatorial optimization, and graph
theory. In addition, these problems and their variants
can be used to model a variety of routing problems in
networks, and have several applications in practice.

Karp showed that NDP is NP-complete when
k is part of the input (in his original list of NP-
complete problems). EDP is also NP-complete [21].
Over the years it has been shown that very restricted
instances of disjoint paths problems are NP-complete,
see [42] for a survey. In contrast, when k is a fixed
constant, Robertson and Seymour [49], building on
several tools from their seminal graph minor project,
gave a polynomial-time algorithm for NDP. In this
paper we are concerned with the case when k is part of
the input and consider the approximability of MNDP.
MNDP is easily seen to be NP-hard via a reduction
from NDP. There is also hardness coming from the
problem of choosing which pairs to connect. This can
be seen from the fact that MEDP is NP-hard (and
in fact APX-hard to approximate) in capacitated trees
[26]; routing is trivial in trees since there is a unique
path connecting any given pair, nevertheless, the subset
selection is hard.

Approximation algorithms for MEDP and MNDP
have been studied extensively with MEDP receiving the
most attention. The starting point for many approxima-
tion algorithms for disjoint paths problems is a natural
multicommodity flow based linear programming relax-
ation (see Section 2 for the formal description); random-
walk based algorithms for routing on expanders are an
exception. However, a simple example shows that the
integrality gap of this flow relaxation is Ω(

√
n) (here

n is the number of nodes in G) for both MEDP and
MNDP even on planar graph instances [26]. This arises
due to a crossing obstruction in the plane that allows
only one pair to be routed while the fractional solu-
tion can route 1/2 unit of flow for Ω(

√
n) pairs. This

example naturally led to the question of whether the
integrality gap of the flow relaxation becomes substan-
tially smaller if one removes the topological obstruction
by allowing up to two paths to use an edge (or assum-
ing that edges/nodes have capacity 2). More generally,
what is the trade-off between the congestion c (the num-



ber of paths that are allowed to use an edge/node) and
the integrality gap of the flow relaxation? Raghavan
and Thompson [45] showed via randomized rounding
that a constant factor approximation is achievable if
c = Ω(log n/ log logn) (even in directed graphs). It is
only in the last few years that substantial and excit-
ing progress was achieved for c = o(log n/ log log n). In
a recent breakthrough, Chuzhoy [17] obtained a poly-
logarithmic approximation for MEDP with congestion
14; Chuzhoy and Li [19] improved the congestion to 2.
Our main result is a poly-logarithmic approximation for
MNDP with constant congestion and is encapsulated in
the following theorem.

Theorem 1.1. There is a randomized polynomial time
algorithm that, given an instance of MNDP in an
undirected graph G with n nodes and k pairs, routes
Ω(OPT/poly log k) pairs with O(1) congestion, where
OPT is the value of an optimum solution to the multi-
commodity flow relaxation.

The congestion we can guarantee is 51. We believe
that it can be further reduced, however, we have not
attempted to optimize it in the interests of keeping
the algorithmic details and proofs simple and clear.
An O(

√
n)-approximation is known for MNDP [39];

with congestion c the best previous approximation in
general graphs is O(n1/c) which follows from random-
ized rounding. Moreover, via known hardness results
for MEDP [3], for any constant c there is no O(1)-
approximation for MNDP with congestion c unless
NP ⊆ ZPTIME(npoly logn). We discuss a specific mo-
tivation for our study of MNDP.

MEDP, MNDP and connections to treewidth
and graph theory: Chuzhoy’s work on MEDP in-
troduces beautiful new ideas while utilizing several con-
cepts and tools from previous work [44, 9, 33, 46, 2, 52].
In particular, the work of [9] on well-linked decomposi-
tions for routing problems reduced the poly-logarithmic
approximability of MEDP and MNDP with constant
congestion to the following graph-theoretic question. If
a graph G has a well-linked set2 of size k, does it have a
constant congestion crossbar of size Ω(k/poly log k)? A
crossbar is a switch-like routing structure that can route
any permutation at its interface — see [9] for the pre-
cise definitions. Chuzhoy’s work answered this question
affirmatively by embedding, with constant congestion,
an expander of size Ω(k/poly log k) into any graph G
that has a well-linked set of size k; the edges of the
expander are embedded as paths in G that cause con-
stant edge congestion. Our result shows that the graph-

2A set X is well-linked in G iff, for any two equal-sized subsets
Y and Z of X, there is a collection of disjoint Y -Z paths in G.

theoretic question has an affirmative answer for node-
disjoint routing as well. In the node-capacitated case, a
graph G has a well-linked set of size k iff the treewidth
of G is Ω(k). Thus, our result implies that if G has
treewidth k then one can embed an expander of size
Ω(k/poly log k) such that the edges of G can be mapped
to paths that cause constant node congestion. This has
the following interesting connection to a central result
in the graph minor project of Robertson and Seymour.

Theorem 1.2. (Robertson and Seymour [48])
Let r, h > 0 be integers and let G be a graph of treewidth
greater than r4h2(r+2). Then G contains either the r×r
grid or the complete graph Kh as a minor.

The quantitative bounds have been subsequently
improved by Robertson, Seymour and Thomas.

Theorem 1.3. ([47]) Let r, h > 0 be integers and let G

be a graph of treewidth at least 205gh3

. Then G contains
either the r × r grid or the complete graph Kh as a
minor.

We note that a clique minor Kh is a crossbar of size h;
an h × h grid minor is also a crossbar of size h but it
requires congestion 2. Thus, Theorem 1.3 says that if a
graph G has treewidth at least k then it is guaranteed
to have a congestion 2 crossbar of size Ω(log1/4 k). Our
result shows that, by allowing constant congestion, one
can obtain a crossbar of size Ω(k/poly log k), which is
a significant improvement. As previously mentioned,
Chuzhoy and Li [19] obtained a congestion 2 poly-
logarithmic approximation for MEDP, a remarkably
tight result! It is conceivable that one can extend their
result (although we suspect it will be technically quite
challenging) to obtain a similar result for MNDP. These
results and some of the techniques developed along the
way may have other applications in (algorithmic) graph
theory.

Our algorithm for MNDP follows Chuzhoy’s high-
level framework for MEDP. Node problems in rout-
ing and network design have similarities to their cor-
responding edge problems, but often exhibit non-trivial
differences in the technical details or approximability.
The algorithm in [17] uses several tools; some of them
are straightforward to generalize to the node setting and
some are not. In the following subsection, we give a
high-level overview of Chuzhoy’s algorithm for MEDP
and our adaptation of it to MNDP, while indicating
which parts generalize easily and which require new
technical ideas. This also serves as a roadmap for the
reader who may not be familiar with [17]. This de-
scription will gloss over several details; Section 3 gives
a formal description of the algorithm.



1.1 High-level Overview of Algorithm and
Technical Contribution
Let (G,M) be an instance of the MNDP problem. We
may assume without loss of generality that the nodes
participating in the pairs of M are distinct and they
have degree one in G. Let T denote the set of all nodes
participating in the pairs of M; we refer to the nodes
in T as terminals.

Reduction to well-linked instances: The first (and
a key) step is to reduce a general instance of the problem
to one in which the terminals are well-linked. This is
done via the well-linked decomposition framework of [9]
which applies to edge as well as node problems. An
important technical ingredient is a grouping technique
that, given a set X of nodes that is approximately
well-linked, it identifies a subset X ′ of X that is well-
linked. This boosting technique is simple in the edge-
capacitated setting [7] but is more involved in the node-
capacitated setting [9, 10].

Embedding an expander in a well-linked in-
stance: Suppose T is well-linked. The second ingre-
dient is to show that an expander of sufficiently large
size can be embedded into G with constant node conges-
tion. Once this is done, a large number of pairs can be
routed via the expander (there are technical details on
how to embed an expander that can be reached by T ).
To embed the expander, Chuzhoy [17] builds on a crucial
idea from Rao and Zhou’s [46] work on approximating
MEDP when G has a large (poly-logarithmic) global
minimum-cut value. They embedded an expander as
follows. Khandekar, Rao, and Vazirani [33] describe an
algorithm that, given a graph G with a well-linked set
X of size k, embeds an expander of size k in G but
with congestion O(log2 k). This may not seem so use-
ful but the important fact about the KRV algorithm
is that the expander is embedded in O(log2 k) rounds
where in each round the well-linkedness of X is used
to find a collection of |X|/2 disjoint paths. Rao and
Zhou used the large minimum cut assumption to split G
into Ω(log2 k) edge-disjoint subgraphs of G via Karger’s
sampling scheme [30], and simulated each round of the
KRV algorithm in a separate subgraph. Subsequently,
Andrews [2], using some ideas from [46] and properties
of Raecke’s hierarchical decomposition [44], obtained a
poly-logarithmic approximation with O(poly(log log n))
congestion; Andrews’ result was the first approxima-
tion algorithm that achieves a sub-polynomial approx-
imation factor using o(log n) congestion. We note that
both Rao-Zhou’s sampling approach and Andrews’ ap-
proach based on the Raecke tree decomposition do not
admit an easy extension to node-disjoint routing.

Chuzhoy’s key high-level contribution is based on a
new approach to simulating the KRV algorithm and it

consists of two ingredients.
Finding good subsets: Chuzhoy shows that if G has a
well-linked set X of size k, for any integer parameter h,
one can find h node-disjoint subsets S1, S2, . . . , Sh such
that each Si has a boundary Bi and a subset Di ⊆ Bi
such that |Di| = Ω(k/(poly(h, log k)) and Di is approx-
imately well-linked in G[Si]; Chuzhoy refers to such a
set as a good subset. In other words, G can be split
into h disjoint subgraphs each of which has a well-linked
set of size Ω(k/poly(h, log k)). The idea is to simulate
each iteration of the KRV algorithm inside a separate
subgraph G[Si] by choosing h = Ω(log2 k). The algo-
rithm of Chuzhoy for finding such a partitioning relies
on edge-well-linked sets and their properties, and it is
quite technical and non-trivial. We believe that the al-
gorithm can be generalized to apply directly to node-
well-linked sets, however, we do not have such an algo-
rithm yet. Instead, we apply a simple idea to use the
algorithm of Chuzhoy in a black box fashion. Using a
preprocessing step, we can assume that the graph G has
maximum degree O(log n). An edge-well-linked set is an
approximately node-well-linked where the approxima-
tion depends linearly on the degree. Since good subsets
are already weakly well-linked (the well-linkedness pa-
rameters are later boosted using the grouping technique
that we mentioned earlier), this loss does not matter too
much and we can absorb it into the approximation ratio
rather than in the congestion which we cannot afford to
do.
Connecting good subsets via disjoint trees: The second
ingredient in Chuzhoy’s approach for embedding an
expander is the following. The good subsets allow each
iteration of KRV to be simulated inside a separate part
of G so that the edges used in each iteration are disjoint.
However, to embed an expander, one needs to have for
each node v of the expander a representative vi in the
boundary of G[Si]; further, all the representatives of
v have to simulate a single node. For this purpose
Chuzhoy ensures that the boundaries of the good sets
are in fact connected to the terminals T and hence are
well-linked themselves. Moreover, she uses this property
and several technical tools based on connectivity, to find
k′ = Ω(k/poly log k) trees T1, T2, . . . , Tk′ such that (i)
the trees are nearly edge-disjoint, in the sense that no
edge of G is in more than a constant number of trees,
(ii) each tree Tj has a leaf in the boundary of each
good subset Si, and (iii) the leaves of the different trees
are disjoint. Thus, each Tj simulates a node v of the
expander and the leaves of Tj are the representatives of
v in each good subset.

Our main technical contribution is in implementing
the preceding step for MNDP; we need to find trees
that are nearly node-disjoint. The algorithm of Chuzhoy



for finding the disjoint trees is involved; she uses the
splitting-off operation that preserves edge-connectivity
[41, 23, 29] to create an auxiliary graph and then shows
the existence of a bounded degree spanning tree T in
the auxiliary graph via a result of Singh and Lau [52].
This tree T is then used as a “template” to generate the
required nearly edge-disjoint trees. To obtain nearly
node-disjoint trees, we instead rely on an element-
connectivity reduction step [28, 16, 14]; however, this
reduction step is not as clean as the edge-connectivity
step and does not eliminate “Steiner” nodes that can
have high degree. Nevertheless, we are able to apply
the rough high-level idea of finding a bounded-degree
spanning tree but we use a different (a weaker but
somewhat more intuitive) argument that is based on
the notion of toughness of a graph [54, 25]. We then do
a postprocessing step to reduce the high-degree Steiner
nodes and make them to essentially behave as edges.
We refer the reader to Section 3 and Section 5 for more
details.

Other Related Work: We refer the reader to [50, 42]
for tractable cases of EDP. We mostly restrict our
attention to undirected graphs. The literature on
approximation algorithms for disjoint paths problems
has focused primarily on MEDP. The best known
approximation for MEDP is O(

√
n) [11], and there is a

matching approximation for MNDP [39]; here n is the
number of nodes in the input graph. Various special
classes of graphs have been studied; constant factor and
poly-logarithmic factor approximations for MEDP are
known for trees [26, 15], graphs with bounded treewidth
[13], grids and grid-like graphs [34, 37, 38], Eulerian
planar graphs [35, 31], graphs with good expansion
[5, 24, 36, 40], and graphs with large global minimum
cut [46]. MEDP and MNDP with congestion have
also been well-studied, especially given the integrality
gap of the flow relaxation; it is known that randomized
rounding techniques give an O(d1/c) approximation,
where d is the maximum flow path length in the
fractional solution and c is the congestion parameter
[53, 39, 4, 6]; this holds even for directed graphs and it
leads to an O(n1/c) approximation. Improved bounds
are obtained by taking advantage of fractional solutions
with short paths, for example, in expanders. The well-
linked decomposition ideas in [7, 8, 9] led to an O(log k)-
approximation for MEDP and MNDP in planar graphs
with congestion 2; the approximation for MEDP was
subsequently improved to an O(1)-approximation in
[12, 51]. Finally, [32] obtained an O(n3/7poly log n)-
approximation ratio for MEDP with congestion 2 prior
to the result of [19] that obtained a poly-logarithmic
approximation.

In terms of hardness of approximation, despite the

polynomial-factor upper bounds, the first non-trivial
lower bounds were established fairly recently. It is
known that MEDP (and hence also MNDP) does not

admit an O(log1/2−ε n)-approximation unless NP ⊆
ZPTIME(npoly logn) [3]; under the same hardness

assumption there is no O
(

(log n)
1−ε
c+1

)
-approximation

with congestion c [3]. As we mentioned, the lat-
ter result rules out for MEDP and MNDP a con-
stant factor approximation for any constant congestion.
MEDP is significantly harder in directed graphs; there
is no n1/2−ε-approximation unless P = NP [27], and
with congestion c there is no nΩ(1/c)-approximation un-
less NP ⊆ ZPTIME(npoly logn) [18]; these hardness
bounds match the approximation ratios guaranteed by
randomized rounding.

Organization: We build on several tools from previ-
ous work; Section 2 discusses the relevant definitions
and theorems. Section 3 describes our algorithm and
its proof assuming two key technical theorems on em-
bedding an expander in a graph with a well-linked set.
These theorems are proved in Section 4 and Section 5,
respectively.

2 Preliminaries and Setup

In the following, we work with an instance (G,M) of the
MNDP problem, where G = (V,E) is an undirected
graph and M = {(s1, t1), . . . , (sk, tk)} is a collection
k node pairs. We let T denote the set of all nodes
participating in the pairs of M. We refer to the nodes
in T as terminals. Each terminal has degree one in G
and M is a perfect matching on T .

For a set S of nodes, we let outG(S) denote the
set of all edges e ∈ E(G) such that e has exactly one
endpoint in S. Let bdG(S) denote the set of all nodes
v ∈ S such that v is incident to some edge of outG(S);
we refer to bdG(S) as the inner boundary of S. Let
NG(S) be the set of all nodes v /∈ S such that v is
incident to some edge of outG(S); we refer to NG(S) as
the outer boundary of S. We may omit the subscript if
the graph G is clear from the context.

Given two disjoint subsets A,B ⊂ V in a graph G
such that |A| ≤ |B| we say that P is a collection of A-B
paths if the following properties hold: (i) the endpoints
of the paths in P are in A ∪B and (ii) each node of A
is the endpoint of exactly one path and each node of B
is the endpoint of at most one path.

LP relaxation: We consider a standard multicommod-
ity flow relaxation for the MNDP problem. Let Pi de-
note the collection of all paths that connect si to ti in
G, and let P = ∪iPi; from our assumption onM form-
ing a perfect matching on T , Pi and Pj are disjoint for
i 6= j. For each path p ∈ P, the relaxation has a vari-



able f(p) which represents the amount of flow that is
sent on p. We let xi denote the total flow routed for the
pair (si, ti). We use f to denote the vector that has an
entry for each path p ∈ P that is equal to f(p), and we
let |f | = ∑i xi.

(NDP-LP)

max

k∑
i=1

xi

s.t.
∑
p∈Pi

f(p) = xi 1 ≤ i ≤ k
∑
p: v∈p

f(p) ≤ 1 v ∈ V (G)

0 ≤ xi ≤ 1 1 ≤ i ≤ k
f(p) ≥ 0 p ∈ P

The above path-based relaxation has an exponential (in
n) number of variables but a polynomial number of non-
trivial constraints. It can be solved in polynomial time
since the separation oracle for the dual is a shortest
path problem. Alternatively, there is an equivalent LP
formulation that is polynomial-sized.

Degree reduction: For technical reasons we need to
work with a graph that has low degree. We accomplish
this as follows. Using a standard randomized rounding
argument, we can convert a feasible solution to the flow
relaxation to another feasible solution such that the flow
on each path is either zero or Ω(1/ log n), while losing
only a constant factor in the value of the flow.

Lemma 2.1. (Lemma 1.1 in [9]) Let f be a feasible
solution to NDP-LP. Then there is a solution f ′ such
that |f ′| = Ω(|f |) and f ′(p) = 0 or f ′(p) = Ω(1/ log n)
for all p ∈ P.

Let G′ be the subgraph of G induced by the support of
the modified flow f ′; that is, G′ consists of all edges of
G used in some path p with f ′(p) > 0. Since each node
capacity is 1, the maximum number of edges incident to
any node is O(log n). We will henceforth assume that
the graph we are working with has degree at most c log n
for some fixed constant c.

Remark 2.2. We do not believe that this degree reduc-
tion step is crucial but need it since we use a result
from [17] in a black box fashion. The degree can be up-
per bounded by O(log2 k) at a loss of a poly log k fac-
tor in the approximation ratio using techniques from
[9, 46, 33]. Using this bound instead of O(log n) the
approximation ratio can be shown to be poly log k with-
out a dependence on n.

Sparse node separators: We need an approximation
algorithm for finding a sparse node separator. This
will be used (in a black box fashion) to obtain a well-
linked decomposition. With this goal in mind, let
cap : V → R+ be a node-capacity function and let
π : V → R+ be a weight function. A node separator
is a set S ⊂ V that partitions V −S into A and B such
that there are no edges between A and B. The sparsity3

of S is defined to be cap(S)
π(A∪S)π(B∪S) . An O(

√
log k)-

approximation for sparse node separators is given in [22]
where k is the support of π (the number of nodes with
non-zero π value); see also [1].

Well-linked sets: As we discussed already, well-linked
sets and the reduction to well-linked instances of disjoint
paths is an important ingredient. Let X ⊆ V be a set
of nodes and π : X → [0, 1] be a weight function on
X. We are primarily concerned here with node-well-
linked sets but we start with the easier to define notion
of edge-well-linkedness. We say that X is π-edge-well-
linked in G if |δG(S)| ≥ π(X∩S) for all S ⊂ V such that
π(X∩S) ≤ π(X∩(V \S)). If π(u) = α for all u ∈ X we
say that X is α-edge-well-linked, and in particular X is
edge-well-linked if α = 1. Using Menger’s theorem, it
is straightforward to show that if X is edge-well-linked
then for any two disjoint subsets Y,Z of X such that
|Y | = |Z| = k there are k edge-disjoint Y -Z paths in
G. In the context of node-well-linked sets, a separator-
based definition was given in [9]; here we give a slightly
refined and precise definition that is helpful. We say
that X is node-well-linked if for any two disjoint subsets
Y,Z of X such that |Y | = |Z| = k there are k node-
disjoint Y -Z paths in G. This is the definition that is
standard in the literature on treewidth. We would like
to extend it to weight functions π : X → [0, 1]. Assume
that each node in X has degree 1 in G and no two nodes
u, v ∈ X share a neighbor in G. In this case we say that
X is π-node-well-linked if |NG(S)| ≥ π(X ∩ S) for all
sets S such that π(X ∩S) ≤ π(X ∩ (V \S)). In general,
we say that X is π-node-well-linked in G if X ′ is π′-
node-well-linked in G′, where G′, X ′, and π′ are defined
as follows. For each node u ∈ X, we attach a new leaf
node u′ to u; we let G′ denote the resulting graph and
we let X ′ denote the set of all new leaf nodes. For each
node u′ ∈ X ′, we set π′(u′) = π(u). As in the edge
case, we say that X is α-node-well-linked if π(u) = α
for all u ∈ X. The following lemma follows easily from
Menger’s theorem.

3One has to be a somewhat careful in defining sparsity of node
separators. This is in contrast to the definitions for sparsity

of edge separators. We refer the reader [22]; we follow their
definition.



Lemma 2.3. Let G be a graph and let X be a set that
is α-node-well-linked in G, where α ∈ (0, 1]. For any
two subsets Y and Z of X such that |Y | = |Z|, there is
a collection of Y -Z paths P such that each node of G
appears in at most d1/αe paths of P.

Well-linked decomposition: The following theorem
allows us to reduce a general instance of MNDP to one
in which the terminals are (approximately) node-well-
linked.

Theorem 2.1. ([9]) Let OPT be the value of a solution
to NDP-LP for a given instance (G,M) of MNDP in
a graph G. Let β(G) ≥ 1 be an upper bound on the
approximation ratio of a polynomial time algorithm for
the sparsest node separator problem in G. Then there is
a polynomial time algorithm that partitions G into node-
disjoint induced subgraphs G1, G2, . . . , G` and it assigns
a weight function πi : V (Gi) → R+ to each graph Gi
such that the function πi has the following properties.
Let Mi be the set of all pairs of M that are contained
in Gi, and let Ti be the set of terminals of Mi.

(1) πi(u) = πi(v) for uv ∈Mi.

(2) Ti is πi-node-well-linked in Gi.

(3)
∑`
i=1 πi(Ti) = Ω(OPT/(β(G) log OPT)) =

Ω(OPT/ log1.5 k).

Grouping technique: We also need a technique to
boost well-linkedness in the following sense: Given a set
X that is α-well-linked, find a subset X ′ that is well-
linked. This is relatively easy for edge-well-linkedness
[7] but is more involved in the node case. The following
theorem strengthens weaker versions that were initially
given in [9].

Theorem 2.2. ([10]) Let B be a π-node-well-linked set
in G and let M be a perfect matching on B such that
π(u) = π(v) for all uv ∈ M . Then there is a matching
M ′ ⊆ M with endpoints B′ ⊆ B such that B′ is 1/4-
node-well-linked in G and |M ′| = 2|B′| = Ω(π(B)).
Moreover, we can find B′ and M ′ in polynomial time.

Combining Theorem 2.1 and Theorem 2.2, we can
reduce an arbitrary instance of MNDP to one in which
the terminals are 1/4-node-well-linked at the loss of
a O(log1.5 k)-factor in the approximation ratio. Here
we use the O(

√
log k)-approximation for sparse node

separators from [22].

Routing in edge-expanders: A graph G = (V,E)

is an α-edge-expander iff minS⊆V : |S|≤|V |/2
|δ(S)|
|S| ≥ α.

We make use of the following theorem on routing

along node-disjoint paths in edge-expanders that have a
bound on the degree (and hence are also node-expanders
with a weaker parameter that depends on the degree).

Theorem 2.3. ([46]) Let G = (V,E) be a d-regular α-
edge-expander on n nodes. Suppose that n is even and
the nodes of G are partitioned into n/2 disjoint demand
pairs M. There is a polynomial time algorithm that
routes a subset M′ ⊆ M of size Ω(αn/(d2 log n)) on
node-disjoint paths of G.

The cut-matching game: Following [46, 17], we
use the cut-matching game of Khandekar, Rao, and
Vazirani [33] in order to embed an expander into G.
In the cut-matching game, there is a set V of nodes,
where |V | is even, and two players, the cut player and
the matching player. The goal of the cut player is
to construct an edge-expander in as few iterations as
possible, whereas the goal of the matching player is to
prevent the construction of the edge-expander for as
long as possible. The two players start with a graph X
with node set V and an empty edge set. The game then
proceeds in iterations, each of which adds a set of edges
to X . In iteration j, the cut player chooses a partition
(Yj , Zj) of V such that |Yj | = |Zj | and the matching
player chooses a perfect matching Mj that matches the
nodes of Yj to the nodes of Zj . The edges of Mj are then
added to X . Khandekar, Rao, and Vazirani [33] showed
that there is a strategy for the cut player that guarantees
that after O(log2 |V |) iterations the graph X is a 1/2-
edge-expander. Orecchia et al. [43] strengthened this
result by showing that after O(log2 |V |) iterations the
graph X is a Ω(log |V |)-edge-expander.

Theorem 2.4. ([43]) There is a probabilistic algo-
rithm for the cut player such that, no matter how the
matching player plays, after γCMG(|V |) = O(log2 |V |)
iterations, the graph X is an Ω(log |V |)-edge-expander
with constant probability.

We use γCMG(n) to denote the number of iterations
of the cut-matching game required in the proof of the
preceding theorem for |V | = n. Note that the resulting
expander is regular with degree equal to γCMG(n).

Element connectivity and a reduction lemma:
Let G = (V,E) be an undirected graph and let V be
partitioned into black nodes B and white nodes W .
The element connectivity of two black nodes u and v,
denoted by κ′G(u, v), is the maximum number of paths
in G from u to v that are disjoint in edges and white
nodes (the edges and white nodes are the elements).
By Menger’s theorem, the element connectivity of u
and v is equal to the minimum number of elements
whose removal disconnects u and v. It is convenient



to assume that the black nodes form an independent
set by subdividing any edge connecting two black nodes
and placing a new white node. In this case κ′G(u, v)
for u, v ∈ B is equal to the maximum number of u-
v paths that are disjoint in white nodes. Hind and
Oellermann [28] described a graph reduction step that
preserves the global element connectivity of the black
nodes. Chekuri and Korula [14] generalized this result
in order to preserve the pairwise element-connectivity
of the black nodes.

Lemma 2.4. ([14]) Let G be an undirected graph and
B be a set of black nodes. Let pq be any edge where
p, q ∈ V (G) − B and let G1 = G − pq and G2 = G/pq,
where G− pq is the graph obtained from G by removing
the edge pq and G/pq is the graph obtained from G by
contracting the edge pq. Then one of the following holds:
(i) for all u, v ∈ B, κ′G1

(u, v) = κ′G(u, v), or (ii) for all
u, v ∈ B, κ′G2

(u, v) = κ′G(u, v).

The preceding lemma can be used to transform the
original graph G into a new graph G′ in which the
element connectivity of the black nodes is preserved and
the white nodes form an independent set; hence G′ is
bipartite if the black nodes also form an independent
set. A white node v in G′ corresponds to a connected
subgraph of G consisting of only white nodes; this is the
subgraph that was contracted to form v.

3 Expander Embedding and Routing
Algorithm

In this section we describe the details of the routing al-
gorithm; the main ingredient is the expander embedding
algorithm that relies on the framework and approach of
[17]. We state and use two theorems that are proved in
subsequent sections. The algorithm can be described as
follows.

(1) Solve the flow relaxation NDP-LP to obtain a
fractional solution (x, f). Use degree reduction
(Lemma 2.1), well-linked decomposition (Theo-
rem 2.1), and grouping (Theorem 2.2) to reduce
the original instance to a collection of separate in-
stances such that the graph in each instance has
maximum degree ∆ = O(log n) and the terminals
are 1/4-node-well-linked.

(2) Let (G,M) have k pairs such that the terminals are
1/4-node-well-linked and ∆(G) = O(log n). Em-
bed, with O(1) congestion, an expander in G of size
k′ = Ω(k/poly(∆, log k)) and degree poly log(k).

(3) Use the expander to route Ω(k′/poly log k) pairs
from M with O(1) congestion.

The first step incurs an O(log1.5 k)-factor loss in the
approximation. The heart of the matter is the second
step. Following the outline in Subsection 1.1, it con-
sists of two steps: (i) finding a node-disjoint collection
of “good” clusters to simulate the KRV cut-matching
game, and (ii) finding representatives in each cluster
and connecting them via (nearly-disjoint) trees to sim-
ulate each node of the expander. We start with the
clustering step and we prove Theorem 1.1 at the end of
the section.

3.1 Family of good clusters We extend the defi-
nition of a good set from [17] to the node-capacitated
setting as follows; we refer to such sets as clusters.

Definition 3.1. A subset S ⊆ V (G)−T of nodes is a
(h, α)-good-cluster iff there is a subset B ⊆ bdG(S) of
nodes with the following properties:

• |B| ≥ h.

• B is α-node-well-linked in G[S].

• There is a collection of B-T paths P in G that are
node-disjoint.

The subset B ⊆ bdG(S) of boundary nodes is part of
the definition of a good cluster. In the following, when
we say that we are given a good cluster S, we mean that
we are given the set S and the subset B ⊆ bdG(S). The
parameters in the definition give flexibility in finding
good clusters; the grouping technique allows us to boost
the well-linkedness later.

Theorem 3.1 below shows that one can find a
family of node-disjoint good clusters in graph G (with
appropriate parameters) if G has a well-linked set. We
prove it in Section 4 via a corresponding theorem in [17]
for the edge-capacitated case.

Theorem 3.1. Let G be a graph that contains a set
T of nodes with the following properties: T is 1/4-
node-well-linked in G, |T | = 2k, and each node in
T has degree one in G. Let ∆ be the maximum
degree in G. There is an efficient randomized algorithm
that with high probability constructs a family F =
{S1, . . . , Sγ} of γ = γCMG(k) = Θ(log2 k) node-disjoint
sets such that each Si is a (k∗, 1/4) good cluster, where

k∗ = Ω
(

k
∆3 log14 k log log k

)
. Moreover, the algorithm also

outputs for each Sj a set Bj ⊂ bdG(Sj) such that (i)
|Bj | = k∗, (ii) Bj is 1/4-well-linked in G[Sj ], and (iii)
there is a collection of node-disjoint Bj −T paths in G.

Remark 3.2. There is a technical requirement in the
preceding theorem that ∆ is sufficiently small compared
to k. A poly-logarithmic approximation is easy if the
condition is not satisfied. This is explained in Section 4.



3.2 Connecting the good sets and expander
embedding We now describe the algorithm that uses
the good clustering from the previous subsection to
embed an expander X in G. We work with two
parameters, k∗ and k′, where k∗ is the parameter
guaranteed by Theorem 3.1; it is helpful to simply think
of k∗ as k/poly log(k + n). We set k′ = k∗/(6γ4);
we round k′ down to the nearest even integer. The
embedding follows the approach from [17, 46].

The expander X = (V (X ), E(X )) has k′ nodes
v1, v2, . . . vk′ . The embedding maps each node vi ∈
V (X ) to a connected subgraph Ci of G; the k′ connected
subgraphs C1, . . . , Ck′ are nearly disjoint in that each
node of G appears in only a constant number of them.
The embedding of each edge vivi′ ∈ E(X ) is a path
of G connecting Ci to Ci′ ; the paths corresponding
to the edges of X also have constant node congestion
in G. We also need the expander to be reachable
from the terminals. For this purpose an additional
property that is guaranteed is that each Ci contains
a unique terminal; by relabeling terminals Ci contains
ti ∈ T . We can thus identify vi with the terminal ti and
interpret the expander as being embedded on a subset
of the terminals.

Recall that the plan for embedding the expander
is to simulate iteration j of the KRV cut-matching
game [33] in cluster Sj (thus the number of clusters
is γ = γCMG(k)) using the well-linked set Bj ⊂
bdG(Sj). Each node vi of X has a representative
bi,j ∈ Bj for each j such that 1 ≤ j ≤ γ, and
the subgraph Ci connects the nodes bi,1, . . . , bi,γ and
ti. In fact, the algorithm first finds the nearly-disjoint
connected subgraphs C1, . . . , Ck′ such that each Ci has
a representative in each Bj ; the well-linkedness of Bj
implies that the identity of the representative for Ci
in Bj is not important. The theorem, whose proof is
given in Section 5, formally states the properties of the
polynomial time algorithm that finds the desired sets
C1, . . . , Ck′ .

Theorem 3.2. Let F = {S1, S2, . . . , Sγ} be the good
clusters guaranteed by Theorem 3.1. There is a polyno-
mial time algorithm that finds a subset T ′ ⊂ T of k′

terminals, connected subgraphs C1, . . . , Ck′ , and a col-
lection of node sets D1, . . . , Dk′ with the following prop-
erties.

• Each node of G belongs to at most 43 of the
subgraphs C1, . . . , Ck′ .

• For each i such that 1 ≤ i ≤ k′, Di ⊂ Ci and
Di = {bi,1, bi,2, . . . , bi,γ}, where bi,j ∈ Bj for all j
such that 1 ≤ j ≤ γ.

• The sets D1, . . . , Dk′ are mutually disjoint.

• We can label the terminals in T ′ as t1, . . . , tk′ such
that ti ∈ V (Ci) for each i such that 1 ≤ i ≤ k′.

Theorem 3.2 gives us an embedding of the nodes of the
edge-expander in which each node vi is embedded into
G using a connected subgraph containing the terminal
ti. We use the cut-matching game of Theorem 2.4 to
define the edges of X and an embedding of these edges
into G.

Recall that we have γ good clusters S1, S2, . . . , Sγ ,
where γ = γCMG(k) ≥ γCMG(k′). We use the cut-
matching game as follows. The cut player will follow the
strategy guaranteed by Theorem 2.4. In each iteration
j of the cut-matching game, the algorithm implements
the matching-player as follows. The matching player
receives a partition of V (X ) into two sets Yj and Zj
of equal size and needs to find a perfect matching
between them. Let Y ′j = {bi,j : vi ∈ Y } ⊂ Dj be
the representatives in Dj of the expander nodes Yj ,
and similarly let Z ′j = {bi,j : vi ∈ Z} ⊂ Dj be
the representatives in Dj of the expander nodes Zj .
From Theorem 3.2, the sets Y ′j and Z ′j are disjoint
and Dj is 1/4-node-well-linked in G[Sj ]. Hence there
is a collection P of Y ′j -Z ′j paths in G[Sj ] with node
congestion 4 (moreover, given Y ′j , Z

′
j such a collection of

paths can be found in polynomial time via a maximum-
flow algorithm). This collection of paths induces a
perfect matching M ′j between Y ′j and Z ′j and hence also
a perfect matching Mj between Yj and Zj ; each edge
u′v′ ∈M ′j corresponds to an edge uv in Mj where u′ is
the representative of u in Dj and v′ is the representative
of v in Dj . The matching player outputs Mj in iteration
j. We associate each edge uv ∈ Mj with the path
between u′ and v′ in G[Sj ].

It follows from Theorem 2.4 that, after γ iterations,
the graph X is an edge-expander with constant proba-
bility. Since the sets S1, . . . , Sγ are node disjoint, the
collection of paths in G corresponding to all the edges
added to X in the cut-matching game has node conges-
tion 4. Based on the preceding argument we obtain the
following theorem on embedding X .

Theorem 3.3. There exists a set T ′ ⊆ T of k′ termi-
nals and a graph X with node set T ′ with the following
properties.

• The graph X is a γ-regular Ω(log k′)-edge-expander.

• For each ti ∈ T ′ there is a connected subgraph Ci of
G such that Ci contains ti and the node congestion
of the subgraphs {Ci | 1 ≤ i ≤ k′} is at most 43.

• For each edge e = vivi′ ∈ E(X ), there is a path
qe in G connecting Ci to Ci′ such that the node
congestion of the paths {qe | e ∈ E(X )} is at most
4.



Moreover, there is a randomized polynomial time algo-
rithm that constructs a set T ′ and a graph X with these
properties with constant probability.

3.3 Routing using the embedded expander Let
T ′ and X be the set of terminals and the edge-expander
guaranteed by Theorem 3.3. We can use the edge-
expander X to route a large subset of the pairs of M.

Theorem 3.4. Let M0 ⊆ M be any subset of k′/2
pairs. There is a randomized polynomial time algorithm
that, with high probability, routes in G a subset of
Ω(|M0|/γ2) of the pairs in M0 with node congestion
at most 51.
Proof: Let T0 denote the set of all terminals partici-
pating in the pairs inM0. Note that |T0| = 2|M0| = k′.
Since the set T of terminals is 1/4-node-well-linked in
G, it follows from Lemma 2.3, there is a collection P of
T0 − T ′ paths with congestion 4. Using the paths in P
we can translate the matching M0 to a matching M′
on T ′ as follows: for any pair uv ∈M0, we add the pair
u′v′ toM′, where u′ and v′ are the nodes of T ′ that are
the endpoints of the paths of P that start at u and v,
respectively.

Since X is a γ-regular Ω(log k′)-edge-expander, we
can route a subset a subset M′′ ⊆ M′ of Ω(|M0|/γ2)
demand pairs on node-disjoint paths of X (see Theo-
rem 2.3). Let P be the collection of these paths. We
map these paths to a collection of paths P ′ in G result-
ing in a routing ofM′′ in G. Let p be a ti-ti′ path in X
for a pair (ti, ti′) ∈ M′′. Let e = tht` be an edge on p.
From Theorem 3.3 there is a path q(e) in G connecting
Ch and C`; since Ch and C` are connected subgraphs of
G containing th and t` respectively, there is a th-t` path
q′(e) in G whose nodes are contained in Ch ∪C` ∪ q(e).
We map the ti-ti′ path p in X to a ti-ti′ walk p′ in G
obtained by replacing each edge e ∈ p by the path q′(e);
this walk contains a simple ti-ti′ path in G. This pro-
cedure, done separately for each path p ∈ P, gives the
desired path collection P ′ for routing the pairsM′′ in G.
It is easy to see that P ′ can be generated efficiently given
the embedding from Theorem 3.3. We now consider the
node congestion in G caused by the path collection P ′.
Since the paths in P are node disjoint in X (and hence
also trivially edge disjoint) the node congestion of P ′ is
upper bounded by the sum of the node congestion of
the collection {Ci | 1 ≤ i ≤ k′} and {q(e) | e ∈ E(X )},
which, by Theorem 3.3, is at most 43 + 4 = 47.

The paths in P(T0, T ′) concatenated with the paths
corresponding to the routing ofM′′ in G gives a routing
with congestion 47+4 = 51 of a subsetM1 ⊆M0 of size
Ω(|M0|/γ2). Theorem 3.3 guarantees that X has the
desired expansion properties with constant probability.
One can independently repeat the expander embedding

algorithm and the subsequent routing via the expander,
to obtain a high probability bound on the success of
routing a poly-logarithmic fraction of the pairs. �

We can now put the ingredients together to prove the
main result of the paper.

Proof of Theorem 1.1: Let (G,M) be an instance
of MNDP on a graph with n nodes and k pairs. We
follow the outline of the algorithm stated at the begin-
ning of this section. The algorithm solves the NDP-
LP relaxation to obtain an optimal fractional solution
(x, f). Let OPT be the value of this solution. First,
we assume that the number of pairs and OPT are at
least logc n for a sufficiently large constant c, since oth-
erwise we can obtain a poly-logarithmic approximation
by routing an arbitrarily chosen pair from M (if no
pair can be connected in G then OPT = 0 and the
problem is trivial). We then use the fractional solution
and apply the degree reduction and well-linked decom-
position to reduce the given instance to a collection of
separate instances on subgraphs G1, . . . , G` of G such
that the resulting instances are 1/4-node-well-linked for
the terminals and the graph in each instance has de-
gree O(log n); an α-approximation for these restricted
instances implies an O(α log1.5 k)-approximation for the
original instance (from Theorem 2.1 and Theorem 2.2)
where the approximation is with respect to the frac-
tional solution value OPT.

Given a well-linked instance with k terminals and
a graph with n nodes and maximum degree O(log n),
Theorems 3.1, 3.2, and 3.3 together give an efficient al-
gorithm that embeds an expander X of size k′ in G with
constant congestion where k′ = Ω(k/poly log(k + n));
the expansion of X is Ω(log k′). Theorem 3.4 shows that
the expander can be used to route Ω(k′/ log4 k) pairs
from the given instance with congestion 51. Thus, the
algorithm routes Ω(k/poly log(k + n)) pairs in G with
congestion 51. The dependence on n in the approxima-
tion ratio is due to the fact that the maximum degree is
∆ = O(log n). We can ensure that ∆ = O(log2 k) with
additional work (see Remark 2.2). This leads to an ef-
ficient algorithm that routes Ω(OPT/poly log k) pairs.

�

4 Proof of Theorem 3.1 on good clustering

Chuzhoy [17] gave a clustering algorithm for the edge-
capacitated case. We believe there should be a “natu-
ral” extension of it to the node-capacitated case; how-
ever, the proof in [17] is rather technical and non-trivial.
Here, we use her result in a black-box fashion and
take advantage of the fact that edge-well-linkedness and
node-well-linkedness can be related if we have an upper
bound on the degree; we lose factors that are polynomial



in the degree in this translation; since the degree bound
we have is O(log n), it affects the final approximation
ratio by only a poly-logarithmic factor.

Chuzhoy [17] uses the following definition of well-
linkedness, which we call edge-well-linkedness. For a set
S of nodes, we let outG(S) denote the set of all edges of
G with an endpoint in S and the other endpoint outside
of S.

Definition 4.1. ([17]) Let G be a graph and let S be a
set of nodes. Let F ⊆ outG(S) be a set of edges. We say
that S is α-edge-well-linked for F iff, for any partition
(X,Y ) such that X ∪ Y = S, we have

|EG(X,Y )| ≥ α·min{|outG(X) ∩ F |, |outG(Y ) ∩ F |}

where EG(X,Y ) is the set of all edges of G with one
endpoint in X and the other in Y .

We observe that Chuzhoy’s definition is equivalent to
the following. Subdivide each edge e ∈ F using a node
ve; let X be the set of these new nodes. The set S
is α-edge-well-linked for F iff X is α-edge-well-linked
(according to the definition given in Section 2) in the
graph G[S ∪X].

One of the main technical ingredients of the algo-
rithm of [17] is a clustering procedure that selects a fam-
ily of γ = γCMG = Θ(log2 k) disjoint subsets of nodes
called good subsets. Following [17], we use the parame-

ters k1 = Ω
(

k
log6 k log log k

)
and αWL(k) = Ω

(
1

log3.5 k

)
.

Definition 4.2. (Definition 4 in [17]) A subset
S ⊆ V (G) − T of nodes is a good subset iff there
is a subset Γ ⊆ outG(S) of edges with the following
properties:

• |Γ| = k1.

• S is αWL(k)-edge-well-linked for Γ.

• There is a flow F in graph G, where every edge
e ∈ Γ sends one flow unit to a distinct terminal
te ∈ T (so for e 6= e′, te 6= te′), and the congestion
caused by F is at most O(log4.5 k).

A family F = {S1, . . . , Sγ} of γ = γCMG(k) = Θ(log2 k)
subsets of nodes is good iff each subset Sj is a good sub-
set of nodes of G, and S1, . . . , Sγ are pairwise disjoint.

Theorem 4.1. (Corollary 2 in [17]) Let G be a
graph that contains a set T such that |T | = 2k and T is
1/4-edge-well-linked in G. If the maximum degree ∆ of
G is at most k1, there is a polynomial time randomized
algorithm that computes a good family of subsets in G
with high probability.

Remark 4.3. In [17] the statement of Theorem 4.1
assumes that T is flow-well-linked. However, the proof
only uses cut-well-linkedness. Further, this distinction
is not crucial since flow and cut well-linkedness are
approximately the same (within a logarithmic factor).
We refer the reader to [9] for a definition of flow and cut
well-linkedness and the approximate equivalence between
the two notions. Additionally, T is assumed to be 1/2-
edge-well-linked. Replacing the 1/2 by 1/4 only weakens
the parameters for the good sets by a constant factor.
Alternatively, we can make a copy of each edge of the
graph in order to boost the well-linkedness of T from 1/4
to 1/2 by losing a constant factor in the congestion.

In our setting we have ∆ = O(log n). We will assume
that ∆ ≤ k1, since otherwise k = O(poly log n) and it is
trivial to get a k approximation for MNDP by simply
routing one pair.

The following propositions relate the notions of edge
and node well-linkedness, and they are straightforward
to verify.

Proposition 4.4. Let G be a graph with maximum
degree ∆. Let S be a set of nodes and let F ⊆ outG(S)
be a set of edges. Let B be the set of all endpoints of
edges in F that are in S. If S is α-edge-well-linked for F
then B is Ω(α/∆)-node-well-linked in G[S], where G[S]
is the subgraph of G induced by S.

Proposition 4.5. If X is α-node-well-linked in G then
X is α-edge-well-linked in G.

We can use Theorem 4.1 to complete the proof of
Theorem 3.1 as follows.

Proof of Theorem 3.1: Since T is 1/4-node-well-
linked in G, it follows from Proposition 4.5 that T is
1/4-edge-well-linked in G. Therefore G and T satisfy
the conditions of Theorem 4.1. Let F = {S1, . . . , Sγ} be
the good family guaranteed by Theorem 4.1. These will
be our good clusters, however, the parameters will be
weaker and we also need to identify a set Bj ⊂ bdG(Sj)
for each Sj .

For each set Sj ∈ F , we have a subset Γj ⊆
outG(Sj) of edges. For each index j, let Bj be the set
of all endpoints of the edges in Γj that are in Sj . We
select a subset B′′j ⊆ Bj such that Sj and B′′j form a
(k∗, 1/4)-good-cluster as follows.

Consider an index j. We start by selecting a subset
B′j ⊆ Bj such that there is a collection of B′j-T paths
in G that are node-disjoint. Recall that there is a flow
F in G where each edge e ∈ Γj sends one flow unit to a
distinct terminal in T and the edge congestion caused
by F is at most O(log4.5 k). We reinterpret the flow
F as originating at the nodes in Bj and ending in T .



Note that, since the maximum degree in G is ∆, the
node congestion caused by F is at most O(∆ log4.5 k).
Additionally, every node in Bj sends at least one unit
of flow and at most ∆ units of flow. Thus, if we
scale down the flow F by O(∆2 log4.5 k), we get a flow
F ′ from Bj to T that respects node capacities (1 on
every node) of the graph including the endpoints Bj
and T . We can use the flow F ′ to select the subset
B′j as follows. We add a source node s and an edge
from s to each node in Bj . We add a sink t and an
edge from each node in T to t. We assign a capacity
of one to each node. Note that the flow F ′ gives us
a feasible s-t flow of value Ω(k1/(∆

2 log4.5 k)). Since
the node capacities are integral, there is an integral
s-t flow of value Ω(k1/(∆

2 log4.5 k)). We take a path
decomposition of such an integral flow in order to get a
collection of s-t paths that are internally node-disjoint;
by removing the endpoints s, t from these paths, we get
a collection of node-disjoint paths in G connecting a
subset B′j ⊆ Bj to T , where |B′j | = Ω(k1/(∆

2 log4.5 k)).
Since Sj is αWL(k)-edge-well-linked for Γj , it follows

from Proposition 4.4 that Bj is Ω(αWL(k)/∆)-node-
well-linked in G[Sj ]. We apply Theorem 2.2 to B′j in
order to get a subset B′′j ⊆ B′j such that B′′j is 1/4-node-
well-linked in G[Sj ] and |B′′j | = Ω(|B′j |αWL(k)/∆) =

Ω(k1αWL(k)/(∆3 log4.5 k)).
Therefore the set Sj together with the boundary set

B′′j ⊆ bdG(Sj) gives us a (k∗, 1/4)-good-cluster, where

k∗ = Ω(k1αWL(k)/(∆3 log4.5 k)). �

5 Proof of Theorem 3.2 on connecting good
clusters

We recall the properties of good clusters guaranteed by
Theorem 3.1. There are γ good clusters S1, . . . , Sγ ; each
Sj has a set Bj ⊂ bdG(Sj) such that Bj is 1/4-node-
well-linked in G[Sj ] and there is a collection of Bj − T
node disjoint paths in G. Recall that |Bj | ≥ k∗ for
1 ≤ j ≤ γ. In this section we assume that |Bj | = k∗,
which we can ensure by selecting arbitrarily a subset of
Bj of cardinality k∗; this will be important later.

We prove Theorem 3.2 in this section; it guarantees
k′ = k∗/(64γ2) connected subgraphs C1, . . . , Ck′ in
G. Each Ci has a representative bi,j in Bj for each
j. At a high level we find these subgraphs via the
same approach as that in [17]; Chuzhoy uses edge-
connectivity based techniques to find many trees, each
of which has a boundary node from each good set. We
use element-connectivity techniques to find many trees,
each of which has a boundary node from each good
cluster. Moreover, each node of G is in at most a
constant number of these trees. Once we have the trees,
we connect a subset of the terminals to the trees to get

the desired connected subgraphs.
To construct the trees, we first create a new graph

G′ from G as follows. We add γ new (super-)nodes
s1, s2, . . . , sγ ; for 1 ≤ j ≤ γ, sj is connected to each node
in Bj . We think of the nodes of G′ as being partitioned
into black and white nodes; the black nodes are the new
super-nodes and the white nodes are the nodes of G.
We note that the degree of each black node is exactly
equal to k∗. We refer the reader to element-connectivity
definitions from Section 2.

Proposition 5.1. For any two black nodes si and sj,
we have κ′G′(si, sj) ≥ dk∗/6e; that is, si and sj are
dk∗/6e element-connected in G′.
Proof: Consider Bi and Bj ; we show a collection of
Bi-Bj paths P in G such that any node in G is in at
most 6 paths in P. This implies that there are dk∗/6e
paths from si to sj in G′ that are disjoint in the white
nodes, which proves the proposition. Recall that in G
there is a collection P1 of node-disjoint Bi-T paths and
similarly there is a collection P2 of node disjoint Bj-T
paths. Let Y ⊂ T be the endpoints of the paths in P1

and Z ⊂ T be the endpoints of the paths in P2. Note
that |Y | = |Z| = k∗. Since T is 1/4-node-well-linked in
G, it follows from Lemma 2.3 that there is a collection
of Y -Z paths P3 with node congestion 4. We obtain a
collection of paths P by concatenating the paths in P1,
P3, and P2 in the natural way. That is, if p is a u-t path
in P1 from a node u ∈ Bi to a terminal t ∈ Y , q is a t-t′

path in P3 from t to t′ ∈ Z, and p′ is a t′-v path in P2

from t′ to v ∈ Bj then we obtain a u-v path in P from
the union of the paths p, q, p′. The node congestion of
P is at most 6 since P1 and P2 have congestion 1, and
P3 has congestion at most 4. �

We now apply the element-connectivity reduction step
from Lemma 2.4 to G′. This results in a bipartite graph
G′′ in which the element-connectivity between each pair
of black nodes is at least dk∗/6e. Moreover, each white
node v in G′′ is obtained by contracting a connected
subgraph of G. We now create an auxiliary graph H as
follows. The node set of H is V (H) = {s1, s2, . . . , sγ}.
There is an edge sisj in H iff there are at least k∗/(6γ3)
white nodes v in G′′ such that v is adjacent to both
si and sj . Theorem 5.1 captures the important facts
about the auxiliary graph, in particular the existence of
a constant degree spanning tree that will be used as a
“template” to find many trees.

Theorem 5.1. There is a spanning tree T ∗ in H with
the following properties:

• The maximum degree of T ∗ is at most 10.

• For each edge e = sisj of T ∗, there is a collection
Pe of at least k∗/(6γ4) paths of G′ such that, for



each path p ∈ Pe, the endpoints of p are si and sj,
and the internal nodes of p are white.

• The paths in P = ∪e∈E(T∗)Pe are disjoint in white
nodes.

Moreover, we can find the tree T ∗ and the collections of
paths {Pe | e ∈ E(T ∗)} in polynomial time.

Remark 5.2. Chuzhoy [17] uses the edge-connectivity
preserving splitting-off operation [41, 23, 29] to remove
all white nodes to directly obtain an auxiliary graph on
the super-nodes and then uses a theorem of Singh and
Lau [52] to find a spanning tree of degree at most 3 in
the auxiliary graph (via a feasible solution to an LP re-
laxation). The presence of white nodes in the graph G′

which have different degrees does not allow us to use
a similar argument. Hence, we rely on a different ar-
gument based on the notion of toughness; this gives a
bound of 10 on the degree of the spanning tree (which
affects the final congestion bound) and we also lose ad-
ditional poly-logarithmic factors in the approximation.

We give the proof of Theorem 5.1 in Subsection 5.1.
Using Theorem 5.1, we can complete the proof of
Theorem 3.2 as follows.

Proof of Theorem 3.2: Let T ∗ be the tree guaranteed
by Theorem 5.1. We first consider the special case in
which T ∗ is a path; as we will see shortly, we can extend
the argument for this special case to the general case by
making a copy of each edge of T ∗ and considering an
Eulerian walk of the resulting graph.

Suppose that T ∗ is a path. We think of the nodes
and edges of T ∗ as being ordered from left to right. By
relabeling the nodes, we may assume that the nodes of
T ∗ are s1, s2, . . . , sγ from left to right. Let Pj be the
collection of k′ = k∗/(6γ4) sj-sj+1 paths guaranteed by
Theorem 5.1. By removing the endpoints of the paths in
Pj , we get a collection P ′j of Rj-Lj+1 paths in G where
Rj ⊆ Bj and Lj+1 ⊆ Bj+1. (Recall that Bj ⊆ bdG(Sj)
is the set of boundary nodes of the good cluster Sj and
sj is connected only to Bj in G′.) Note that the paths in
P ′ = ]jP ′j are node disjoint. From this it follows that
the node sets R1, L2, R2, L3, R3, . . . , Lγ−1, Rγ−1, Lγ are
disjoint and all have the same cardinality k′. Since
|Lj | = |Rj | = k′ and Bj is 1/4-node-well-linked in
G[Sj ], there is a collection Qj of Lj-Rj paths that are
contained in G[Sj ] and they have node congestion at
most 4. These paths can be concatenated together to
generate k′ walks in G (see Figure 1). Once we have the
walks, we attach a subset of the terminals in order to
get the connected subgraphs C1, . . . , Ck′ .

In the following, we give a more formal overview of
the stitching described in Figure 1. The path collection

P ′j defines a perfect matching Mj between Rj and
Lj+1, and the path collection Qj defines a perfect
matching M ′j between Lj and Rj . Consider the layered

graph with node set R1 ]
(
]γ−1
j=2Lj ]Rj

)
] Lγ and

edge set M1 ∪
(
∪γ−1
j=2M

′
j ∪Mj

)
. Each layer has the

same cardinality k′ and the edge set consists of perfect
matchings between adjacent layers. It is easy to see
that the edge set can be decomposed into k′ paths
where each path consists of a sequence of nodes, one
from each layer, starting with a node in the first layer
R1 and ending at the last layer Lγ ; these paths also
partition the nodes. Let p1, . . . , pk′ be these paths. Let
pi = vi,1, ui,2, vi,2, . . . , ui,γ−1, vi,γ−1, ui,γ where ui,j is
the node from Lj on pi and vi,j is the node from Rj
on pi. For each i we obtain a connected subgraph (in
fact a walk) Ci in G by replacing the edges of pi with
corresponding paths from G: an edge vi,jui,j+1 in pi
corresponds to a unique path in P ′j and an edge ui,jvi,j
corresponds to a unique path in Q′j . Recall that the
paths in P ′ are node-disjoint in G and the paths in
Q′j are contained in G[Sj ] and have node congestion
4. It therefore follows that no node of G is in more
than 5 of the subgraphs C1, . . . , Ck′ . We also need
to choose Di ⊂ Ci such that |Di ∩ Bj | = 1 for each
1 ≤ j ≤ γ and such that D1, . . . , Dk′ are disjoint; we let
Di = {vi,j |1 ≤ j < γ} ∪ {ui,γ}; in other words we set
bi,j = vi,j for 1 ≤ j < γ and bi,γ = ui,γ . It is easy to
verify that D1, . . . , Dk′ satisfy the desired properties.

Finally, we need to ensure that each Ci contains a
distinct terminal. Let B′1 = {bi,1 | 1 ≤ i ≤ k′} ⊆ B1.
Since S1 is a good cluster, there is a collection of node-
disjoint paths in G connecting B′1 to a subset T ′ ⊆ T ;
for each i, we add to Ci the path connecting bi,1 to
T . This final step increases the congestion by 1 so we
have that no node is in more than 6 of the subgraphs
C1, C2, . . . , Ck′ .

Now we extend the argument to the case in which
T ∗ is not a path. We make a copy of each edge
of T ∗ and consider an Eulerian walk of the resulting
Eulerian graph. We view this walk as a path (after
removing the final edge in the walk) in which each
edge of T ∗ appears at most twice and each node si
of T ∗ appears at most 10 times (the degree of si to
be precise). We apply the previous argument to this
path. For this purpose each edge and node of T ∗ that
occurs more than once is assumed to be distinct; the
path collection associated with each edge and node of
T ∗ in the previous argument will use separate copies
of the nodes of G. We will subsequently analyze the
congestion caused by these copies. The path argument
gives k′ connected components C1, . . . , Ck′ and k′ sets
D1, . . . , Dk′ . We claim that the connected components
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Figure 1: Tree stitching.

have node congestion at most 1· 2 + 4· 10 + 1 = 43.
Since each edge of T ∗ appears twice in the Eulerian
walk, the stitching described in Figure 1 uses the paths
of {P ′e | e ∈ E(T ∗)} at most twice; thus we have a
congestion of at most 1· 2 from these paths. Since each
node si appears at most 10 times in the Eulerian walk,
the stitching uses the subgraph G[Si] at most 10 times.
Each of those uses requires a collection of paths Q′i
between two disjoint sets Li, Ri ⊂ Bi; since Bi is 1/4-
node-well-linked in G[Si] such a path collection with
node congestion 4 can be found. Hence the overall
congestion of all these paths in G[Si] is 4· 10; since
the good clusters S1, S2, . . . , Sγ are disjoint, the total
congestion of the union of these paths is also upper
bounded by 4· 10. Finally, we use a collection of node-
disjoint paths to connect a subset of B1 to a subset of
T . �

Remark 5.3. In the proof of Theorem 3.2, we used an
Eulerian walk of T ∗ in order to make the argument
more transparent. In order to get an Eulerian walk, we
duplicated the edges of T ∗. Instead, we can root T ∗ at an
arbitrary leaf and stitch the paths in a bottom-up fashion
in order to get the desired connected components; this
is the scheme used in [17] and requires a more involved
description and proof. The bottom-up argument avoids
duplicating the edges of T ∗ and therefore it improves the
congestion of the resulting connected subgraphs by 1.

5.1 Proof of Theorem 5.1 First, we show that
H has a spanning tree T ∗ that has constant degree.
Chvátal [20] introduced the notion of graph toughness.
Win [54] showed existence of a low-degree spanning tree
in a graph where the degree bound was related to its
toughness.

The toughness of a graph G, denoted by τ(G), is
defined as follows. Consider a subset S ⊂ V (G) of the
nodes of G. Let c(S) denote the number of connected
components of the graph G − S obtained from G by
removing the nodes in S. The toughness of G is the
ratio τ(G) = minS⊂V |S|/c(S), where the minimum is
taken over all sets S ⊂ V such that c(S) > 1. We use
the following result of Fürer and Raghavachari [25] that
is slightly stronger than the result of Win [54].

Theorem 5.2. ([25]) Let G be a graph and let τ(G) be
its toughness. Let ∆∗ be the smallest number such that
G has a spanning tree with maximum degree ∆∗. Then
∆∗ − 3 < 1/τ(G) ≤ ∆∗.

Fürer and Raghavachari also described a polynomial
time algorithm that constructs a spanning tree of de-
gree at most ∆∗ + 1, where ∆∗ is the optimal degree.
Therefore, in order to prove that we can find in polyno-
mial time a spanning tree of H with degree at most 10,
it suffices to show that 1/τ(H) is at most 7.

Lemma 5.4. We have 1/τ(H) ≤ 6γ/(γ − 1) ≤ 7.

Proof: It follows from the definition of τ(H) that we
need to verify that c(S) ≤ (6γ/(γ − 1))|S| for each set
S ⊂ V (H) such that c(S) > 1. Consider such a set S
and let C1, C2, . . . , C` denote the connected components
of H − S (see Figure 2).

Let M be the set of all pairs sisj such that si and
sj are in different components of H − S. Trivially,
|M | ≤ γ2, since there are γ black nodes. Let W be the
set of all white nodes v in G′′ such that v is adjacent to
si and sj for some pair sisj in M .

We claim that |W | ≤ k∗/(6γ). If not, there is
some pair sisj ∈ M such that there are more than
(1/γ2) · k∗/(6γ) = k∗/(6γ3) white nodes in G′′ that are
adjacent to both si and sj . But then sisj is an edge in
H, which contradicts the assumption that si and sj are
in different connected components of H − S.

Now we claim that, for each connected component
Ci of H−S, there is a set W ′i of white nodes in G′′ with
the following properties: (1) |W ′i | ≥ (1 − 1/γ)k∗/6, (2)
NG′′(W

′
i ) ⊆ Ci∪S, and (3) each node in W ′i is adjacent

in G′′ to S. Since the black nodes are dk∗/6e element-
connected in G′′, there is a set Wi of white nodes such
that |Wi| ≥ dk∗/6e and each node in Wi is adjacent in
G′′ to Ci and V (H) − Ci. Let W ′i be the subset of Wi

consisting of all nodes that are only adjacent in G′′ to
Ci ∪ S. By the claim in the preceding paragraph, there
are at most k∗/(6γ) nodes in Wi − W ′i and therefore
|W ′i | ≥ (1− 1/γ)k∗/6.

Let W ′ = W ′1∪ . . .∪W ′` . Note that, if i 6= j, W ′i and
W ′j are disjoint and therefore |W ′| ≥ (1 − 1/γ)k∗`/6.
Since each node in W ′ contributes at least one edge
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Figure 2: Bounding the toughness of H via Lemma 5.4.

to the total degree in G′′ of the nodes in S, it follows
that

∑
u∈S dG′′(u) ≥ |W ′|. Since each black node has

degree k∗ in G′′, we have |W ′| ≤ k∗|S|. Therefore
c(S) = ` ≤ 6|S|/(1 − 1/γ) ≤ 7|S|. (Recall that γ =
γCMG = Ω(log2 k); we can ensure that 6/(1− 1/γ) ≤ 7
by assuming that k is a sufficiently large constant.) �

It follows from Theorem 5.2 and Lemma 5.4 that H
has a spanning tree with maximum degree ∆∗ < 3 +
(1/τ(H)) ≤ 10; since ∆∗ is an integer, we have ∆∗ ≤ 9.
As shown by Fürer and Raghavachari [25], we can find
in polynomial time a spanning tree T ∗ with maximum
degree at most ∆∗ + 1 ≤ 10. This proves the first part
of Theorem 5.1.

For each edge e = sisj of T ∗, we construct a
collection Pe of paths as follows. Since T ∗ is a subgraph
of H, for each edge sisj of T ∗, the graph G′′ has a set
W ′e of at least k∗/(6γ3) white nodes that are adjacent in
G′′ to both si and sj . The sets {W ′e | e ∈ E(T ∗)} may
not be disjoint, but we can select a subset W ′′e ⊆ W ′e
for each edge e such that |W ′′e | ≥ k∗/(6γ4) and the sets
{W ′′e | e ∈ E(T ∗)} are disjoint. We construct the sets
{W ′′e | e ∈ E(T ∗)} greedily as follows. We order the
edges of T ∗ arbitrarily. We consider the edges in this
order. Let e be the current edge and suppose that, for
each edge e′ that comes before e in the order, we have
already selected a set W ′′e′ ⊆W ′e′ of size k∗/(6γ4). Since
W ′e has at least k∗/(6γ3) nodes and there are less than
γ − 1 edges that appear before e, W ′e contains a subset
W ′′e of k∗/(6γ4) nodes such that W ′′e ∩W ′′e′ = ∅ for each
edge e′ that appears before e in the ordering.

Recall that the white nodes of G′′ resulted from

the contraction of disjoint subgraphs of G′ that are
connected and they consist of only white nodes of G′.
Since v ∈ W ′′e is adjacent to si and sj — where si and
sj are the endpoints of e — we can find a path pv in
G′ from si to sj through the subgraph corresponding
to v. Thus we obtain |W ′′e | paths in G′ from si to
sj . This is the desired collection Pe for edge e = sisj .
The sets {W ′′e | e ∈ E(T ∗)} are mutually disjoint by
construction, and hence the paths in {Pe | e ∈ E(T ∗)}
have the desired properties.

This completes the proof of Theorem 5.1. �
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