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Abstract
Motivated by multi-budgeted optimization and other applications,
we consider the problem of randomly rounding a fractional solution
x in the (non-bipartite graph) matching and matroid intersection
polytopes. We show that for any fixed δ > 0, a given point
x can be rounded to a random solution R such that E[1R] =

(1 − δ)x and any linear function of x satisfies dimension-free
Chernoff-Hoeffding concentration bounds (the bounds depend on
δ and the expectation µ). We build on and adapt the swap
rounding scheme in our recent work [9] to achieve this result.
Our main contribution is a non-trivial martingale based analysis
framework to prove the desired concentration bounds. In this
paper we describe two applications. We give a randomized PTAS
for matroid intersection and matchings with any fixed number of
budget constraints. We also give a deterministic PTAS for the case
of matchings. The concentration bounds also yield related results
when the number of budget constraints is not fixed. As a second
application we obtain an algorithm to compute in polynomial
time an ε-approximate Pareto-optimal set for the multi-objective
variants of these problems, when the number of objectives is a
fixed constant. We rely on a result of Papadimitriou and Yannakakis
[26].

1 Introduction
Randomized rounding of a fractional solution into an integral
solution is a powerful and ubiquitious technique in approxi-
mation algorithm design. Following the influential work of
Raghavan and Thompson [27] for routing, packing and cov-
ering problems, several different randomized rounding meth-
ods have been developed over the years. Dependent ran-
domized rounding methods have recently found many ap-
plications [1, 31, 14, 11, 19, 3, 2, 29, 6]. The term depen-
dent refers to the property of the rounding scheme that en-
sures that the rounded solution satisfies some additional con-
straints in a deterministic fashion — this implies that the co-
ordinates of the fractional solution cannot be independently
rounded. An abstract view of such a scheme is the follow-
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ing: given a fractional point x in a polytope P ⊂ Rn, ran-
domly round x to a solution R corresponding to a vertex
of P . Here P captures the deterministic constraints that we
wish the rounding to satisfy, and it is natural to assume that
P is an integer polytope (typically a {0, 1} polytope). Of
course the important issue is what properties we need R to
satisfy, and this is dictated by the application at hand. A
property that is useful in several applications is that R sat-
isfies concentration properties for linear functions of x: that
is, for any vector a ∈ [0, 1]n, we want the linear function
a(R) =

∑
i∈R ai to be concentrated around its expectation1.

Ideally, we would like to have E[1R] = x, which would
mean E[a(R)] =

∑
i aixi. If this is not feasible, we would

like E[1R] to be approximately equal to x.
A natural question is the following. For which polytopes

P can we implement such a rounding procedure? A strong
property that implies concentration for linear functions is
that of negative correlation2, as shown by Panconesi and
Srinivasan [25]. In our recent work [9] we described a
rounding scheme called randomized swap rounding, to unify
and generalize some existing results. In particular, we
showed that if P is a matroid polytope (the convex hull
of independent sets of the matroid), then one can round
x ∈ P to a random independent set R such that E[1R] =
x and the coordinates of 1R satisfy negative correlation.
We also showed negative correlation properties for certain
restricted subsets of variables when P is the intersection of
two matroids; this restricted setting nevertheless captures the
important and useful special case of the assignment polytope
where one obtains negative correlation for the edge variables
incident to each vertex of the underlying bipartite graph
[14]. There are, however, applications where one requires
concentration properties for arbitrary linear functions of the
variables. If one wants to use the property of negative
correlation, then matroids are essentially the only structures
where this can be done: We have recently shown that a {0, 1}
polytope P has the property that any x ∈ P can be rounded
to a vertex R of P such that E[1R] = x and the coordinates
of 1R are negatively correlated, if and only if P is an axis-
parallel projection of a matroid base polytope [10].

1In this paper we focus on non-negative vectors a ∈ [0, 1]n although
there are applications for vectors a ∈ [−1, 1]n (see [1]).

2 We call {0, 1}-random variables X1, . . . , Xr negatively correlated,
if E[

∏
i∈T Xi] ≤

∏
i∈T E[Xi] and E[

∏
i∈T (1 − Xi)] ≤

∏
i∈T (1 −

E[Xi]) for all subsets T ⊆ [r].



Given that negative correlation is too strong a property
to hold beyond matroid polytopes, it is natural to consider
whether the property of concentration for linear functions
can still be obtained via different means for other polytopes.
An important special case to consider is the assignment poly-
tope (equivalently the bipartite simple b-matching polytope).
Arora, Frieze and Kaplan [1], motivated by applications to
approximation schemes for dense-graph optimization prob-
lems, considered this problem in a certain restricted setting
and guaranteed concentration bounds in an additive sense
(with standard deviation on the order of

√
n · poly(log n)

and poly(log n), respectively, depending on whether the lin-
ear function under consideration has arbitrary coefficients or
non-negative coefficients). We discuss more details of their
result and its relationship to our work later in the paper. It
is easy to show that even in the setting of the assignment
polytope, one cannot obtain concentration bounds while pre-
serving the expectation exactly.

In this paper we give a rounding scheme for two
(classes of) polytopes, namely the polytope corresponding
to the intersection of two matroids, and the non-bipartite
graph matching polytope. The rounding procedure for
non-bipartite graph matching polytopes can easily be ap-
plied to simple b-matchings by a standard reduction from b-
matchings to matchings [30]. Note that the assignment poly-
tope is a special case of both the intersection of two matroids
and simple b-matchings. Our main result is the following.

THEOREM 1.1. Let P be either a matroid intersection poly-
tope or a (non-bipartite graph) matching polytope. For any
fixed 0 < γ ≤ 1

2 , there is an efficient randomized rounding
procedure, such that given a point x ∈ P , it outputs a ran-
dom feasible solution R corresponding to a (integer) vertex
of P such that E[1R] = (1 − γ)x. In addition, for any lin-
ear function a(R) =

∑
i∈R ai with ai ∈ [0, 1], and for any

ε ∈ [0, 1], we have:

• If µ ≤ E[a(R)], Pr[a(R) ≤ (1− ε)µ] ≤ e−µγε2/20.

• If µ ≥ E[a(R)], Pr[a(R) ≥ (1 + ε)µ] ≤ e−µγε2/20.

For any t ≥ 2,

• If µ ≥ E[a(R)], Pr[a(R) ≥ tµ] ≤ e−µγ(2t−3)/20.

We emphasize that the concentration bounds above de-
pend only on µ, γ, ε and are independent of n, the dimen-
sion of the polytope. Moreover, there is no restriction on
the linear functions a(R) for which we prove concentration
bounds, other than the normalization condition ai ∈ [0, 1].
Roughly speaking, a(R) for the rounded solution is concen-
trated in a window of sizeO(

√
µ) around µ = E[a(R)], even

if µ� n.

The rounding scheme and concentration bounds in the
above theorem also hold for non-bipartite graph b-matchings.

This can be seen from a well-known pseudo-polynomial time
reduction of b-matchings to regular matchings (see [30]), and
the fact that our bounds are dimension free. Obtaining an
efficient (that is, polynomial instead of pseudo-polynomial)
rounding procedure requires more work, and we defer the
details.

Our methods also yield related bounds that depend on
n, and that work for negative coefficients. Our main applica-
tions in this paper, however, require dimension-free bounds
and we defer further discussion to a later version of the
paper. Our framework extends to polytopes/combinatorial
structures that have certain exchange properties; Section 4
outlines this framework.

1.1 Applications In this paper, we present two applica-
tions, each of which applies to non-bipartite matchings and
matroid intersection.

Multi-budgeted Optimization: There has been substantial
recent interest in the problem of optimizing linear (and also
submodular functions) over a combinatorial structure with
additional linear/budget/packing constraints [5, 16, 22, 18,
2, 9]. Given a polynomial-time solvable problem, such as
maximum matching, can we optimize (in particular maxi-
mize) over feasible solutions with an additional budget con-
straint of the form aTx ≤ bwhere a is a non-negative weight
vector? It is easy to see that the problem becomes NP-
hard via a reduction from knapsack. Randomized and deter-
ministic polynomial-time approximation schemes (PTASes)
have been developed for important combinatorial optimiza-
tion problems subject to a single budget constraint: these
include spanning trees [28], matchings and independent sets
in two matroids [5]. Two approaches have been used.

Algebraic methods give a randomized pseudo-
polynomial time algorithm for the exact version of some
of these problems [8]; that is, given an integer B and an
integer weight vector w, is there a solution S such that
w(S) = B? Such algorithms can be used to obtain a
randomized PTAS for any fixed number of budgets [16]. In
the case of matroids and matroid intersection, this approach
is limited to representable (i.e. linear) matroids [8].

A different, deterministic approach is via the use of La-
grangian relaxation combined with various technical proper-
ties of the underlying combinatorial structure. This approach
was first used to develop a PTAS for spanning trees [28], and
recently, matchings and matroid intersection with one budget
[5]. These results have been also extended to matchings sub-
ject to two budget constraints and matroid independent sets
with multiple budgets [16]. We note that a randomized PTAS
for multi-budgeted matroid independent sets is also given in
[9] via the randomized swap rounding scheme.

In this paper we obtain the following theorem as a
relatively straightforward consequence of Theorem 1.1.



THEOREM 1.2. For any fixed number of budget constraints,
there is a randomized PTAS for multi-budgeted matroid in-
tersection and multi-budgeted non-bipartite graph matching.

Our techniques offer several advantages over previous
methods. First, we obtain a PTAS for matroid intersec-
tion without any restriction on representability; this was not
known prior to our work. Second, the concentration bounds
naturally allow for a good approximation even when the
number of budget constraints is not fixed as long as the con-
straints are sufficiently “loose”. More precisely, if the size
of each element is O( 1

logm )B where B is minimum bud-
get size, then we can handle m budget constraints simul-
taneously. We can also handle the case when all except a
small fixed number of constraints are loose. Alternatively, if
we can tolerate an overflow of the budget constraints by an
O(logm) factor, we can handle m budget constraints with-
out any assumption on element sizes. These results arise nat-
urally from our concentration results.

Finally, our approach can potentially be derandomized
with the method of pessimistic estimators to obtain deter-
ministic PTASes. (Unlike techniques relying on randomized
exact-weight algorithms, whose derandomization is a major
open problem.) In the case of matroid intersection, deran-
domization of our approach seems non-trivial but possible
in principle. In this work, we give a deterministic PTAS for
the case of multi-budgeted matchings; a deterministic PTAS
was previously known only for two budgets [16]. Our algo-
rithm can be viewed (indirectly) as a derandomization of our
randomized algorithm.

THEOREM 1.3. For any fixed number of budgets, there is a
deterministic PTAS for multi-budgeted matching.

Multi-objective Optimization: In multi-objective opti-
mization we have several different objective functions
f1, . . . , fk and the goal is to simultaneously optimize them
over a given polytope P . We restrict our attention to lin-
ear objective functions given by weight vectors w1, . . . , wk.
Here, one is interested in the so called Pareto-optimal so-
lutions; a solution S is Pareto-optimal if no other solution
S′ dominates S for each objective. Papadimitriou and Yan-
nakakis [26] defined the notion of a succinct ε-approximate
Pareto-optimal set which consists of a polynomial number
of solutions S for given objectives w1, . . . , wk such that ev-
ery solution S′ is approximately dominated by some point
S ∈ S; that is wi(S) ≥ (1− ε)wi(S′) for all 1 ≤ i ≤ k.

We use our rounding scheme combined with a result in
[26] to obtain the following.

THEOREM 1.4. There is a randomized polynomial-time al-
gorithm that for any fixed ε > 0 computes a ε-approximate
Pareto-optimal set for matroid intersection with a fixed num-
ber of objectives.

The above was not previously known for general ma-
troids. We remark that if the matroids are representable, then
the results in [26] combined with the known exact algorithm
for linear matroid intersection [8] imply a randomized fully
polynomial-time approximation scheme (FPTAS). The same
can be done for multi-objective matchings as well, using the
randomized exact algorithm presented in [24]. We note that
our techniques can be used to obtain a deterministic algo-
rithm for multi-objective matchings, similar to Theorem 1.3.
We omit the details here.

Further extensions. Our framework allows for a common
generalization of the multi-budgeted and multi-objective set-
ting, with any fixed number of budgets and a fixed number
of objectives. More precisely, we can find an ε-approximate
Pareto-optimal set in the presence of a constant number of
budget constraints. This is dicussed further in Section 5.
Other applications may arise in settings that involve a match-
ing or matroid intersection problem with additional con-
straints.

1.2 Technical contribution and relation to prior work
Our rounding builds on and modifies the swap-rounding
scheme from our recent work [9] that, given a point x
in a n-dimensional polytope P , produces a random vertex
corresponding to a solution R as follows:
• Express x as a convex combination of vertices of P ,

that is, x =
∑n
i=1 αivi where each vi is a vertex of P

and
∑
i αi = 1.

• Let w1 = v1, β1 = α1, and in each stage, merge
two vertices wi,vi+1 into a new vertex wi+1 with
coefficient βi+1 = βi + αi+1 in such a way that
E[βi+1wi+1] = βiwi + αi+1vi+1 (the merge oper-
ation).

• After n − 1 stages, obtain a vertex wn = 1R such that
E[1R] =

∑n
i=1 αivi = x.

Clearly, the crucial step which we have not described
here is the merge operation. For matroids, the strong
base-exchange property is useful in merging two bases by
swapping two elements at a time and this leads to negative
correlation. However, more complicated structures such
as matchings and independent sets in the intersection of
two matroids cannot be merged with a bounded number of
elements being swapped at a time. For example, if M1 and
M2 are two matchings, their symmetric difference M1∆M2

consists of a collection of disjoint cycles and paths. If one
of these cycles/paths C is long, merging the matchings to
preserve expectation requires one to pick all edges inC∩M1

or C ∩ M2, leading to positive correlation among many
variables.

In order to avoid the above, we modify the merge
process so that the cycles and paths used in the merge
operation are short. We do this by breaking long cycles



and paths, effectively deleting some edges. (The idea of
breaking long cycles/paths is natural and not new; it has
been used in related contexts, for instance in [1] and more
recently in [15].) Therefore, instead of E[1R] = x, we can
only ensure that E[1R] is close to x. The main technical
difficulty is to analyze the above process. Although the
above is intuitive for matchings, the process is considerably
more complicated for matroid intersection. Despite this, it
was shown in [9] that one can define a merge process that is
based on covering the symmetric difference by a distribution
over cycles; this decomposition was originally developed
in [23] for the analysis of a local-search algorithm. One can
adapt the idea of breaking cycles even to this more general
setting.

The first difficulty in proving concentration bounds for
our rounding scheme is that negative correlation is no longer
available. Therefore, we resort to a martingale-based analy-
sis. Our goal is to prove dimension-free bounds, and there-
fore direct applications of Azuma’s inequality are insuffi-
cient. Our approach is to bound the total variance of the
rounding process as function of the expectation µ =

∑
aixi,

in a way inspired by the lower-tail bound for submodular
functions in [9]. However, further difficulties arise because
of the fact that swap operations are randomly distributed over
large sets of elements. Hence it is not obvious how to esti-
mate the variance of a sequence of swap operations. This
leads to a fairly technical analysis which we present in Sec-
tion 4. The swap-rounding process is crucial for the analysis
since an element that participates in a swap step effectively
disappears after the step. We set up a somewhat generic anal-
ysis framework that is applicable to both of our problems. It
could also be useful for related problems.

Apart from our recent work [9], the work that is most
related to this paper is that of Arora, Frieze and Kaplan
[1]. They considered the problem of rounding a fractional
perfect matching x in a bipartite graph into a near-perfect
matching such that concentration properties hold for any
linear function of the edge variables. They developed an
algorithm that is similar in spirit to swap-rounding with
the idea of breaking long cycles when merging two cycles.
However, there are crucial differences in both the results
and the techniques. First, they obtain concentration bounds
that allow an additive deviation depending polynomially
in n (essentially as Õ(

√
n)), where n is the size of the

graph. This is necessary for them since they consider
negative coefficients, and these bounds were sufficient for
their applications. Further, these large additive terms imply
that the rounding scheme and the analysis could be coarse
— after some preliminary processing to reduce the number
of merge steps to be poly-logarithmic in n, the analysis uses
standard Chernoff-Hoeffding bounds for each merge, and a
union bound over the merge steps. However, the bounds
we seek are relative to the expectation µ =

∑
aixi which

can be quite small when compared to n. Moreover, unlike
the simpler setting of bipartite matchings, the merge process
for matroid intersection is complex and hard to analyze in a
direct fashion as in [1]. We remark that our martingale setup
can be used to derive results similar to those in [1] also for
the more general setting of matroid intersection.

We also mention the work in [15] on multi-budgeted
matroid bases and bipartite matchings, when the number of
budgets is a fixed constant. Unlike our work, they allow
the budget constraints to be violated by a (1 + ε)-factor; for
matroid bases the weight of the solution obtained is optimal,
while for bipartite matchings the weight of the solution is
at least (1 − ε) times the optimum. The main technique of
[15] is iterated rounding, with additional ideas for bipartite
matchings.

Organization: In Section 2, we present our rounding proce-
dure for matchings. In Section 3, we present our rounding
procedure for matroid intersection. In Section 4, we prove
the main concentration results. Finally, we give more details
on our applications in Section 5. We describe our determin-
istic PTAS for multibudgeted matchings in Appendix A.

All our algorithms can be implemented in polynomial
time via well-known and standard assumptions/algorithms
for matchings and matroids. Due to space constraints, we
do not discuss the details in this version of the paper.

2 Rounding in the matching polytope
In this section, we describe how our rounding approach
can be applied to a point in the (non-bipartite) matching
polytope. Let G = (V,E) be an undirected graph. We
denote by M ⊆ 2E the set of matchings in G, and by
P = conv({1M | M ∈ M}) the matching polytope for
G. Let x ∈ P be a point in the matching polytope that is an
input to our rounding procedure.

Our rounding procedure builds on the swap-rounding
framework from [9]. First, a convex decomposition x =∑n
`=1 α`1I` with I` ∈ M is obtained for x. Assume

that the coefficients are ordered so that α1 ≥ · · · ≥ αn.
(Even though the ordering of the coefficients is not crucial,
it simplifies the analysis.) Let J1 := I1. We proceed in
stages, where in the k-th stage, a new matching Jk+1 ∈ M
is produced by “merging” Jk and Ik+1. The formal rounding
procedure SwapRound is described in the figure below.

Algorithm SwapRound(x =
∑n
`=1 α`1I`):

Reorder so that α1 ≥ α2 ≥ . . . ≥ αn;
J1 = I1;
For (k = 1 to n− 1) do
Jk+1 =MergeMatchings(αk+1, Ik+1,

∑k
`=1 α`, Jk);

EndFor
Output Jn.



It remains to specify the MergeMatchings procedure.
Given two matchings I, J ∈ M with corresponding coeffi-
cients α, β, we want to choose MergeMatchings(α, I, β, J)
such that a (random) matchingM is returned that is in expec-
tation close to the given linear combination of I and J , i.e.,
E[(α + β)1M ] ≈ α1I + β1J , and such that the correlation
between different edges of M is weak enough for concen-
tration bounds to hold. The approach in [9] is to consider
the symmetric difference I∆J which consists of alternating
paths and cycles S1, . . . , Sm; a merged matching M is ob-
tained by including all edges I∩J inM , and for each set Si,
with probability α

α+β all edges of Si ∩ I are included in M ,
otherwise all edges of Si∩J are included inM . This scheme
satisfies the property that E[(α+β)1M ] = α1I +β1J , how-
ever, it creates positive correlations between many variables
inside the sets Si. As mentioned earlier, such strong positive
correlations are unavoidable if x is to be preserved in expec-
tation. Our approach returns a merged matching M whose
expectation is slightly below the target value α1I + β1J , in
return we obtain concentration results for any linear func-
tion f(M). Intuitively, we would like to break the Si into
smaller segments by removing some edges. The lemma be-
low describes the properties we desire for the segments. The
choice of the parameter p will be discussed later.

LEMMA 2.1. Let I, J ∈ M, p ∈ Z+, and δ = 1/(p − 1).
Then we can find in polynomial time a collection of sets
P1, . . . , Pm ⊆ I∆J with coefficients ρi = 1/m, such that
m ≤ p|I∆J |, and for ρ = p− 1:

(i) For i ∈ {1, . . . ,m}, I∆Pi ∈M.
(ii) For 1 ≤ i ≤ m, |I ∩ Pi| ≤ p, |J ∩ Pi| ≤ p and hence
|Pi| ≤ 2p.

(iii)
∑m
i=1 ρi1Pi = (1 + δ)ρ1I\J + ρ1J\I .

We defer the proof of the lemma to Section 2.1, and describe
our merging procedure MergeMatchings. It works in itera-
tions, where in each iteration either I or J is modified such
that |I∆J | strictly decreases, until I = J . If we (randomly)
decide to alter I , we construct a collection of short alter-
nating paths/cycles {Pi}, according to Lemma 2.1. Then
a path Pi is chosen out of {Pi} with probability ρi and I
is replaced by I∆Pi. Similarly, when we (randomly) de-
cide to change J , a collection of paths/cycles {P ′i} of length
at most 2p is constructed with probabilities {σi} such that∑
σi1P ′1 = p−1

p σ1I\J + σ1J\I , for some constant σ > 0.
Again, such a family can be obtained through Lemma 2.1,
by exchanging the roles of I and J , and by scaling ρ. Be-
cause of their use in modifying I and J , we call the al-
ternating paths/cycles {Pi} and {P ′i} also swap sets. The
MergeMatchings algorithm is summarized in the box where
δ = 1/(p− 1).

The random step to choose which set I or J to alter is
based on α, β, σ, ρ in a natural fashion to ensure two proper-
ties: (i) the merged matching proportionally represents I, J

with respect to α, β, and (ii) assuming δ = 0, the step en-
sures that each element of I∆J is equally likely to be re-
moved as added. However, since δ > 0, the important point
here (in contrast to the work in [9]) is that the process creates
a slight bias towards the elements we are removing. This bias
allows the use of short swap sets which in turn helps prove
concentration bounds. The bias also means that the process
is no longer a martingale. Nevertheless, we show in Sec-
tion 4 that the process can be analyzed by defining a related
martingale.

Algorithm MergeMatchings(α, I, β, J):
While (I 6= J) do
Generate a collection of alternating paths/cycles {Pi}
in I∆J of length ≤ 2p such that∑

ρi1Pi = (1 + δ)ρ1I\J + ρ1J\I ,
∑
ρi = 1, ρi ≥ 0,

and a collection of alternating paths/cycles {P ′i}
in I∆J of length ≤ 2p such that∑

σi1P ′i = σ
1+δ1I\J + σ1J\I ,

∑
σi = 1, σi ≥ 0.

With probability βσρi
αρ+βσ for each i, let I := I∆Pi.

else with probability αρσi
αρ+βσ for each i, let J := J∆P ′i .

EndWhile
Output I .

The choice of the parameter p will depend on the
parameter γ of Theorem 1.1 which controls the loss in
expectation. There is a trade-off in choosing p: the larger
p is chosen, the smaller is the bias, i.e., the closer is the
matching M returned by SwapRound to the point x in
expectation. However, a larger value of p leads also to
longer swap sets in the collections {Pi} and {P ′i} used in
MergeMatchings, which results in weaker concentration.
The relation between p and γ together with the concentration
results will be discussed in Section 4.

2.1 Creating collections of swap sets of small size In
this section we prove Lemma 2.1, the basis of which is the
following lemma.

LEMMA 2.2. Let I, J ∈ M, p ∈ Z+, and let S ⊆ I∆J
be a connected component of I∆J . In polynomial time, a
collection of sets P1, . . . , Pm ⊆ S can be obtained such that
m ≤ max{p, |S|} and:
• For 1 ≤ i ≤ m, I∆Pi ∈M.
• For 1 ≤ i ≤ m, |I ∩ Pi| ≤ p, |J ∩ Pi| ≤ p and hence
|Pi| ≤ 2p.

• Each edge of S ∩ I appears in exactly p of the Pi and
each edge of S ∩ J in exactly p− 1 of the Pi.

Proof. The set S is either an alternating path or cycle.
Assume first that S is an alternating path (e1, . . . , er) that
is not a cycle. The case of alternating cycles is very similar
and we discuss it briefly at the end of the proof. If |S| ≤ 2p,



then we choose m = p paths P1, . . . , Pm, where each path
Pi consists of all edges in S. To make sure that each edge
of S ∩ J is contained in exactly p − 1 sets, for each edge
in J we select a unique path from the set of m = p paths
and remove it from that path. Since |S| ≤ 2p and S is an
alternating path, |S ∩ J | ≤ p, and hence this is possible to
do. One can easily check that the resulting sets fulfill the
conditions of the lemma.

Now consider the case |S| > 2p. Assume e1 ∈
I (the case e1 ∈ J is analogous). For a fixed j ∈
{1, . . . , p}, we can break the path (e1, . . . , er) into short
subpaths by removing the edges e2j , e2j+2p, e2j+4p, . . . .
Let P1, P2, . . . , Pm ⊆ S be the collection of all subpaths
obtained in this way for all choices of j ∈ {1, . . . , p}. Each
subpath has length at most 2p − 1. It is easy to verify that
each edge e ∈ I ∩S is contained in exactly p of the subpaths
P1, . . . , Pm, each edge e ∈ J ∩ S is contained in exactly
p − 1 subpaths, and m ≤ |S|. It remains to observe that
I∆Pi ∈ M for i ∈ {1, . . . ,m}, i.e., that dI∆Pi(v) ≤ 1 for
v ∈ V . We have dI∆Pi(v) = dI(v) = 1 for all vertices
v ∈ V that are not endpoints of Pi. If v is an endpoint of Pi,
then by the way how the Pi are constructed, the edge e ∈ Pi
that is adjacent to v is either an edge in I , in which case we
have dI∆Pi(v) = 0, or if e ∈ J then v is also an endpoint of
the path S, and hence dI∆Pi(v) ≤ dS(v) = 1.

The argument above can be easily extended to S being
an alternating cycle. If |S| ≤ 2p then again m = p paths
P1, . . . , Pm can be chosen where each path consists of all
edges in S except up to one edge of J , to fulfill the condition
that each edge in S ∩ J is contained in exactly p − 1 of the
paths. If |S| > 2p, then a collection of paths P1, . . . , Pm
fulfilling the claims of the lemma is obtained by taking all
paths of length 2p − 1 starting with an edge in I and going
along the cycle in a fixed direction. One can check that this
collection of paths satisfies the conditions of the lemma.

Finally, applying Lemma 2.2 to each component of I∆J
separately, a collection of short paths/cycles P1, . . . , Pm
is obtained that covers all elements of I∆J , and implies
Lemma 2.1.

Lemma 2.2 shows that in fact all probabilities {ρi}
in Lemma 2.1 can be chosen to be equal, and the same
holds for the probabilities {σi}. Still, we presented the
algorithm in the slightly more general setting to present a
unified framework for matchings and matroid intersection.
For matroid intersection the decomposition into swap sets
requires non-uniform probabilities {ρi}.

3 Rounding for matroid intersection
In this section, we describe our new procedure to round
a fractional solution in the matroid intersection polytope,
i.e. the intersection of two matroid polytopes P (M1) ∩
P (M2) where both M1 = (N, I1) and M2 = (N, I2)

are defined over the same ground set N . It was proved by
Edmonds [12] that this polytope is integral and hence any
fractional solution can be expressed as a convex combination
of integer solutions. We assume that the matroids are given
via membership oracles: that is, given a set S ⊆ N the
oracle returns whether S is independent in the matroid. Let
n = |N | denote the cardinality of the ground set.

3.1 Decomposition into irreducible paths and cycles
The basis of our rounding procedure is a decomposition of
the symmetric difference between two independent sets into
feasible exchanges. This is similar to the decomposition
developed in [23, 9]; however, with some modifications due
to the fact that we want to break long exchange cycles into
shorter exchange paths. We use the construction of [9] as a
black box and describe the important differences here.

Again, we use the standard constructs of matroid inter-
section; see [30]. For I ∈ I1 ∩ I2, we define two digraphs
DM1

(I) and DM2
(I) as follows.

• For each i ∈ I, j ∈ N \ I with I + j − i ∈ I1, we have
an arc (i, j) ∈ DM1(I);

• For each i ∈ I, j ∈ N \ I with I + j − i ∈ I2, we have
an arc (j, i) ∈ DM2

(I).
When we refer to a matching in DMl

(I) for l = 1, 2 we
mean a matching in an undirected graph where the arcs
of DMl

(I) are treated as undirected edges. We define a
digraph DM1,M2(I) as the union of DM1(I) and DM2(I).
A directed cycle in DM1,M2(I) corresponds to a chain of
feasible swaps. It is not necessarily the case that the entire
cycle gives a valid exchange in both matroids. Nonetheless,
it is known that if a cycle decomposes into two matchings
which are unique on their set of vertices, respectively in
DM1(I) and DM2(I), then the cycle corresponds to a
feasible swap. This motivates the following definition.

DEFINITION 3.1. We call a directed cycleC inDM1,M2(I)
irreducible ifC∩DM1

(I) is the unique matching inDM1
(I)

andC∩DM2
(I) is the unique matching inDM2

(I) covering
exactly the vertex set V (C). Otherwise, we call C reducible.

Let us assume for simplicity that we have two sets
I, J ∈ I1∩I2 and |I| = |J |. We also assume that I∩J = ∅;
if not, we can formally replace elements in I ∩ J by parallel
copies which appear in I, J respectively that can always be
exchanged without affecting independence. The following
lemma, building on previous work [23], was proved in [9].

LEMMA 3.1. LetM` = (N, I`), ` = 1, 2, be matroids on
ground set N . Suppose that I, J ∈ I1 ∩ I2 and |I| = |J |.
Then we can find in polynomial time a collection of irre-
ducible cycles {C1, . . . , Cm},m ≤ |I∆J |, in DM1,M2

(I),
with coefficients γi ≥ 0,

∑m
i=1 γi = 1, such that for some

γ > 0,
∑m
i=1 γi1V (Ci) = γ1I∆J .



In this work, we need a modification of this decompo-
sition lemma which uses irreducible paths in addition to cy-
cles. We define an irreducible path as follows.

DEFINITION 3.2. We call a directed path P in DM1,M2
(I)

irreducible if both its endpoints are in I , P ∩DM1
(I) is the

unique matching on its vertices inDM1
(I), and P∩DM2

(I)
is the unique matching on its vertices in DM2

(I).

LEMMA 3.2. For any irreducible path P in DM1,M2
(I),

the set I∆V (P ) is independent in I1 ∩ I2.

Proof. Observe that the edges of P alternate between
DM1

(I) and DM2
(I), the vertices of P alternate between I

and N \ I , and since both endpoints are in I , the length of P
is even. Consider the matching P∩DM1

(I) and its vertex set
W1 = V (P ) \ {w2}, where w2 is the endpoint of P incident
to an edge of DM2(I). By assumption, this is the unique
matching in DM1(I) covering W1, and so I∆W1 ∈ I1. By
removing another element, we cannot violate independence,
and hence we also have I∆V (P ) = (I∆W1) \ {w2} ∈ I1.
Similarly, we prove that I∆V (P ) ∈ I2.

The next lemma is an adaptation of Lemma 3.1 for our
purposes.

LEMMA 3.3. LetM` = (N, I1), ` = 1, 2, be matroids on
ground set N , and let δ = 1/(p − 1), p ∈ Z. Suppose that
I, J ∈ I1∩I2 and |I| = |J |. Then we can find in polynomial
time a collection of irreducible cycles/paths {P1, . . . , Pm} of
length at most 2p − 1, m ≤ |I∆J |2, in DM1,M2

(I), with
coefficients ρi ≥ 0,

∑m
i=1 ρi = 1, such that for some ρ > 0,∑m

i=1 ρi1V (Pi) = (1 + δ)ρ1I\J + ρ1J\I .

Proof. Let {C1, . . . , Cm′} be the collection of irreducible
cycles on I∆J provided by Lemma 3.1. Consider a cycle Ci
with coefficient γi, which has length 2`i. Assume for now
that `i > p. For each vertex v ∈ V (Ci) ∩ I , let Piv be a
directed path of length 2p − 1 starting at v, going along the
cycle. The number of such paths is `i ≤ |I∆J |. We assign
a coefficient ρi = γi/(p − 1) = δγi to each of these paths.
Since every vertex in V (C) ∩ I is contained in p such paths,
and every vertex in V (C)\I is contained in p−1 such paths,
these paths contribute (1 + δ)γi to each vertex of V (C) ∩ I
and γi to each vertex of V (C) \ I .

If `i ≤ p, we can keep the cycle Ci in our collection
with ρi = (1 + δ)γi. This cycle would contribute (1 + δ)γi
to all its vertices. To make the contributions consistent with
the case above, we replace Ci with suitable coefficients by
paths where some vertex of V (Ci)∩J is removed. It is easy
to see that in this way we can decrease the contribution to
each vertex of V (Ci) ∩ J to γi.

We repeat this for every cycleCi, to produce a collection
of at most |I∆J |2 paths/cycles. These cover each vertex of
I \ J with a coefficient of exactly (1 + δ)γ and each vertex

of J \ I with a coefficient of γ. Finally, we normalize the
coefficients so that

∑
ρi = 1, which gives the statement of

the lemma for some value ρ > 0.

Observe that switching the roles of I and J , we can work
with DM1,M2

(J) and obtain a collection of paths/cycles P ′i
with coefficients σi such that

∑m
i=1 σi1V (P ′i )

= σ1I\J +
(1 + δ)σ1J\I . Equivalently, we can scale σ so that∑m
i=1 σi1V (P ′i )

= σ
1+δ1I\J + σ1J\I .

3.2 The rounding procedure The rounding procedure
follows the same framework as the rounding algorithm for
matchings (Section 2). Again, we start with a convex combi-
nation x =

∑n
i=1 αi1Ii where Ii ∈ I1 ∩ I2. Any fractional

solution x ∈ P (M1) ∩ P (M2) can be efficiently decom-
posed in this manner, see [30]. Assume also that the coeffi-
cients are ordered so that α1 ≥ . . . ≥ αn. Let J1 := I1. As
in the matchings case we proceed in stages, where in the k-
th stage, a new independent set Jk+1 ∈ I1 ∩ I2 is produced
from Jk and Ik+1.

Algorithm SwapRound(x =
∑n
`=1 α`1I`):

Reorder so that α1 ≥ α2 ≥ . . . ≥ αn
J1 = I1;
For (k = 1 to n− 1) do
Jk+1 =MergeIntersectionSets(αk+1, Ik+1,

∑k
`=1 α`, Jk);

EndFor
Output Jn.

The merge operation is performed in much the same
way as in [9], the difference being that we use the swap
path/cycle structure provided by Lemma 3.3. Suppose we
are merging two sets I, J which are disjoint. If not, we
formally add copies of the shared elements, and we consider
trivial exchanges between copies of the same element. This
does not affect the actual rounding procedure, but helps in
the analysis in the sense that each element of I ∪ J will be
processed exactly once in the merging stage.

We apply Lemma 3.3 twice, to obtain (1) a con-
vex combination of irreducible paths/cycles

∑
ρi1V (Pi)

in DM1,M2(I), representing feasible swaps from I to J ,
and (2) a convex combination of irreducible paths/cycles∑
σi1V (P ′i )

in DM1,M2
(J), representing feasible swaps

from J to I . These swap sets cover the symmetric differ-
ence I∆J almost uniformly, but as in the rounding algorithm
for matchings, there is a slight bias towards the elements
we are removing. For example, we have

∑
ρi1V (Pi) =

(1 + δ)ρ1I\J + ρ1J\I ; i.e., elements of I are covered more
often than the elements of J , when we work with I . This
means elements are removed from I more often than added
to I .



Algorithm MergeIntersectionSets(α, I, β, J):
While (I 6= J) do

Generate a collection of irreducible paths/cycles {Pi} in DM1,M2
(I) each containing at most 2p vertices

such that
∑
ρi1V (Pi) = (1 + δ)ρ1I\J + ρ1J\I ,

∑
ρi = 1, ρi ≥ 0,

and a collection of irreducible paths/cycles {P ′i} in DM1,M2
(J) each containing at most 2p vertices

such that
∑
σi1V (P ′i )

= σ
1+δ1I\J + σ1J\I ,

∑
σi = 1, σi ≥ 0.

With probability βσρi
αρ+βσ for each i, let I := I∆V (Pi).

else with probability αρσi
αρ+βσ for each i, let J := J∆V (P ′i ).

EndWhile
Output I .

We proceed in a sequence of random swaps, where each
swap is chosen randomly from a distribution corresponding
to this path/cycle structure, as can be seen from a concise
description of the merge operation in the box. Every time
we perform a swap, the size of I∆J shrinks. We remark that
it is necessary to recompute the entire path/cycle structure
after each swap. We repeat this procedure, until I and J
become identical.

4 Dimension-free concentration for swap-based
processes

In this section, we prove concentration bounds for a general
random process which encapsulates both our rounding pro-
cedures for matroid intersection and matching. The rounding
procedures from the previous two sections can be described
at a high level as follows.

4.1 The swap-based random process Let P ⊆ [0, 1]N

be an integer polytope and let F ⊆ 2N be the family of the
subsets of N that correspond to vertices of P . Given is a
convex combination x =

∑n
i=1 αi1Ii ∈ P , where αi ≥ 0,∑n

i=1 αi = 1 and Ii ∈ F . We further assume for technical
reasons that the indices are ordered so that α1 ≥ . . . ≥
αn. Assuming this ordering slightly simplifies our analysis.
However, with some modifications, the proof technique
we employ could also be used without the assumption of
the αi being ordered, leading to slightly weaker constants
in the exponents of the concentration bounds presented in
Theorem 1.1.

We let J1 := I1. In the k-th merge operation, we process
Jk and Ik+1 to produce a new set Jk+1. The merge operation
proceeds in a sequence of swap operations between Jk and
Ik+1, where each swap set D is chosen from a certain
distribution so that D contains at most p elements from each
of Jk, Ik+1. The exact structure of the random swaps is given
by Lemma 2.1 for matchings and by Lemma 3.3 for matroid
intersection. In summary, if the current sets are I, J with
coefficients α, β > 0, there are coefficients ρ, σ > 0 such
that

• with probability βσ
αρ+βσ , we replace I by I∆D where

E[1D] = (1 + δ)ρ1I\J + ρ1J\I ,

• with probability αρ
αρ+βσ , we replace J by J∆D′ where

E[1D′ ] = σ
1+δ1I\J + σ1J\I .

Our goal is to prove the following.

THEOREM 4.1. Let a ∈ [0, 1]n and let a(S) =
∑
i∈S ai be

the associated linear function. Let x =
∑n
i=1 αi1Ii ∈ P

and let µ = E[a(R)], where R = Jn ∈ F is a random set
obtained by the randomized swap rounding procedure using
swaps satisfying |D∩Ik+1|, |D∩Jk| ≤ p as explained above.
Then E[1R] ≥ (1− 1

p )2x and

i) For ε ∈ [0, 1], Pr[a(R) ≤ (1− ε)µ] ≤ e−µε2/8p,
ii) For ε ∈ [0, 1], Pr[a(R) ≥ (1 + ε)µ] ≤ e−µε2/8p.

iii) For t ≥ 2, Pr[a(R) ≥ tµ] ≤ e−µ(2t−3)/8p.

Given this theorem, we can derive Theorem 1.1 as
follows. Given γ ∈ (0, 1

2 ] in Theorem 1.1, we pick the
smallest integer p such that 2

p ≤ γ. (Note that p ≥ 4 and
δ = 1

p−1 ≤
1
3 .) Then we have E[1R] ≥ (1 − 1

p )2x ≥
(1 − 2

p )x ≥ (1 − γ)x. As we show below, we can in
fact scale down the initial coefficients in such a way that
E[1R] = (1 − γ)x, as required by Theorem 1.1. Since
we picked the smallest integer p satisfying 2

p ≤ γ, we have
p ≤ 2

γ +1 ≤ 2.5
γ . This is why 1/8p in the exponent becomes

γ/20 in Theorem 1.1.
Let us point out some differences between this work

and [9]. In [9], the random process in terms of the fractional
solution throughout the algorithm forms a martingale; i.e.,
the expectation is preserved in each step. This is not
true here, since the structure of exchange cycles and paths
provided by Lemmas 2.1 and 3.3 is biased, in the sense
that elements are more often removed than added. In
order to facilitate the analysis, we first define a modified
random process which is related to the evolution of the
fractional solution and in fact forms a martingale. This
allows us to apply our martingale analysis and finally prove
the concentration results that we claimed.



4.2 A modified martingale process We define β` =∑`
i=1 αi, and consider a related linear combination x̃ =∑n
i=1 α̃i1Ii , with

α̃i =
αi + βi−1

αi + (1 + δ)2βi−1
αi,

where δ = 1/(p − 1) is the parameter used in the rounding
procedure. The modified process starts from the point x̃ =∑n
i=1 α̃i1Ii . As we merge the first k sets, we produce a

new set Jk, and the coefficient assigned to this set will be
βk =

∑k
i=1 αi. I.e., at this point the linear combination

becomes βk1Jk +
∑n
`=k+1 α̃`1I` . Eventually, we obtain a

set Jn with coefficient βn =
∑n
i=1 αi = 1.

The new random process defines a martingale, as we
state more precisely in Lemma 4.1. Thus if R = Jn is the
final outcome of the rounding procedure, we will show that
E[1R] = x̃ =

∑n
i=1 α̃i1Ii . Note that each coefficient α̃i is

at least αi/(1 + δ)2 = αi/(1 + 1
p−1 )2 = (1− 1

p )2αi. Hence
E[1R] ≥ (1− 1

p )2x, as required by Theorem 4.1.
We remark that in order to achieve the condition

E[1R] = (1 − γ)x for some γ ≥ 2
p , as required by Theo-

rem 1.1, we can proceed as follows. Assuming that the initial
linear combination is x′ =

∑n
i=1 α

′
i1Ii , we can scale the co-

efficients down in a suitable way to obtain x =
∑n
i=1 αi1Ii

(formally adding an empty set with coefficient 1−
∑n
i=1 αi),

so that α̃i = (1 − γ)α′i. We omit the details, as this would
further encumber the notation.

Next, we refine the definition of the modified random
process and describe what we mean by x̃ in the middle of the
merge operation. The following lemma describes the process
and proves that it is a martingale.

LEMMA 4.1. Let F denote the family of feasible solutions
(either matchings or sets in matroid intersection). Let
x =

∑n
i=1 αi1Ii , where Ii ∈ F . Let J1 = I1, and

for k ∈ {1, . . . , n − 1} let Jk+1 be the set produced by
merging Jk, Ik+1 as in the procedure MergeMatchings or
MergeIntersectionSets. Define βk =

∑k
i=1 αi and x̃ =∑n

i=1 α̃i1Ii , where

α̃i =
αi + βi−1

αi + (1 + δ)2βi−1
αi.

After t steps of merging Jk with Ik+1, assuming the elements
already processed are in Jk ∩ Ik+1, let us define

x̃k,t = (βk + αk+1)1Jk∩Ik+1
+ βk1Jk\Ik+1

+ α̃k+11Ik+1\Jk +

n∑
`=k+2

α̃`1I` .

Then we have x̃ =
∑n
i=1 α̃i1Ii = x̃1,0 and the process

(x̃1,0, x̃1,1, . . . , x̃2,0, x̃2,1, . . .) forms a martingale. In par-
ticular, if R is the final rounded solution, E[1R] = x̃ = x̃1,0.

Proof. Note that the elements that have not been processed
yet are counted in x̃k,t with coefficients α̃i which are smaller
than αi - this accounts for the fact that they will be kicked
out more often than added. At the beginning of the process,
we have J1 = I1 and formally J1 ∩ I1 = ∅; therefore,

x̃1,0 = β11J1 + α̃21I2 +

n∑
`=3

α̃`1I` =

n∑
`=1

α̃`1I`

because β1 = α1 = α̃1.
To prove the martingale property, consider a fractional

solution x̃k,t. The procedure operates on the sets Jk and
Ik+1. If it decides to modify Jk, some coordinates on Jk lose
βk (when they are removed from Jk) and some coordinates
on Ik+1 gain βk + αk+1 − α̃k+1 (when they move from
Ik+1 \ Jk to Ik+1 ∩ Jk). If the procedure decides to modify
Ik+1, some coordinates on Jk gain αk+1 (when they move to
Jk ∩ Ik+1), and some coordinates on Ik+1 lose α̃k+1 (when
they are removed from Ik+1).

Now let us compute the expected change for a fixed
element j ∈ Jk. To simplify notation, let us use α =
αk+1, β = βk and α̃ = α̃k+1. The probability that we
remove j from Jk is the probability that we modify Jk and j
participates in the chosen swap path, i.e.

Pr[j is removed from Jk] =
∑

i:j∈V (Pi)

αρσi
αρ+ βσ

=
αρσ

αρ+ βσ
.

Similarly, the probability that an element j ∈ Jk gains by
being added to Ik+1 is

Pr[j is added to Ik+1] =
∑

i:i∈V (P ′i )

βσρi
αρ+ βσ

=
βσρ

αρ+ βσ
.

In the first case, the coordinate Xj loses β, while in the
second case, it gains α. Therefore, if X ′j denotes the
coordinate value after this step,

E[X ′j | Xj ] = Xj −
αρσ

αρ+ βσ
β +

βσρ

αρ+ βσ
α = Xj .

It is similar but slightly more involved to analyze the change
in coordinates on Ik+1. The probability that we remove j
from Ik+1 is the probability that Ik+1 is modified and j
happens to be on the chosen swap path:

Pr[j is removed from Ik+1] =
∑

i:j∈V (P ′i )

βσρi
αρ+ βσ

= (1 + δ)
βσρ

αρ+ βσ
.

The probability that j is added to Jk is the following:

Pr[j is added to Jk] =
∑

i:i∈V (Pi)

αρσi
αρ+ βσ

=
1

1 + δ

αρσ

αρ+ βσ
.



Note the asymmetry here, due to the factors (1 + δ). Recall
that in the first case, Xj loses α̃, while in the second case,
Xj gains α + β − α̃. A computation using α̃ = (α+β)α

α+(1+δ)2β

reveals that

E[X ′j | Xj ] = Xj − (1 + δ)
βσρ

αρ+ βσ
α̃

+
1

1 + δ

αρσ

αρ+ βσ
(α+ β − α̃)

= Xj − (1 + δ)
βσρ

αρ+ βσ

α+ β

α+ (1 + δ)2β
α

+
1

1 + δ

αρσ

αρ+ βσ

(α+ β)(1 + δ)2β

α+ (1 + δ)2β

= Xj .

4.3 Martingale analysis In the following, we work to-
wards the proof of Theorem 4.1. By scaling a by 1/p, let
us assume that ai ∈ [0, 1/p], so that a(D∩ I), a(D∩J) ≤ 1
for any swap set D. We prove Theorem 4.1 by proving
Pr[a(R) ≤ (1 − ε)µ] ≤ e−µε

2/8, Pr[a(R) ≥ (1 + ε)µ] ≤
e−µε

2/8 and Pr[a(R) ≥ tµ] ≤ e−µ(2t−3)/8.
The core of the proof is to estimate the exponential mo-

ment E[eλ(a(R)−µ)] and bound it by a factor depending only
on the expectation, of the form eO(λ2µ). The difficulty in an-
alyzing this process is that the swap set in each step comes
from a probability distribution and hence it is not easy to
charge the variance of the current step to the value of ele-
ments that have been processed. We develop an inductive
approach to this problem relying on two probabilistic lem-
mas (Lemma 4.2 and 4.3) which appear to be new and some-
what different from traditional martingale analysis.

We focus on the analysis of the modified random process
in terms of x̃. In the k-th stage, we are merging sets Jk and
Ik+1, with coefficients βk =

∑k
i=1 αk and α̃k+1. Define

also β̃k so that β̃k + α̃k+1 = βk + αk+1. Recall that the
coefficients are ordered in descending order of magnitude,
so we always have αk+1 ≤ βk. For simplicity, let us drop
the indices and denote the sets by I, J , and the coefficients
by α, β, α̃, β̃. Since α̃ ≤ α and β̃ + α̃ = β + α, we
have α̃ ≤ α ≤ β ≤ β̃. While I∆J is nonempty,
we perform the following rounding step. Assume that
the current (modified) fractional solution is x̃. One swap
operation can be summarized as follows.

Swap Operation.
i) With some probability, choose a random D ⊆ I∆J and

define I ′ := I∆D, x̃′ := x̃− α̃1D∩I + α1D∩J .
ii) Otherwise, choose a random D ⊆ I∆J (according to

a possibly different distribution), and let J := J∆D,
x̃′ := x̃ + β̃1D∩I − β1D∩J .

iii) The distributions are chosen so that E[x̃′ | x̃] = x̃.

iv) We have a(D ∩ I), a(D ∩ J) ≤ 1 with probability 1.

Let us now analyze how a linear function a · x̃ behaves
under such swap operations. Let Z be the change of a · x̃
due to the first swap, i.e., Z = a · (x̃′ − x̃). Furthermore,
let W be the random variable given by a(D), where D is the
swap set used in the first swap iteration. We have |Z| ≤ W
and W = a(D ∩ I) + a(D ∩ J) ≤ 2. First, the following
elementary inequality.

LEMMA 4.2. Let Y = αAX − β(1 − A)X , where α, β ∈
[0, 1], A,X are (possibly correlated) random variables with
A ∈ {0, 1}, X ∈ [0, 1], and E[Y ] = 0. Then

E[Y 2] ≤ αβE[X].

Proof. Since A ∈ {0, 1}, Y 2 = α2AX2 + β2(1 − A)X2.
Therefore,

E[Y 2] = α2E[AX2] + β2E[(1−A)X2]

≤ α2E[AX] + β2E[(1−A)X]

using the fact that X ∈ [0, 1]. Since we assume E[Y ] =
αE[AX]− βE[(1−A)X] = 0, we have

0 = (β − α)E[Y ]

= (αβ − α2)E[AX] + (αβ − β2)E[(1−A)X].

Adding this to the inequality above, we get

E[Y 2] ≤ αβE[AX] + αβE[(1−A)X] = αβE[X].

Next, we have the following inequality for a single swap.

LEMMA 4.3. Let x̃′ be obtained from x̃ by a single swap
step, using a random swap set D as above, where α ≤ β,
and let Z = a · (x̃′ − x̃) and W = a(D). Then for any
λ ∈ [− 1

4 ,
1
4 ],

E[eλZ−λ
2αβW ] ≤ 1.

Proof. Since λZ − λ2αβW ≤ λZ ≤ 1
4 , we use the

following elementary bound: ex ≤ 1 + x + 5
9x

2 for x ≤ 1
4 .

We obtain

E[eλZ−λ
2αβW ] ≤1 + E[λZ − λ2αβW ]

+
5

9
E[(λZ − λ2αβW )2].

We have E[Z] = a · E[x̃′ − x̃] = 0 due to condition (iii).
Therefore,

E[eλZ−λ
2αβW ] ≤ 1− λ2αβE[W ] +

5

9
λ2E[(Z − λαβW )2].

The key is to estimate the last expectation. We claim that

(4.1) E[(Z − λαβW )2] ≤ αβ(1 + |λ|)2E[W ].



If we prove this, we are done, because 5
9 (1 + |λ|)2 ≤

5
9 (1 + 1

4 )2 < 1, and therefore

E[eλZ−λ
2αβW ]

≤ 1− λ2αβE[W ] +
5

9
λ2αβ(1 + |λ|)2E[W ] ≤ 1.

Proof of (4.1). We introduce the following random variables:

• WI = a(D ∩ I),WJ = a(D ∩ J).

• ZI = aI · (x̃′ − x̃), ZJ = aJ · (x̃′ − x̃), where aI ,aJ
are the weight functions restricted to I, J respectively.

• A is an indicator variable such that A = 1 if we are
modifying I (step i)), and A = 0 if we are modifying J
(step ii)).

• I.e., W = WI +WJ and Z = ZI + ZJ , where

(4.2) ZI = −Aα̃WI + (1−A)β̃WI

and

(4.3) ZJ = AαWJ − (1−A)βWJ .

The assumption that E[x̃′ | x̃] = 0 implies that E[ZI ] =
E[ZJ ] = 0. Let us write E[(Z − λαβW )2] as follows:

E[(Z−λαβW )2] = E[Z2]−2λαβE[WZ]+λ2α2β2E[W 2].

First, let us estimate E[Z2]. We have

E[Z2] = E[(ZI + ZJ)2]

= E[Z2
I ] + 2E[ZIZJ ] + E[Z2

J ]

≤ E[Z2
I ] + E[Z2

J ]

because ZI and ZJ always have opposite signs. The variable
ZJ when decomposed as given by (4.3) satisfies the assump-
tions of Lemma 4.2 and hence E[Z2

J ] ≤ αβE[WJ ]. Simi-
larly, ZI as given by (4.2) satisfies the same assumption with
α̃, β̃ instead of α, β, and so E[Z2

I ] ≤ α̃β̃E[WI ]. Recall that
we ordered the coefficients, so that α ≤ β; this also means
that α̃ ≤ α ≤ β ≤ β̃, since α+β = α̃+β̃. Hence, α̃β̃ ≤ αβ.

We can conclude that

E[Z2] ≤ E[Z2
I ]+E[Z2

J ] ≤ αβE[WI ]+αβE[WJ ] = αβE[W ].

To estimate E[ZW ], we use the Cauchy-Schwartz in-
equality:

|E[ZW ]| ≤ (E[Z2]E[W 2])1/2 ≤ (αβE[W ]E[W 2])1/2

≤
√

2αβ E[W ],

using the fact that E[W 2] ≤ 2E[W ] since 0 ≤ W ≤ 2.
Hence,

E[(Z − λαβW )2]

= E[Z2]− 2λαβE[ZW ] + λ2α2β2E[W 2]

≤ αβE[W ] + 2|λ|αβ
√

2αβE[W ]

+ 2λ2α2β2E[W ]

= αβ(1 + |λ|
√

2αβ)2E[W ]

≤ αβ(1 + |λ|)2E[W ]

using α+ β ≤ 1 which implies that αβ ≤ 1/4.

Remark. The proof above is the only place where we
exploit the ordering of the exponents α1 ≤ · · · ≤ αn.
One can show that even without assuming any particular
ordering of the coefficients, α̃β̃ ≤ (1 + δ)2αβ holds.
By slightly modifying the statement of this lemma and
the remaining part of the proof, this additional factor of
(1 + δ)2 can be propagated in the exponent, still leading
to a concentration bound, however with a slightly weaker
constant in the exponent.

Now we can add up the contributions to the exponential
moment over an entire merge operation. Let us define
Z1, Z2, Z3, . . . to be the changes of a · x̃ during successive
swaps in merging I and J . Similarly, let us define W1 =
a(D1) to be the weight of the first swap, etc. Notice that
the number of swaps needed to merge I and J is a random
variable since the swap sets are not necessarily of the same
size. However, this does not impose any further difficulty in
the analysis below. In particular, by adding dummy swaps
at the end if necessary we can assume that the number of
swaps needed to merge I and J is always the same. Notice
that Zj ∈ [−1, 1] and E[Zj | Hj−1] = 0, where Hj−1 is the
history of the merging procedure up to swap iteration j − 1.

LEMMA 4.4. Let λ ∈ [− 1
4 ,

1
4 ] and k ∈ N be some fixed

number of swap iterations, then

E[eλ
∑k
j=1 Zj ] ≤ eλ

2αβa(I∆J).

Proof. We prove the result by induction on k. For k = 1 we
have

E[eλZ1 ] = E[eλZ1−λ2αβW1 · eλ
2αβW1 ]

≤ E[eλZ1−λ2αβW1 ]eλ
2αβa(I∆J)

≤ eλ
2αβa(I∆J),

where the first inequality follows from W1 ≤ a(I∆J)
with probability 1, and the second inequality follows from
Lemma 4.3.

Consider now the case k > 1. We have

E[eλ
∑k
j=1 Zj ] = E[eλZ1E[eλ

∑k
j=2 Zj | H1]],



where H1 encodes a particular outcome of the first swap
operation. Let D1 ⊆ I∆J be the swap set used in the
first iteration. Let I ′ and J ′ be the updated (random) sets
obtained from I and J after the first swap using the swap set
D1. Since a(I ′∆J ′) = a(I∆J) − W1, we can apply the
inductive hypothesis to obtain

E[eλ
∑k
j=2 Zj | H1] ≤ eλ

2αβ(a(I∆J)−W1),

and hence

E[eλ
∑k
j=1 Zj ] ≤ eλ

2αβa(I∆J)E[eλZ1−λ2αβW1 ]

≤ eλ
2αβa(I∆J),

where the last inequality follows from Lemma 4.3.

So far, we only considered one merge operation. In the
following we show how to bound the exponential moment
for the whole swap rounding procedure. Given is a fractional
solution x̃ =

∑n
i=1 α̃i1Ii with Ii ∈ F for i ∈ [n]. Let

J1 = I1, and let Jk for k ∈ {1, . . . , n} be the set obtained by
merging Jk−1 and Ik. After k merge operations, the current
fractional solution is given by βk+11Jk+1

+
∑n
i=k+2 α̃i1Ii

where βk+1 =
∑k+1
i=1 αi. The set returned by the algorithm

is R = Jn.

LEMMA 4.5. Let λ ∈ [− 1
4 ,

1
4 ], let Jn be obtained from x̃

by randomized swap rounding as described above, and let
µ = a · x̃ = E[a(Jn)]. Then

E[eλ(a(Jn)−µ)] ≤ e2λ2µ.

Proof. We proceed by induction on the number of terms n in
the convex decomposition of x̃ =

∑n
i=1 α̃i1Ii . Notice that

the base step of the inductive proof is trivial, since if n = 1,
then a(J1) = a(I1) = µ and the left-hand side is 1. So
assume n ≥ 2. We have

E[eλ(a(Jn)−µ)]

= EHn−1 [eλ[βn−1a(Jn−1)−(µ−α̃na(In))]

× EHn [eλ[a(Jn)−(βn−1a(Jn−1)+α̃na(In))] | Hn−1]]

= EHn−1 [eλ[βn−1a(Jn−1)−
∑n−1
i=1 α̃ia(Ii)]

× EHn [eλ[a(Jn)−(βn−1a(Jn−1)+α̃na(In))] | Hn−1]],

whereHk denotes the history of the first k merge operations
in the rounding process. The inner expectation corresponds
to the change in eλ(a·x̃) due to the last merge operation,
merging Jn−1 and In. By Lemma 4.4 we have

EHn [eλ[a(Jn)−(βn−1a(Jn−1)+α̃na(In))] | Hn−1]

≤ eλ
2αnβn−1a(Jn−1∆In)

≤ eλ
2αnβn−1(a(Jn−1)+a(In)),

and hence

E[eλ(a(Jn)−µ)] ≤ EHn−1 [eλ(βn−1a(Jn−1)−
∑n−1
i=1 α̃ia(Ii))

(4.4)

× eλ
2αnβn−1(a(Jn−1)+a(In))]

= EHn−1

[
e(λ+λ2αn)(βn−1a(Jn−1)−

∑n−1
i=1 α̃ia(Ii))

]
× eλ

2αn(βn−1a(In)+
∑n−1
i=1 α̃ia(Ii))

= EHn−1

[
e
λ′
(
a(Jn−1)−

∑n−1
i=1

α̃i
βn−1

a(Ii)
)]

× eλ
2αn(βn−1a(In)+

∑n−1
i=1 α̃ia(Ii))

where we set λ′ = λ(1 + λαn)βn−1. Notice that |λ′| ≤
|λ|(1 + |λ|αn)βn−1 ≤ |λ|(1 + αn)(1 − αn) ≤ |λ| ≤ 1

4 .
Hence λ′ ∈ [− 1

4 ,
1
4 ].

Next, we will apply the inductive hypothesis to the
expectation over Hn−1. The idea is to observe that Jn−1

can be seen as a random set that corresponds to applying the
swap rounding procedure to the point z =

∑n−1
i=1

αi
βn−1

1Ii ,
which is a convex combination of n−1 sets, and thus allows
us to apply the inductive hypothesis. The only difference,
when I1, . . . , In−1 are merged into Jn−1 while applying the
rounding procedure to x compared to rounding z, is that the
coefficients of the terms in the convex decomposition of z
are scaled by a factor of 1

βn−1
compared to those of x. The

same is true for all coefficients α̃i and β̃i used in the merging
procedure. However, this does not make any difference in the
rounding procedure, since the rounding probabilities depend
only on relative ratios of the coefficients. Thus, we obtain by
induction

EHn−1

[
e
λ′
(
a(Jn−1)−

∑n−1
i=1

α̃i
βn−1

a(Ii)
)]

≤ e2λ′2
∑n−1
i=1

α̃i
βn−1

a(Ii)

= e2λ2(1+λαn)2βn−1

∑n−1
i=1 α̃ia(Ii).

Combining the above equation with (4.4), we get

E[eλ(a(Jn)−µ)] ≤ eλ
2αn(βn−1a(In)+

∑n−1
i=1 α̃ia(Ii))

×e2λ2(1+λαn)2βn−1
∑n−1
i=1 α̃ia(Ii)

= eλ
2αnβn−1a(In) ×eλ

2(αn+2(1+λαn)2βn−1)
∑n−1
i=1 α̃ia(Ii).



Taking logs to simplify the writing, we obtain

log E
[
eλ(a(Jn)−µ)

]
≤ λ2 αnβn−1a(In)︸ ︷︷ ︸

≤2α̃na(In)

=2µ−2
∑n−1
i=1 α̃ia(Ii)

(4.5)

+ λ2(αn + 2βn−1︸ ︷︷ ︸
=αn+2(1−αn)

=2−αn

+ (4λαn + 2λ2α2
n)βn−1)

n−1∑
i=1

α̃ia(Ii)

≤ λ2

(
2µ+ αn(−1 + (4λ+ 2λ2αn)βn−1)

n−1∑
i=1

α̃ia(Ii)

)
where we used αn ≤ (1 + δ)2α̃n ≤ 2α̃n (recall that δ =

1
p−1 ≤

1
3 ). The lemma will finally be proven by showing that

(4λ+2λ2αn)βn−1 ≤ 1 for λ ∈ [− 1
4 ,

1
4 ]. Since the left-hand

side is a convex function of λ, it suffices to check the two
endpoints. For λ = − 1

4 , the LHS is (−1 + 1
8αn)βn−1 ≤ 0.

For λ = 1
4 , we get (1+ 1

8αn)βn−1 ≤ (1+αn)(1−αn) ≤ 1.
By (4.5), log E

[
eλ(a(Jn)−µ)

]
≤ 2λ2µ.

Now we can finish the proof of Theorem 4.1.

Proof. [Proof of Theorem 4.1]

i) For λ ∈ [− 1
4 , 0], we have

Pr[a(R) ≤ (1− ε)µ] ≤ Pr[eλ(a(R)−µ) ≥ e−λεµ]

≤ E[eλ(a(R)−µ)]

e−λεµ

≤ e(2λ2+λε)µ,

where the second inequality follows from Markov’s
inequality and the third one follows from Lemma 4.5.
Notice that Jn as defined in Lemma 4.5 equals R.
Choosing λ = −ε/4 proves the claim.

ii) For λ ∈ [0, 1
4 ] we have,

Pr[a(R) ≥ (1 + ε)µ] ≤ Pr[eλ(a(R)−µ) ≥ eλεµ]

≤ E[eλ(a(R)−µ)]

eλεµ

≤ e(2λ2−λε)µ

where again the second inequality follows Markov’s
inequality and the third one from Lemma 4.5. Choosing
λ = ε/4 proves the second part of Theorem 4.1.

iii) For the third part of Theorem 4.1, we consider ε =
t− 1 ≥ 1 and we fix λ = 1

4 . As above, we obtain

Pr[a(R) ≥ tµ] ≤ e(2λ2−λ(t−1))µ = e(3−2t)µ/8.

Recall that we scaled the coefficients ai and hence µ by 1/p,
so the theorem follows.

5 Applications
In this section, we show how our concentration bounds imply
the results on multi-budgeted and multi-objective optimiza-
tion. In fact, we prove a more general result, which implies
both Theorem 1.2 and Theorem 1.4. First, let us define the
following.

Multi-objective/multi-budget matching. Given a graph
G = (V,E), k linear functions (“demands”) f1, . . . , fk :
2E → R+, and ` linear functions (“budgets”) g1, . . . , g` :
2E → R+, is there a matching M satisfying fi(M) ≥ Vi for
all i ∈ [k] and gi(M) ≤ Bi for all i ∈ [`]?

Multi-objective/multi-budget matroid intersection. Given
two matroidsM1 = (N, I1) andM2 = (N, I2), k linear
functions (“demands”) f1, . . . , fk : 2N → R+, and ` linear
functions (“budgets”) g1, . . . , g` : 2N → R+, is there an
independent set I ∈ I1 ∩ I2 satisfying fi(I) ≥ Di for all
i ∈ [k] and gi(I) ≤ Bi for all i ∈ [`]?

We show that these problems can be solved up to a small
relative error in the objective functions.

THEOREM 5.1. For any ε > 0 and any constant number
of demands and budgets k + `, there is a polynomial-time
randomized algorithm which for any feasible instance of
multi-objective/multi-budget matching or matroid intersec-
tion finds with high probability a feasible solution S such
that
• Each linear budget constraint is satisfied: gi(S) ≤ Bi.
• Each linear demand is nearly satisfied: fi(S) ≥ (1 −
ε)Di.

If such a solution is not found, the algorithm returns a
certificate that the instance is not feasible with demands Di

and budgets Bi.

Implications. First, let us consider instances with one
objective k = 1 and a constant number of budgets `. Via
the algorithm in Theorem 5.1, we can perform binary search
on the objective function and estimate within a factor of
1 − ε the maximum value D1 such that there is a solution
of value f1(S) ≥ (1 − ε)D1 and satisfying gi(S) ≤ Bi for
all budgets. This gives a (randomized) PTAS for the multi-
budgeted versions of matching and matroid intersection,
hereby proving Theorem 1.2.

Now, let us consider the case of k objective functions
and no budget constraints (` = 0). Here, we can solve the
following promise problem in polynomial time: is there a
feasible solution S satisfying fi(S) ≥ (1 − ε)Di for all
i, or no solution satisfies fi(S) ≥ Di for all i. Using the
multi-objective optimization framework of Papadimitriou
and Yannakakis (see Theorem 2 in [26]), this is sufficient
to find in polynomial time a ε-approximate Pareto set with
respect to the ` objectives. This proves Theorem 1.4.



Proof. [Sketch of proof of Theorem 5.1.] Fix ε > 0 and
let γ = ε/2. We guess a constant (depending on k, `, 1/ε)
number of elements so that for each remaining element j,
the value in each fi is at most ε4Di and also its size with
respect to each budget is at most ε4Bi. In the following, we
just assume that fi(j) ≤ ε4Di and gi(j) ≤ ε4Bi for all i and
j ∈ N .

Let P be either the matching polytope or the matroid
intersection polytope, corresponding to the instance. We add
linear constraints to P , to obtain

P ′ = {x ∈ P : ∀i ∈ [k]; fi(x) ≥ Di,∀j ∈ [`]; gj(x) ≤ Bi}.

Since P has a polynomial-time separation oracle, we also
have a polynomial-time separation oracle for P ′; therefore,
via the ellipsoid method, we can determine in polynomial
time whether P ′ is empty or not. If P ′ is empty, we have
a certificate that the problem infeasible. Otherwise, we can
find a (fractional) solution y ∈ P ′.

We apply randomized swap rounding to y, to obtain a
random solution R. This random solution satisfies E[1R] =
(1−γ)y = y′ and the concentration bounds of Theorem 1.1
hold. For each budget constraint gi, the coefficients are in
[0, ε4Di], and gi(y′) ≤ (1 − γ)Bi. Let µ = (1 − γ)Bi and
apply Theorem 1.1 to the function gi(R)/(ε4Bi). We obtain

Pr[gi(R) > Bi] ≤ Pr[gi(R) > (1 + γ)µ]

< e−µγ
3/(20ε4Bj)

= e−(1−γ)γ3/(20ε4).

We chose γ = ε/2 and so the probability is at most
e−(2−ε)/(320ε).

Similarly, for each objective function fi, we have
fi(y

′) ≥ (1 − γ)Di = µ and the coefficients of fi are in
[0, ε4Di]. Theorem 1.1 implies

Pr[fi(R) < (1− 2γ)Di] < e−µγ
3/(20ε4Di)

= e−(1−γ)γ3/(20ε4)

= e−(2−ε)/(320ε).

For fixed k and ` one can choose a sufficiently small
ε(k, `) > 0, such that, by the union bound, the probabil-
ity that fi(R) < (1 − 2γ)Di or gi(R) > Bi for some i is
at most 1/2. Therefore, we find a solution as required with
probability at least 1/2, and this probability can be boosted
by standard techniques.

A bicriteria approximation for many budgets: So far we
considered multi-budgeted optimization with a fixed number
of budgets. Now we examine the case where the number
of budgets can be large. One can formulate this problem as
max{wTx | Ax ≤ 1,x ∈ P,x ∈ Zn+} where Ax ≤ 1 is
a set of m packing/budget constraints (entries of A are non-
negative and lie in [0, 1] without loss of generality) and P is

an integer polytope of interest such as matroid intersection
or matching in our case. If m is part of the input, then
the maximum independent set problem is a special case
(even with only the packing constraints); unless P = NP
there is no O(n1−ε)-factor approximation for any fixed
ε > 0. However, if the packing constraints are loose or if
they can be violated, our rounding procedure yields a good
approximation. We can obtain the following results easily
via our concentration bounds, and hence omit a formal proof.
• A (1− ε)-approximation if constraints are “loose”, that

is, maxi,j Aij ≤ c ·ε/ logm for some sufficiently small
but fixed constant c.

• A (1 − ε,O( 1
ε logm)) bicriteria approximation where

the constraints are violated by an O( 1
ε logm) addi-

tive/multiplicative factor.
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A A deterministic PTAS for multi-budgeted matching
In this section, we consider the multi-budgeted matching
problem, and show how an adapted version of our rounding
scheme can be derandomized in this setting to obtain a
deterministic PTAS.

The main idea is to use slightly different swap sets when
merging a linear combination α11I1 + α21I2 of two match-
ings I1, I2. Assume α1 ≥ α2. In our randomized procedure,
I1∆I2 was cut into swap sets whose size was bounded by
a constant. This was done to obtain concentration for any
linear function with coefficients in [0, 1]. However, when
concentration is needed only for a constant number of lin-
ear functions–in this case the objective function and a con-
stant number of length functions–a much coarser partition of
I1∆I2 into swap sets suffices. In particular we will show
that it is possible to partition I1∆I2 into swap paths, whose
lengths may vary and is not necessarily bounded by a con-
stant, such that only a constant number of swaps have to
be performed to I1 to obtain a good merged solution, i.e.,
a matching J such that the objective value as well as the
lengths of (α1 +α2)1J and α11I1 +α21I2 are very close to
each other in a well-defined sense. A set of good swaps can
then be guessed to derandomized the approach. The swap
paths are chosen depending on the objective function and the
given length functions. Due to this dependent choice of swap
sets, concentration for other linear functions does not neces-
sarily hold anymore. This is a major difference compared to
the randomized approach.

More formally, we are given an edge-weighted graph
G = (V,E) with a weight function w : E → Z+.
Additionally, a constant number of ` non-negative length
functions gi : E → Z+, i ∈ [`] := {1, . . . , `} are given.
With every function gi, a budget Bi ∈ Z+ is associated. For
convenience, we often consider the weights w and lengths gi
as vectors in ZE+, in which case we use the boldface notation
w and gi. LetM⊆ 2E be the set of all matchings in G, and
let PM be the matching polytope, i.e., the convex hull ofM.
We are interested in the following multi-budgeted maximum
matching problem.

(A.1) max{w(I) | I ∈M, gi(I) ≤ Bi ∀i ∈ [`]}

In the following, we present a PTAS for problem (A.1).
More precisely, we present a multi-criteria PTAS for prob-
lem (A.1), i.e., an algorithm running in polynomial time for
a constant ε ∈ (0, 1] that returns a matching of weight at
least (1− ε)OPT and violates each budget by a factor of at
most 1 + ε. Such an algorithm can then be transformed into
a PTAS for problem (A.1) using standard techniques (see for
example [16]).

In a first step we formulate an adapted version of our
randomized procedure which is easier to derandomize. For
the derandomization step we use the following standard
Chernoff bound for Poisson trials. A proof can be found



in [17]3.

THEOREM A.1. Let X1, . . . , Xn be independent random
variables taking values in [0, 1], let X =

∑n
i=1Xi and let

δ ∈ [0, 1]. Then
i) for µ ≥ E[X], Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3,

ii) for µ ≤ E[X], Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2.

A.1 Merging two matchings In this section we show how
a convex combination x = α11I1 +α21I2 of two matchings
I1, I2 ∈M can be transformed into a matching J ∈Mwith
a similar objective value and such that a constant number
of linear functions do not increase too much. We use
the following notion of an r-almost matching, which was
introduced in a slightly more general form in [16]. A set
I ⊆ E is called an r-almost matching for some r ∈ Z+, if
I can be transformed into a matching by removing at most r
elements of I .

Let gmax
i = maxe∈I1∆I2 gi(e) for i ∈ [`], wmax =

maxe∈I1∆I2 w(e), and N = 6
ε2 ln(2`). The following

theorem is the backbone of the PTAS to be presented. Its
proof shows how to define swap paths such that at the same
time we have concentration for the objective function and
budgets, and efficient derandomization through exhaustive
search is possible.

THEOREM A.2. Let x = α11I1 + α21I2 be a convex
combination of two matchings. If gTi x ≥ Ngmax

i for i ∈ [`]
and wTx ≥ Nwmax, then a matching J can be obtained in
time O(n3(1+ε)(`+1)N ) such that I1∩ I2 ⊆ J ⊆ I1∪ I2, and

(i) gi(J) ≤ (1 + ε)gTi x ∀i ∈ [`],
(ii) w(J) ≥ (1− ε)wTx− 6(1 + ε)(`+ 1)Nwmax

i .

Proof. The theorem will be proven by presenting first a ran-
domized algorithm returning with high probability a 6(1 +

ε)(`+ 1)N -almost matching J̃ that can be transformed into
a matching J satisfying the claim of the theorem. The algo-
rithm will then be derandomized to get the result. Without
loss of generality we assume α1 ≥ α2, and I1 ∩ I2 = ∅.
Let D = I1∆I2 = I1 ∪ I2. We number the edges in
D = {e1, . . . , e|D|} such that edges belonging to the same
cycle/path in D are numbered consecutively, and any two
edges ej , ej+1 for j ∈ [|D| − 1] are either adjacent in D
or belong to different paths/cycles of D. This can easily be
achieved by cutting each cycle of D at an arbitrary vertex
and appending the resulting set of paths one to the other by
gluing together the endpoints of the paths.

Consider a fixed i ∈ [`], and let Ti = gTi x/N . We parti-
tion the edges of D into a collection Pi = {P 1

i , . . . , P
ki
i }

such that gi(P ) ≤ Ti ∀P ∈ P as follows. The sets

3In [17], a proof is presented for Theorem A.1 for the case µ = E[X].
However, the same proof also shows the slightly more general statement
given by Theorem A.1.

P 1
i , . . . , P

ki
i are constructed iteratively: P 1

i = {e1, . . . , eγ1}
consists of the largest sequence of edges e1, . . . , eγ1 , such
that `i(P

1
i ) ≤ Ti, i.e., γ1 = max{h ∈ [|D|] |∑h

j=1 gi(ej) ≤ Ti}. Analogously, P 2
i consists of the largest

sequence of edges eγ1+1, . . . eγ2 such that `i(P 2
i ) ≤ Ti and

so on.
Next, we show that the number ki of sets in Pi satisfies

ki ≤ 3N/α2. Notice that by construction of Pi, we have
gi(P

j
i ∪ P

j+1
i ) > Ti for j ∈ [ki − 1]. Using this fact, one

can easily observe that the average length of the sets in Pi is
at least Ti/3. Hence,

(A.2) gi(D) =

ki∑
j=1

gi(P
j
i ) ≥ kiTi

3
.

Furthermore, we have gTi x = gTi (α11I1 + α21I2) and
gi(D) = gTi (1I1 + 1I2), and hence by non-negativity of

gi and since α2 ≤ α1, we get gi(D) ≤ gTi x
α2

= NTi
α2

.
Combining this result with (A.2) we obtain ki ≤ 3N/α2

as claimed.
For every i ∈ [`], let Pi be a partition of D as de-

scribed above. Similarly, let Pw be a partition of D con-
structed analogously to the other ones with respect to the
weight function w instead of a length function. Each parti-
tion P1, . . . ,P`,Pw represents a way of cutting the sequence
of edges (e1, . . . , e|D|) into subsequences. Let P be the par-
tition corresponding to cutting the sequence (e1, . . . , e|D|) at
all places where at least one of the partitions P1, . . . ,P`,Pw

cuts the sequence. Hence, P can be described as follows

P = {Pw ∩ P1 ∩ · · · ∩ P` | Pi ∈ Pi for i ∈ [`], Pw ∈ Pw}.

Since every partition of P1, . . . ,P`,Pw contains at most
3N/q subsequences of (e1, . . . , e|D|), the partition P con-
tains at most 3N(`+ 1)/q elements.

We consider the following random process to create a
merge J̃ of I1 and I2. We start with I1 and, independently
for every set P ∈ P , we perform an edge-flip on the set P
with probability α2. In the following we show that with high
probability, the random set J̃ satisfies i) gi(J̃) ≤ gTi x for
i ∈ [`], and ii) w(J̃) ≥ (1− ε)wTx.

Let i ∈ [`]. The length gi(J̃) can be written as a sum of
independent random variables

(A.3) gi(J̃) =
∑
P∈P

XP ,

with Pr[XP = gi(I1 ∩ P )] = α1 and Pr[XP = gi(I2 ∩
P )] = α2. Notice that by construction of P , we have
XP ∈ [0,gTi x/N ]. Furthermore, E[gi(J̃)] = α1gi(I1) +



α2gi(I2) = gTi x. Hence,
(A.4)

Pr[gi(J̃) ≥ (1 + ε)gTi x] = Pr

[
gi(J̃)N

gTi x
≥ (1 + ε)N

]

≤ e−Nε
2/3 =

1

4`2
,

where the inequality follows by the Chernoff bound of
Theorem (A.1) point (i) with µ = N . Analogously, we
can obtain the following bound for the weight function using
Theorem A.1 point (ii), i.e.,

(A.5) Pr[wi(J̃) ≤ (1− ε)wTx] ≤ e−Nε
2/2 ≤ 1

4`2
.

We now show that with high probability the set J̃
is an 6(1 + ε)(` + 1)N -almost matching, i.e., it can be
transformed into a matching J by removing from J̃ at most
6(1+ε)(`+1)N edges. The number of edges that have to be
removed from J̃ to obtain a matching can easily be bounded
as follows. Let P ′ ⊆ P be the paths that were used to obtain
J̃ from I1 by flips, i.e., J̃ = I1∆(∪P∈P′P ). Clearly, J̃ can
be transformed into a matching by removing all edges at the
two ends of all paths in P ′. Hence, J̃ is a 2|P ′|-matching.
To show that J̃ is with high probability a 6(1 + ε)(` + 1)
matching as claimed, we will show that with high probability
|P ′| ≤ 3(1 + ε)(`+ 1).

Notice that |P ′| is the sum of independent 0-1 ran-
dom variables YP for P ∈ P , with P [YP = 1] = α2.
Furthermore, since the number of sets in P is bounded by
3(`+ 1)N/α2, and each set in P is used to perform an edge-
flip with probability α2, we have that the expected number
of flips is bounded by 3(`+ 1)N . Again, using the Chernoff
bound presented in Theorem A.1 point (i), we obtain
(A.6)

Pr[
∑
P∈P

YP ≥ (1 + ε)3N(`+ 1)] ≤ e−3N(`+1)ε2/3

≤ eNε
2/3 =

1

4`2
.

Hence with probability at least 1 − 1
4`2 , we have |P ′| ≤

3N(1 + ε)(`+ 1).
Using (A.4), (A.5) and (A.6) we can apply a union

bound to obtain that the probability of Y satisfying simul-
taneously

(i) gi(J̃) ≤ (1 + ε)gTi x ∀i ∈ [`],
(ii) w(J̃) ≥ (1− ε)wTx and

(iii) J̃ is obtained from I1 by at most 3N(1 + ε)(` + 1)
edge-flips,

is lower-bounded by 1 − (` 1
4`2 + 2 1

4`2 ) > 0. The algo-
rithm to find a set J̃ satisfying the above conditions can
easily be derandomized as follows. Since we know that
at most 3N(1 + ε)(` + 1) sets of the partition P have to

be used for edge-flips to obtain J̃ , we can guess these sets
in O(|P|3N(1+ε)(`+1)) time, and since trivially |P| ≤ n,
where n = |V |, this computational complexity is bounded
by O(n3N(1+ε)(`+1)).

By removing from J̃ all pending edges eγj , eγj+1
of the

sets P = {eγj , . . . , eγj+1
} ∈ P that were used to perform

edge-flips to obtain J̃ , a matching J is obtained. Notice that
w(J) ≥ (1−ε)wTx−6(1+ε)(`+1)Nwmax

i since w(J̃) ≥
(1−ε)wTx and at most 6(1+ε)(`+1)N edges ofD∩J̃ have
to be removed from J̃ to obtain J . Furthermore, because all
lengths are positive we have gi(J) ≤ gi(J̃) ≤ (1 + ε)gTi x.

A.2 A PTAS for multi-criteria matching Let ε ∈ (0, 1]
be the desired accuracy, and we set ε′ = ln(2)ε/2` and
let N ′ = 6

ε′2 ln(2`). In a first step of our algorithm, for
each i ∈ [`], we guess the N ′ longest edges Ei ⊆ E with
respect to gi in an optimal solution. Furthermore, we guess
the 12(1+ 1

ε′ )`(`+1)N ′ heaviest edgesEw ⊆ E with respect
to w. For a fixed ε, there is only a constant number of edges
that have to be guessed, which can be done in polynomial
time.

Let E↑i be the set of all edges e ∈ E \ Ei such that
gi(e) > min{gi(f) | f ∈ Ei}. Since Ei should contain
the longest edges of an optimal solution with respect to
gi, no edges in E↑i will be added to the solution at a later
stage. Similarly we define E↑w = {e ∈ E \ Ew | w(e) >

min{w(f) | f ∈ Ew}}. Let F = Ew ∪
⋃`
i=1Ei be the set

of all guessed edges, and let F ↑ = E↑w ∪
⋃`
i=1E

↑
i . Notice

that the case F ∩ F ↑ 6= ∅ corresponds to an inconsistent
guess. Hence, such a guess can be discarded. Problem (A.1)
can then be reduced accordingly, leading to the following
problem.

(A.7)
max{w(I) | I ∈M, F ⊆ I, I ∩ F ↑ = ∅,

gi(I) ≤ Bi ∀i ∈ [`]}

Let x∗ be an optimal vertex-solution of the following LP
relaxation of problem (A.7).
(A.8)
max{wTx | x ∈ PM,x(e) = 1 ∀e ∈ F,x(e) = 0 ∀e ∈ F ↑,

gTi x ≤ Bi ∀i ∈ [`]}

Notice that problem (A.8) corresponds to optimizing a linear
function on the face of the matching polytope PM defined
by x(e) = 1 ∀e ∈ F and x(e) = 0 ∀e ∈ F ↑, with the ` ad-
ditional linear constraints gTi x ≤ Bi for i ∈ [`]. Hence, x∗

lies on a face of PM of dimension at most `. Thus, x∗ can be
written as a convex combination of at most `+ 1 matchings.
Furthermore, such a decomposition can be found in polyno-
mial time using a constructive version of Carathéodory’s the-
orem. Hence, let x∗ =

∑`+1
j=1 αj1Ij , where Ij ∈ M, αj ≥

0 ∀j ∈ [` + 1] and
∑`+1
j=1 αj = 1. The algorithm then itera-



tively proceeds as our randomized scheme, where for merg-
ing α11I1 +α21I2 we apply Theorem A.2 with ε = ε′ to the
convex combination 1

α1+α2
(α11I1 + α21I2). As in our ran-

domized rounding scheme, let βj =
∑j
s=1 αs for j ∈ [`+1].

Furthermore, let J1 = I1, and for j ∈ {2, . . . , `+ 1} we de-
note by Jj the set obtained by merging βj−11Jj−1

+ αj1Ij .
After ` steps, a matching J = J`+1 is obtained and returned
by the algorithm. Let zj = βj1Jj +

∑`+1
s=j+1 αs1Ij for

j ∈ [` + 1] be the fractional matching after j − 1 merging
steps.

By Theorem A.2, the algorithm has polynomial running
time for a fixed ε. Notice, that the conditions of Theo-
rem A.2 are always satisfied because of the following. Ev-
ery matching used throughout the algorithm contains the
guessed edges F . Furthermore, the guessed edges satisfy
gi(F ) ≥ N ′gmaxi for i ∈ [`] and w(F ) ≥ N ′wmax, where
gmaxi is the largest ith length among the non-fixed edges
E \ (F ∪ F ↑), and wmax

i is the largest weight among the
non-fixed edges E \ (F ∪ F ↑).

It remains to show that J is a (1 ± ε) multi-criteria
solution to problem (A.1). We first consider a length function
gi for some fixed i ∈ [`], and show by induction on j that
gTi zj ≤ (1 + ε′)j−1gTi x

∗ for j ∈ [` + 1]. For j = 1 the
result trivially holds. For j ∈ {2, . . . , `+ 1} we have

gTi zj = βjgi(Jj) +

`+1∑
s=j+1

αsgi(Is)

≤ (1 + ε′) (βj−1gi(Jj−1) + αjgi(Ij))

+

`+1∑
s=j+1

αsgi(Is)

≤ (1 + ε′)

βj−1gi(Jj−1) +

`+1∑
s=j

αsgi(Is))


≤ (1 + ε′)jgTi x

∗,

where the first inequality follows by Theorem A.2 point (i)
when applied to the merge operation that merged Jj−1 and Ij
to obtain Jj , and the last inequality follows by the inductive
hypothesis. Thus we obtain

gi(J) = gTi z`+1 ≤ (1 + ε′)`gTi x
∗ =

(
1 +

ln(2)ε

2`

)`
gTi x

∗

≤ eln(2) ε2gTi x
∗ = 2

ε
2gTi x

∗ ≤
(

1 +
ε

2

)
gTi x

∗

≤
(

1 +
ε

2

)
Bi.

Analogously, one can prove

(A.9) w(J) ≥
(

1− ε

2

)
wTx∗−6(1+ε′)`(`+1)N ′wmax.

Since

wTx∗ ≥ w(F ) ≥ |F |wmax = 12

(
1 +

1

ε′

)
`(`+1)N ′wmax,

we have 6(1 + ε′)`(` + 1)N ′wmax ≤ ε′

2 w
Tx∗ ≤ ε

2w
Tx∗,

and hence by (A.9) we obtain w(J) ≥ (1 − ε)wTx∗ as
desired.
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