A note on the hardness of approximating the
K-way Hypergraph Cut problem

Chandra Chekuri∗ Shi Li†

November 22, 2015

Abstract

We consider the approximability of **K-way Hypergraph Cut** problem: the input is an edge-weighted hypergraph $G = (V, E)$ and an integer k and the goal is to remove a min-weight subset of the edges such that the residual graph has at least k connected components. When G is a graph this problem admits a $2(1 - 1/k)$-approximation [8], however, there has been no non-trivial approximation ratio for general hypergraphs. In this note we show, via a very simple reduction, that an α-approximation for **K-way Hypergraph Cut** implies an $O(\alpha^2)$-approximation for the **Densest k-Subgraph** problem. This gives conditional hardness of approximation for **K-way Hypergraph Cut** since the best known approximation ratio for **Densest k-Subgraph** is $O(n^{1/4+\epsilon})$ [1] and resolving its approximability is a major open problem. As a corollary we obtain conditional hardness for **k-way Submodular Multiway Partition** problem which generalizes **K-way Hypergraph Cut**. These resuls are in contrast to $2(1 - 1/k)$-approximation for closely related problems where the goal is to separate k given terminals [3, 4].

1 Introduction

We consider the following problem.

K-way Hypergraph Cut: Let $G = (V, E)$ be hypergraph with edge weights given by $w : E \to \mathbb{R}_+$. Given an integer k, find a min-weight subset of edges $E' \subseteq E$ such that $G - E'$ has at least k connected components. Equivalently find a partition of V into k non-empty sets V_1, V_2, \ldots, V_k such that the weight of the hyperedges that cross the partition is minimized.

K-way Hypergraph Cut is known as the **k-Cut** problem when the input is a graph and is one of the well-studied variants of graph partitioning problems. **K-way Hypergraph Cut** is a special case of a more general submodular partitioning problem defined below.

k-Way Submodular Partition (k-way Sub-MP): Let $f : 2^V \to \mathbb{R}_+$ be a non-negative submodular set function over a finite ground set V. The k-way submodular partition problem is to find a partition V_1, \ldots, V_k of V to minimize $\sum_{i=1}^{k} f(V_i)$ such that for $1 \leq i \leq k$, $V_i \neq \emptyset$. An important special case is when f is symmetric and we refer to it as **k-way Sym-Sub-MP**.

*Dept. of Computer Science, University of Illinois, Urbana, IL 61801. Supported in part by NSF grants CCF-1319376 and CCF-1526799. chekuri@illinois.edu
†Dept. of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260. shil@buffalo.edu

1A hyperedge e crosses a partition of the vertex set if e properly intersects at least two parts of the partition.

2A set function $f : 2^V \to \mathbb{R}$ is submodular iff $f(A) + f(B) \geq f(A \cap B) + f(A \cup B)$ for all $A, B \subseteq V$. Moreover, f is symmetric if $f(A) = f(V - A)$ for all $A \subseteq V$.
We refer the reader to [3] to see why K-way Hypergraph Cut is a special case of K-way SUB-MP. The K-CUT problem is not only a special case of K-way Hypergraph Cut but it is also a special case of K-way SYM-SUB-MP. When \(k \) is part of the input all the problems we discussed so far are NP-Hard, and also APX-Hard to approximate. K-way SYM-SUB-MP admits a \(2(1 - 1/k) \)-approximation [7, 11] and hence also K-CUT [8]. For K-way Hypergraph Cut a \(2\Delta(1 - 1/k) \)-approximation easily follows from the \(2(1 - 1/k) \)-approximation for K-CUT; here \(\Delta \) is the rank of the hypergraph (the maximum size of any hyperedge). On the other hand, in the general case, the known approximation algorithms for K-way Hypergraph Cut and K-way SUB-MP provide an approximation ratio of \(\Omega(k) \) [11]. It was an open problem to obtain an improved understanding of their approximability.

In this note we show that a good approximation for K-way Hypergraph Cut would imply a good approximation for the Densest k-Subgraph problem. Resolving the approximability of Densest k-Subgraph is a well-known open problem. We first describe Densest k-Subgraph formally.

Densest k-Subgraph: Given a graph \(G = (V, E) \) and integer \(k \), find a subset \(S \subseteq V \) of \(k \) nodes to maximize the edges in the induced graph \(G[S] \).

The current best approximation for Densest k-Subgraph is \(O(n^{1/4 + \epsilon}) \) [1]; note that an \(O(k) \)-approximation is trivial. On the other hand we can rule out a PTAS for Densest k-Subgraph only under the the assumption that NP \(\not\subseteq \cap_{\epsilon > 0} \text{BPTIME}(2^{n^\epsilon}) \) [6]. Moreover [2] shows polynomial-factor integrality gaps for several strong SDP relaxations. Resolving the wide gap in the approximability of Densest k-Subgraph is a major open problem. There have been several problems that have been shown to be conditionally hard by giving a reduction from Densest k-Subgraph which has further cemented the importance of Densest k-Subgraph as a canonical problem.

To formally state the implication of our reduction it is more convenient to relate the approximation ratio to the parameter \(s \) which is the sum of the number of nodes and edges. The tight instances for the algorithm of [1] for Densest k-Subgraph have \(|E| = \Theta(|V|^{3/2}) \). For these instances, it is not known how to obtain an approximation ratio better than \(O(|V|^{1/4}) = O(s^{1/6}) \).

Theorem 1.1 A polynomial-time \(\alpha(s) \) approximation algorithm for K-way Hypergraph Cut implies a polynomial-time \(O(\alpha^2(s + 1)) \)-approximation algorithm for Densest k-Subgraph.

When \(k \) is a fixed constant one can reduce K-way Hypergraph Cut and K-way SUB-MP to solving \(O(n^{k-1}) \) instances of the “terminal” version of these problems which have a \(2(1 - 1/k) \) approximation. We refer the reader to [3, 4] for more details on these related problems.

2 Proof of Theorem 1.1

Let \((G = (V, E), \ell) \) be an instance of Densest k-Subgraph, where to avoid confusion, we use \(\ell \) to denote the number of nodes in the subgraph we wish to find. We construct a hypergraph \(H = (A, \mathcal{F}) \) as follows. For each edge \(e \in E \) we create a node \(a_e \) and add it to \(U \). Moreover we add a new special node \(r \) to \(U \). Thus \(A = \{r\} \cup \{a_e \mid e \in E\} \). For each node \(v \in V \) we add a hyperedge \(f_v \) to \(\mathcal{F} \) where \(f_v = \{r\} \cup \{a_e \mid e \in \delta_G(v)\} \) where \(\delta_G(v) \) is the set of edges in \(E \) that are incident to \(v \) in \(G \). Thus \(H \) is basically the hypergraph obtained from \(G \) by flipping the role of nodes and edges and then adding the extra node \(r \) to each hyperedge. We also observe that \(|U| + |\mathcal{F}| = 1 + |V| + |E| = s + 1 \). The basic and simple claim about \(G \) and \(H \) is the following.
Claim 2.1 For any $1 \leq \ell \leq |V|$, if there is set $S \subseteq V$ with $|S| = \ell$ and $|E_G(S)| = L - 1$ then the k-way Hypergraph Cut instance on H with $k = L$ has a cut of value at most ℓ. Moreover, given any $F \subseteq \mathcal{F}$ with $|F| = \ell'$ such that $H - F$ has L' connected components then there is a subset $S' \subseteq V$ such that $|S'| = |F|$ and $|E_G(S')| = L' - 1$.

Proof: Consider a set $F \subseteq \mathcal{F}$ of hyperedges in H. Suppose we remove them from H. Let $V_F = \{v \in V \mid f_v \in F\}$ be the nodes in G that correspond to the edges in F. Then a node $a_e \in A$ corresponding to an edge $e = uv$ is separated from r in H if both $u, v \in V_F$; in this case the node a_e becomes an isolated node in $H - F$. Thus the number of connected components in $H - F$ is precisely equal to $|E_G(V_F)| + 1$. This correspondence proves both parts of the claim. \square

Suppose we have an α approximation for k-way Hypergraph Cut. We will obtain an α^2-approximation for Densest k-Subgraph as follows. Let (G, ℓ) be a given instance of Densest k-Subgraph. First assume that we know the optimum solution value L for the given instance. We construct H the hypergraph as described and give H and $k = L + 1$ to the α-approximation algorithm for k-way Hypergraph Cut. By Claim 2.1 there is an optimum solution to the k-way Hypergraph Cut instance on H of value ℓ. Thus, the approximation algorithm will output a set $F \subseteq \mathcal{F}$ such that (i) $|F| \leq \alpha \cdot \ell$ and (ii) $H - F$ has at least $L + 1$ connected components. By the second part of the claim we can obtain a set $S' \subseteq V$ such that $|S'| \leq \alpha \cdot \ell$ and $|E_G(S')| \geq L$. A random subset S of S' where $|S| = \ell$ induces, in expectation, at least L/α^2 edges. One can derandomize this step. Thus we can obtain a set $S \subseteq V$ such that $|S| = \ell$ and $|E_G(S)| \geq L/\alpha^2$. Since L is the optimum value for the given instance of Densest k-Subgraph, we obtain the desired α^2-approximation. We can remove the assumption of the knowledge of L by trying all possible values of L from 0 to $|E(G)|$. This finishes the proof of Theorem 1.1.

3 Open problems

The main open question is to obtain a hardness of approximation for k-way Hypergraph Cut under the $P \neq NP$ assumption. At this point we only have APX-Hardness coming from k-Cut; we should note that APX-Hardness for k-Cut has been claimed by Papadimitriou (see [8]) but as far as we know no published proof has appeared in the literature. k-way SUB-MP appears to be much more general than k-way Hypergraph Cut so it may be easier to first establish hardness for k-way SUB-MP. In fact it may be feasible to prove strong unconditional lower bounds for k-way SUB-MP in the oracle model via the techniques from [9, 4].

When k is a fixed constant k-Cut can be solved in polynomial time [5]. k-way Hypergraph Cut is known to be solvable in polynomial time for $k \leq 3$ [10] but its status is open for any fixed $k \geq 4$. In fact we also do not know whether k-way Sym-SUB-MP or k-way SUB-MP are NP-Hard for any fixed $k > 2$.

References

