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ABSTRACT
We consider a multicast game with selfish non-cooperative
players. There is a special source node and each player is
interested in connecting to the source by making a routing
decision that minimizes its payment. The mutual influence
of the players is determined by a cost sharing mechanism,
which in our case evenly splits the cost of an edge among
the players using it. We consider two different models: an
integral model, where each player connects to the source
by choosing a single path, and a fractional model, where a
player is allowed to split the flow it receives from the source
between several paths. In both models we explore the over-
head incurred in network cost due to the selfish behavior of
the users, as well as the computational complexity of finding
a Nash equilibrium.

The existence of a Nash equilibrium for the integral model
was previously established by the means of a potential func-
tion. We prove that finding a Nash equilibrium that min-
imizes the potential function is NP-hard. We focus on the
price of anarchy of a Nash equilibrium resulting from the
best-response dynamics of a game course, where the players
join the game sequentially. For a game with n players, we
establish an upper bound of O(

√
n log2 n) on the price of

anarchy, and a lower bound of Ω(log n/ log log n). For the
fractional model, we prove the existence of a Nash equilib-
rium via a potential function and give a polynomial time
algorithm for computing an equilibrium that minimizes the
potential function. Finally, we consider a weighted exten-
sion of the multicast game, and prove that in the fractional
model, the game always has a Nash equilibrium.
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1. INTRODUCTION
In many networking scenarios, including the Internet, net-

work users are free to act according to their individual in-
terests, without taking into account overall network per-
formance. Users thus may make selfish decisions (strategy
choices) based on the state of the network, which depends
(among other factors) on the behavior of other users, result-
ing in a non-cooperative game. Naturally, these scenarios
call for a game-theoretic approach for studying both the be-
havior of such non-cooperative users, as well as their impact
on the network performance. More specifically, we are in-
terested in the properties of Nash equilibrium solutions [20]
that are the stable outcomes of a non-cooperative game. We
note that there has been a considerable amount of research
dealing with non-cooperative games in networks [11, 14, 21,
24, 25, 27].

We consider a multicast game with selfish non-cooperative
players. There is a special source node and each player is
interested in connecting to the source by making a rout-
ing decision that minimizes its payment. Thus, the strate-
gies of the players in the game correspond to the different
paths by which the players can connect to the source. Each
player independently chooses a strategy minimizing its pay-
ment. The mutual influence of the players is determined by a
cost sharing mechanism that stipulates how the cost of each
edge in the network is shared among its users. Multicast
cost sharing methods have been studied extensively [1, 4, 6,
8, 10]. However, while typical models for non-cooperative
games in networks have focused on congestion effects, where
a resource utility deteriorates with the number of users that



share it, an important class of resource sharing problems oc-
curs when a fixed cost needs to be shared between a set of
users. This game was recently introduced by Anshelevich et
al. [3]. In this paper we study a natural cost sharing mecha-
nism that falls into the above framework, where the cost of
an edge is split evenly among all the players using it. More
precisely, if k players use edge e of cost ce, then each player
pays ce/k for this edge. This cost sharing formula has an
intuitive appeal and it was investigated in several studies [6,
8]; it is also the outcome of the Shapley value [26].

Further motivation for the multicast game we consider is
provided by the facility location problem, which is of funda-
mental interest in operations research. In a facility location
game, we are given a set of facilities, with an opening cost
associated with each facility. Additionally, we have a set of
clients, and for each client-facility pair, we are given a cost
that the client must pay for connecting to the facility. Each
client needs to connect to one facility. A natural cost sharing
mechanism for facility location is splitting the opening cost
of each facility between the clients served by it. Addition-
ally, each client pays for connecting to the facility serving it.
Naturally, the clients seek to minimize their total payment,
thus defining a non-cooperative game. This game consti-
tutes a special case of the directed multicast game: given an
instance of the facility location game, we add a source, con-
nect each facility to the source with an edge of cost equal
to the opening cost of the facility, and then connect each
client to each facility with a directed edge of cost equal to
the corresponding connection cost.

We consider two different models: an integral model, where
each user connects to the source through a single path, and
a fractional model, where each user is allowed to split (frac-
tionally) its connection to the source into several paths, i.e.,
one unit of flow is sent fractionally by the source to the user.
The fractional model, in addition to being a relaxation of the
integral model, is interesting in its own right, as it is a split-
table multicast model. The fractional model is also closely
related to improving network throughput via network cod-
ing [2]. The games resulting from these models are referred
to as the integral multicast game and the fractional multicast
game, respectively.

A crucial property of our multicast game is that the per-
user cost share on an edge is non-increasing in the number of
users of the edge. Although, in this respect, the game differs
from a classic congestion game, the integral multicast game
does belong to the well known class of congestion games,
that was first defined by Rosenthal [23] and has been widely
investigated [9, 17, 19, 26, 28]. Rosenthal showed that a
potential function can be defined for each congestion game
with the property that the potential decreases if a player
makes a move that improves its selfish cost. This shows that
every congestion game has a Nash equilibrium. Moreover,
there is a one-to-one correspondence between Nash equilib-
rium solutions and the solutions defining a local minimum of
Rosenthal’s potential function. Since the integral multicast
game belongs to the class of congestion games, it has a Nash
equilibrium and a potential function. We note that, for the
integral model, the cost sharing mechanism guarantees that
a Nash equilibrium induces a tree. The Nash equilibrium
of the multicast game raises several natural questions. We
focus in this paper on the inefficiency resulting from the
selfish behavior of the players, and on the computational
complexity of finding a Nash equilibrium.

We quantify the inefficiency resulting from a non-cooperative
game through the ratio between the cost of a Nash equilib-
rium multicast tree and the cost of an optimal Steiner tree
spanning the players. In keeping with common terminol-
ogy [15, 22], this ratio is called the price of anarchy and
it quantifies the “penalty” incurred by lack of cooperation
(or coordination) between the players in a non-cooperative
game.
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Figure 1: Cost of a Nash equilibrium tree can be n times

the cost of an optimum Steiner tree.

Consider the graph in Figure 1 consisting of a source r
and a node t with two parallel paths connecting them. The
cost of one path is n, while the cost of the other path is 1.
There are n players at t who want to connect to the source
r. A solution where all players use the expensive path, each
paying one unit, is a Nash equilibrium with a cost of n. A
different and much cheaper Nash equilibrium is the one in
which the players use the path of cost 1. Note that this
second equilibrium is also the minimum cost Steiner tree
connecting the players to the source. Thus, the price of an-
archy for this game can be very large. Notice however that
the expensive solution cannot be reached if the players join
an initially empty game one-by-one, each of them choosing
the cheapest path to connect to the source. In this paper,
we investigate the price of anarchy of the integral multi-
cast game for such scenarios. Motivated by the existence
of large-cost Nash equilibria, the notion of price of stability
was introduced in [3]: it is defined as the ratio between the
cost of a Nash equilibrium of minimum cost and the cost
of an optimal Steiner tree. In the above example, the price
of stability is 1 in contrast to the price of anarchy which is
n. For directed graphs, it was shown in [3] that the price of
stability is Θ(log n); for undirected graphs, an upper bound
of O(log n) on the price of stability is known [3], however,
no non-trivial lower bounds are known.

Even if the price of stability in undirected graphs is small,
we still have two important questions to answer. Can a Nash
equilibrium achieving (or approximating) the price of stabil-
ity be computed in polynomial time? Second, can a good
equilibrium be achieved as a consequence of best-response
dynamics? That is, a course of the game where each player,
in its turn, makes a routing decision that minimizes its cost.
The price of anarchy of such a solution strongly depends on
the initial configuration from which the players start. For
example, if the starting solution is a Nash equilibrium with
a large price of anarchy, as in the example in Figure 1, then
best-response dynamics would not alter the solution. It is
shown in [3] that even in directed graphs, if the initial con-
figuration is a Steiner tree of cost C, then the best-response
dynamics would lead to a Nash equilibrium of cost at most
O(C log n). This is shown using Rosenthal’s potential func-
tion, which can only decrease with each best-response move.
This is also a constructive proof that the price of stability
is O(log n). In [3], the above argument is used to suggest a



mechanism in which a central authority starts the process by
first computing a near-optimal Steiner tree on the receivers,
and then allows the users to follow their best-response dy-
namics.

In this paper we take an approach that does not rely on
a central trusted authority starting the game in a specific
starting configuration. There are several situations in which
having such an authority is expensive or infeasible. Further,
not all the players might be available at the same time. In
an online setting, players might arrive one by one to join
a multicast service from the source. Motivated by these is-
sues, we explore in this paper the following setting. Players
first join the game sequentially starting from an “empty”
configuration. Upon arrival, each player picks a path self-
ishly. Once reaching the solution constructed by the play-
ers joining one by one, the natural game course induced by
best-response dynamics continues until a Nash equilibrium
is reached. Our model is inspired by the round model con-
sidered by Mirrokhni and Vetta [18] to analyze convergence
issues in competitive games. The one round question is the
following. What is the quality of the solution to the game
after each player has made one selfish move, assuming that
the starting solution is the empty one? We believe that this
gives insight into the realistic scenario where players typi-
cally do not make multiple moves. A positive result in this
model is a good indication that the price of anarchy will be
reasonable in practice. Note that we assume that the arrival
of the players is adversarial.

Our Results: We focus on undirected graphs. For the
integral multicast game, we establish an upper bound of
O(
√

n log2 n) on the price of anarchy of the best-response
dynamics in the setting where the players join the game se-
quentially starting from an “empty” configuration. We then
present a lower bound of Ω( log n

log log n
) on the price of anar-

chy of this game. It is an interesting open question whether
a polylogarithmic upper bound can be shown in this set-
ting. We also prove that the problem of computing a Nash
equilibrium minimizing Rosenthal’s [23] potential function is
NP-hard. It remains an open question whether a Nash equi-
librium of the integral multicast game can be computed in
polynomial time. We note that Fabrikant et al. [5] investi-
gated the complexity of computing a pure Nash equilibrium
for the class of congestion games, where the cost of a facil-
ity is a non-decreasing function of the number of its users,
and showed that it is PLS-complete for general network con-
gestion games. However, their proof heavily depends on the
non-decreasing property of the cost sharing mechanism, and
therefore does not seem to hold in our model.

For the fractional multicast game, we prove the existence
of a Nash equilibrium by extending Rosenthal’s potential
function. Our main result for this model is that a Nash
equilibrium that minimizes the potential function can be
computed in polynomial time using linear programming.
We observe that the fractional Nash equilibrium minimizing
the potential function has a price of anarchy of O(log n).
The results obtained for the fractional model hold also for
more general settings, where the cost sharing mechanisms
are cross monotone, which intuitively means that the share
of a player on an edge cannot increase when additional play-
ers use it. Furthermore, the results also hold in the setting
where there are multiple sources and each player needs to
connect to at least one source. We note that the fact that
our cost sharing mechanism is non-increasing in the number

of players using an edge allows us to define a fractional ex-
tension. This does not seem possible with a non-decreasing
cost sharing mechanism.

Finally, we consider a weighted extension of the multicast
game, where each player has a weight, and the cost sharing
mechanism splits the cost of an edge among its downstream
receivers proportionally to their weights. For this game we
prove that a Nash equilibrium exists in the fractional model.
Initial results for the integral weighted game were obtained
in [3]. However, establishing whether a Nash equilibrium
for weighted multicast games exists in the integral model
remains an open problem.

2. THE MODEL
We model our network by an undirected graph G = (V, E).

Let c : E → R+ be a non-negative edge-cost function, and
we denote by ce the cost of edge e ∈ E. There is a special
vertex r ∈ V called root (or source) and a subset of n ver-
tices N = {t1, t2, . . . , tn} representing multicast users (also
called players or terminals).

In the integral model, the goal of each user is to choose
a single path P connecting it to the root, while minimizing
its payment, which consists of the sum of the payments for
the edges along P . A course of action chosen by player i at
any time is called its strategy and is denoted by si. In the
integral model, a strategy of player i is a path connecting
ti to the root. The strategy space of player i (i.e., the set
of all its possible strategies) is denoted by Si, and in our
integral game, and it is the set of all the possible paths
between ti and the root. At any given moment, a strategy
profile (or a configuration) of the game is the vector of all
the strategies of the players, s = (s1, . . . , sn). We use s−i

to denote vector s without its ith coordinate, and (s−i, s̃i)
to denote the strategy profile identical to s, except that the
ith coordinate is replaced by s̃i. Given a strategy profile s,
ci(s) ≡ c(si) denotes the payment of player i (the cost of
its path si), and ne(s) denotes the number of players using
edge e. Payment of user i for edge e is denoted by ci

e(s) and
is determined by the cost sharing mechanism. We consider
a natural cost sharing mechanism, where the cost of every
edge is split evenly between the players sharing it. Thus, the
payment of player i for edge e is ci

e(s) = ce
ne(s)

. We denote

by c(s) the sum of the costs of the edges participating in s
(we say that edge e participates in a strategy profile s, iff at
least one player chooses a path containing s to connect to
the source). Let H(k) denote the Harmonic number

Pk
j=1

1
j
.

A strategy profile s ∈ S is at Nash equilibrium if no player
has an incentive to change its routing strategy, assuming
that the strategies of the other players are fixed. We assume
that a player changes its routing choice if and only if it
reduces its payment. A change of strategy by any player
is called a Nash defection and the corresponding player is
called Nash defector. We assume that at each step the acting
player chooses a strategy that minimizes the cost of its path,
given the strategies of the other players. We therefore say
that at each step the strategy of the current player is a best
response to the other players’ strategies.

3. THE INTEGRAL MULTICAST GAME
As we mentione earlier, the integral multicast game is a

special case of a congestion game, formulated by Rosenthal
[23], who defined a potential function to show that every



congestion game possesses a Nash equilibrium. For our mul-
ticast game, given a strategy profile s, the potential function
Φ of [23] is

Φ(s) =
X

e

� ne(s)X

k=1

ce

k

�
.

It is easy to see that for every instance of our game, a Nash
equilibrium solution is a tree rooted at r spanning N .

We now analyze the price of anarchy of a multicast game
in an undirected graph. We are interested in a Nash equilib-
rium that is a consequence of best-response dynamics, where
each Nash defector, in its turn, chooses a path to the source
minimizing its payment. Initially, the players join the game
one by one starting from an “empty” configuration and pick-
ing a path to the root that minimizes their payment. Once
all players are connected to the root, they continue playing
until reaching Nash equilibrium. Note that we assume that
the order by which the players play is adversarial. In Sec-
tion 3.1 we establish an upper bound of O(

√
n log2 n) on the

price of anarchy for this game course, and in Section 3.2 we
prove a lower bound of Ω( log n

log log n
) on the price of anarchy.

We also prove that finding a Nash equilibrium minimizing
Rosenthal’s [23] potential function is NP-hard in Section 3.3.

3.1 Upper Bound
In this section we establish an upper bound of O(

√
n log2 n)

on the price of anarchy of a Nash equilibrium obtained from
best-response dynamics. Our analysis is performed in two
steps. We first analyze in Section 3.1.1 the first round of
the game in which the players connect one-by-one to the
root via a cheapest path (best response). The first round
finishes when all players are connected to the root. In order
to bound the price of anarchy of the strategy profile T ob-
tained from the first round, we define the notion of a level
tree that serves as a basis of reference for proving the upper
bound.

A greedy online Steiner tree [12] is defined to be the tree
obtained when terminals arrive online and connect one by
one via a cheapest path (i.e, the ith terminal connects by a
cheapest path to the tree induced by terminals 1, . . . , i− 1).
The cost of the greedy online Steiner tree is known to be at
most a factor of O(log n) away from the cost of an optimal
Steiner tree [12]. We consider the greedy online Steiner tree
obtained from the same sequence of arrivals as in the first
round of the game. Our goal is to prove that the cost of the
solution obtained by the selfish moves of the players is re-
lated to the cost of the online Steiner tree. We are, however,
unable to show this directly. We overcome this difficulty by
first transforming the online Steiner tree to a level tree with
reduced height using a procedure of Zelikovsky [29]. The
height reduction increases the cost, but maintains ancestor
relationships that are critical to maintain the online nature
of the problem. We prove that the cost of the solution ob-
tained from the first round is at most O(

√
n log n) times the

cost of an optimal Steiner tree.
We complete our analysis in Section 3.1.2. Given the solu-

tion obtained from the first round, we then follow the natural
game course until a Nash equilibrium is reached. The Nash
defections performed until reaching an equilibrium can only
decrease the potential of the first round solution, and thus
we lose at most another factor of O(log n) with respect to
the cost of the solution obtained from the first round.

We paraphrase below the height reduction lemma of Ze-

likovsky that we need. A bound claimed in [29] proved to be
incorrect and a weaker correct bound is established in [7].

lemma 3.1. Let T = (V, A) be an in-tree rooted at r ∈ V
and let c : A → R+ be a non-negative cost function on
A. Let G = (V, AG) be the transitive closure of T and let
c′ : AG → R+ be such that c′(u, v) is the shortest c-path
from u to v in T . Then, given integer h > 1, there exists an
in-tree tree T ′ = (V, A′) in G of height at most h such thatP

a∈A′ c
′(a) ≤ h · |V |1/hP

a∈A c(a).

3.1.1 The First Round
We begin by analyzing the first round of the game in which

players arrive one by one and pick a path selfishly. Let the
sequence of arrivals of the terminals be t1, t2, . . . , tn (renum-
ber if necessary), and let T be the resulting solution. We
assume that the players start from an empty configuration.

Definition 1. A level tree T ′ on the vertex set
{r(= t0), t1, t2, . . . , tn}, with a cost function d : E → R, is
defined to be a tree having the following properties for each
terminal ti. (i) For 1 ≤ i ≤ n, the ancestor of terminal ti

in T ′ belong to t0, t1, t2, . . . , ti−1, i.e., terminals that have
arrived before ti. (ii) Let t and ti be two terminals in T ′,
such that t is the parent of ti. The cost of the edge (ti, t) in
T ′, denoted by d(i), is no less than the cost of the cheapest
path between ti and t in G.

Define c(T ′) =
Pn

i=1 d(i). Let T (i) denote the state of T
after the arrival of t1, . . . , ti. Let Pi denote the path of ti to
the root r in T . We denote by B(i) the set of new edges that
are added to T when ti joins T (i−1). Let b(i) =

P
e∈B(i) ce.

Clearly, c(T ) =
Pn

i=1 b(i). Let c(i) be the cost paid by ti

when it joins T . Clearly, c(i) ≥ b(i). Note that in the single
round case the cost paid by a player can only decrease during
the round.

Given an edge e, let ne(i) denote the number of paths
(terminals) using e in T (i). We use ce(i) to denote the cost
of e as seen by a selfish player in T (i), i.e., ce/ne(i). We use
c+

e (i) to denote ce/(ne(i)+1) which is the cost per player for
using edge e if an additional player were to use e in T (i). We
define c+(i) to be

P
e∈Pi

c+
e (i). The following is immediate.

fact 3.1. c+(i) ≤ (c(i)− b(i)) + b(i)/2 = c(i)− b(i)/2.

The edge set of T is partitioned by the sets B(i), 1 ≤
i ≤ n. We now show how we charge the cost of edges in
B(i) to d(1), . . . , d(i). Assume that we are given a level tree
T ′ rooted at r having height 2. Let ti1 , . . . , tim be the first
level terminals, i.e., the children of r in T ′. The second level
terminals are the children of ti1 , . . . , tim , i.e., leaves of T ′.
Denote by A(tij ) the children of first level terminal tij .

We first analyze the cost of the edges added to T by the
first level terminals.

lemma 3.2. For the first level terminals,

mX
j=1

b(ij) ≤
mX

j=1

c(ij) ≤
mX

j=1

d(ij).

Proof. By Definition 1, for each first level terminal tij ,
1 ≤ j ≤ m, there is a path to the root r of cost at most
d(ij) (without taking into account cost sharing). Therefore,
b(ij) ≤ c(ij) ≤ d(ij).



We now analyze the cost of the edges added to T by the
second level terminals.

lemma 3.3. Let tj be a first-level terminal with children
tj1 , tj2 , . . . , tjk in T ′. Then

kX
i=1

b(ji) ≤ 2c+(j) + 4

kX
i=1

d(ji).

Proof. Assume that the arrival order is tj1 , tj2 , . . . , tjk .
Consider what happens when tj1 arrives: it can connect to
tj , and then connect to the root via the path connecting
tj to the root. Hence, c(j1) ≤ d(j1) + c+(j). Now consider
terminal tji for i > 1. It can connect to tji−1 (paying at most
d(ji−1)+d(ji)), and then follow Pji−1 to the root. Hence, the

cost of this path is at most d(ji−1)+d(ji)+ c+(ji−1), which
by Fact 3.1 is at most d(ji−1) + d(ji) + c(ji−1)− b(ji−1)/2.
Thus, we have for 1 < i ≤ k,

c(ji) ≤ d(ji−1) + d(ji) + c(ji−1)− b(ji−1)/2.

Adding up the above inequalities, we obtain:

c(jk) +
1

2
(b(j1) + b(j2) + . . . + b(jk−1)) ≤

c+(j) + d(jk) + 2(d(j1) + d(j2) + . . . d(jk−1)).

Since b(jk)/2 ≤ b(jk) ≤ c(jk), we obtain the desired in-
equality:

kX
i=1

b(ji) ≤ 2c+(j) + 4

kX
i=1

d(ji).

We conclude with the next theorem.

Theorem 1. c(T ) ≤ 4c(T ′).

Proof. We combine Lemmas 3.2 and 3.3 and get:

c(T ) =

nX
i=1

b(i) =

mX
j=1

0
B@b(ij) +

X

t`∈A(tij
)

b(`)

1
CA

≤
mX

j=1

b(ij) +

mX
j=1

0
B@2c+(ij) +

X

t`∈A(tij
)

4d(`)

1
CA

≤
mX

j=1

d(ij) +

mX
j=1

0
B@2d(ij) +

X

t`∈A(tij
)

4d(`)

1
CA

≤ 4

nX
i=1

d(i) ≤ 4c(T ′).

An interesting question is whether the use of level trees
which have depth greater than two can lead to better bounds
on the price of anarchy. The difficulty with this approach is
that for trees with more than two levels, a recursive use of
Lemma 3.3 is necessary. However, the recursion introduces
extra charges, and it is not clear how to bound them.

3.1.2 Completing the Analysis
We first generate the level tree T ′. Note that the greedy

online Steiner tree obtained from the sequence of arrivals
of the first round of the game has all the properties re-
quired by a level tree. The difficulty is that the height of
the greedy online Steiner tree can be Ω(n). We generate a
new level tree T ′ from the greedy online Steiner tree by ap-
plying Lemma 3.1. The transformation preserves ancestral
relationship and thus T ′ remains a level tree, while allowing
us to restrict the height of the tree to be h at the expense
of increasing its cost by a factor of h · n1/h. By choosing
h = 2, we get a two level tree T ′ and cost at most 2

√
n

times the cost of the greedy online Steiner tree. As the cost
of a greedy online Steiner tree is within a factor of O(log n)
away from the cost of an optimal Steiner tree, we get that
c(T ′) = O(

√
n log n) · c(T ∗), where T ∗ is an optimal Steiner

tree. Therefore, by Theorem 1, c(T ) = O(
√

n log n) · c(T ∗).
Finally, after reaching the tree T constructed by the ter-

minals in the first round, the natural best response dynamics
are followed until a Nash equilibrium is reached. It is easy
to see that the value of the potential function of any con-
figuration is at most log n times the total cost of the edges
used in this configuration. Therefore, the potential func-
tion value of T is within at most a factor of O(log n) away
from c(T ). The potential function value can only decrease
throughout the game. As the value of the potential function
of a solution is always an upper bound on the cost of the
edges participating in the solution, we get that the price of
anarchy of our game is O(

√
n log2 n).

3.2 Lower Bound
We present an undirected instance in which best-response

dynamics converges to a Nash equilibrium with price of an-
archy of Ω( log n

log log n
). For the sake of simplicity, we first show

how to achieve a lower bound of 2−ε on the price of anarchy.
The example is then generalized to show Ω( log n

log log n
) price of

anarchy.
Let q be a large integer. We start from a root vertex r and

additional vertex u1 connected to the root by a unit-length
edge. We now add another unit-length path from the root
to a new vertex u2. The edges and the vertices of this path
are as follows. Apart from r and u2, there are log q vertices
v1, . . . , vlog q that are placed between r and u2 in this order,
with vertex v1 adjacent to r. The distance between v1 and
r is 1

2
, and for every i > 1, the distance between vi and vi−1

is 2−i, thus the distance between vlog q and u2 is less than
1
q
. Finally, there is an edge of length 1

q
between u1 and u2.

The idea is as follows. The first q players joining the
game are placed on vertex u1. They connect to r via the
unit-length edge (r, u1) and pay 1

q
each. In the next step

we place q players on vertex v1. Naturally, they prefer to
connect to r via edge (v1, r) whose cost is 1

2
, instead of

connecting via u2 and u1. Now the cost of the edge (v1, r)
becomes 1

2q
. When we place the next q players on vertex

v2, they connect via (v2, v1, r), as the cost of this path is
less than 1

4
+ 1

2q
while connecting via u2 and u1 costs more

than 1
4

+ 1
q
. We continue in the same way, placing q users

on vertices v3, . . . , vlog q, where the users placed on vertex
vi all connect via path (vi, vi−1, . . . , v1, r). Finally, we place
q players on vertex u2, who also prefer to connect via path
(u2, r), as its cost is less than 1

q
. It is easy to see that this

configuration is a Nash equilibrium. The cost of this solution



1/q
u2

r

...
q

q

q

q

1/2

1/4

1/8

q

11

u1

(a) (b)

u1

...

... ...

q

q

q

q
q

q q

...

q

...

...

q q q

q
q

...

q

q

q

...

1

1

1
1 1

1/q

1/q

1/q
1/q

1/q

r

p`

1/q

qq
q

q

q

q

q

u2
u3

u`

Figure 2: (a) Price of anarchy of 2− ε. (b) Price of anarchy of Ω( log n
log log n

).

is 2, while the cost of the optimal solution is 1 + 1
q
, which

is achieved by connecting all the players on path (u2, r) via
this path and connecting all the players on vertex u1 via u2.
See Figure 3.1.2(a) for the resulting instance.

We now show how to generalize the above construction to
obtain the bound of Ω( log n

log log n
) on the price of anarchy. The

basic gadget we use in our construction is a log-division of
an edge.

Definition 2. Suppose we have an edge (a, b) of length c.
A log-division of this edge is performed by converting this
edge into a path a, v1, v2, . . . , vlog q, b of the same length. The
length of the edge (a, v1) is c

2
, and for each i > 1, the length

of edge vi, vi−1 is c
2i . Thus, the length of edge (vlog q, b) is

less than c
q
.

A building block of our construction is a path p defined
below. We use ` = Ω( log q

log log q
) copies of p. The construction

of path p is as follows. We start from an edge (v, u) of length
1. Vertex u is called a level-1 vertex. We now perform `
iterations. In each iteration, we perform a log-division of
every edge e = (w, w′) on path (v, u). When doing this
division, the endpoint of e that is closer to v on the path
(say, w) serves as a and the other endpoint (w′) serves as b.
For each iteration i, we call the vertices added to the path in
this iteration “level i vertices”. In our construction, we use `
copies of path p, denoted by p1, p2, . . . , p`. The endpoints v
of these paths are merged together and form the root r. The
other endpoints of the paths are denoted by u1, u2, . . . , u`.
Finally, for each i, 1 ≤ i < `, we connect each of the level-
1, 2, . . . , i vertices on path pi to the corresponding vertex on
path p` by an edge of length 1

q
.

The players are added to the game as follows. First we
add q players on vertex u1. They connect via path p1 to

the root. Then, we add players on paths p2, . . . , p` in this
order. For i > 1, we add players on all the vertices of levels
1, 2, . . . , i belonging to path pi, as well as on vertex ui, in
the order by which the vertices appear on the path starting
from the root. See Figure 3.1.2(b) for the resulting instance.

Similarly to the case of two paths, for each i, all the players
on path pi connect via the subpath of pi leading to r. Thus,
the cost of the Nash equilibrium is `. In the optimal solution,
all players are connected via path p`. In order to connect
some player belonging to path pi, i 6= `, we use the edge of
length 1

q
connecting this player to path p`. Note that the

total number of players M is bounded by 2qk, where k is the
number of vertices on path p`. Clearly, k ≤ (log q)`. Fixing
` = log q

log log q
, we get k ≤ q. The total cost of the optimal

solution is less than 1 + k
q
≤ 2 and the price of anarchy is

therefore Ω(`) = Ω( log q
log log q

). As M ≤ 2qk ≤ 2q2, the price

of anarchy is Ω(`) = Ω( log M
log log M

).

3.3 Intractability of Optimizing the Potential
Function

We prove that finding a Nash equilibrium that minimizes
the potential function is NP-hard. As a building block we
use a variation of the Lund-Yannakakis proof [16] of hard-
ness of approximation for the set cover problem.

The input to the set cover problem is a ground set of el-
ements U and a collection S of subsets of U . The goal is
to choose a minimum cardinality collection of sets in S cov-
ering all elements. The reduction of [16] is performed from
the 3SAT problem. We use a straightforward determinis-
tic variation of their construction together with a constant
number of repetitions in the Raz verifier to obtain the fol-
lowing result:



Theorem 2. Given a 3SAT formula ϕ, an instance of
the set cover problem can be constructed in polynomial time,
such that:

• All sets have equal size (denoted by s).

• If ϕ is satisfiable (yes-instance), then there is a solu-
tion to the set cover instance that uses X sets, and each
element is covered by exactly one set in this solution.

• If ϕ is not satisfiable (no-instance), then the size of
any solution to the set cover instance is at least αX,
where α > 1 is some constant.

Suppose we are given a 3SAT formula ϕ. We construct
an integral multicast game based on the corresponding set
cover instance, as follows. There is a vertex for each set and
each element in the set cover problem, and additionally we
have a special vertex r. The players are the vertices that
represent the elements. Each vertex representing some set
is connected to r with a unit-length edge. Each vertex repre-
senting some element i is connected to a vertex representing
set S if and only if i ∈S. The length of the edge is a large
integer q, which will ensure that each user (element) chooses
a path that contains only one such edge (i.e., connects via
a set to which it belongs). Let N denote the total number
of users (elements) in the above example. Then it is enough
to choose q ≥ N .

Suppose ϕ is a yes-instance. Then there is a solution S ′
of size X to the set cover instance. This solution naturally
induces a Nash equilibrium in our game, where each element
connects to the set that covers it in S ′ and all the sets in S ′
are connected to the root. Observe that there are exactly
s users on every edge that connects some set in S ′ to the
root. The value of the potential function in this solution is
qN + X ·H(s).

Assume now that ϕ is a no-instance and suppose we are
given some Nash equilibrium. This Nash equilibrium defines
a solution to the set cover instance, since each element has to
connect to one of the sets to which it belongs. However, the
number of sets used in this solution is at least αX, and some
of the edges connecting these sets to the root are used by
less than s users. Thus, the value of the potential function
in this solution is strictly greater than qN + X ·H(s).

As determining whether a given 3SAT formula is satisfi-
able is NP-hard, it is NP-hard to find a Nash equilibrium
minimizing the value of the potential function.

4. THE FRACTIONAL MULTICAST GAME
In this section we introduce a fractional model of the mul-

ticast game, where each user is allowed to split (fractionally)
its connection to the source into several paths. The frac-
tional model represents a splittable multicast model. The
cost of each flow fraction on an edge is evenly split between
its users. We present our results for undirected graphs,
yet they hold for directed graphs as well. In the fractional
model, each user i has to route one unit of flow from ti to
the source r. User i can split its unit of flow among any
number of paths connecting r to ti. Denote the flow of user
i on edge e by fe,i and the number of users on edge e by
ne. Given a strategy profile s, assume without loss of gen-
erality that fe,1 ≤ fe,2 ≤ · · · ≤ fe,ne ≤ 1. Define fe,0 = 0.
Edge e has capacity equal to fe,ne , and for convenience we
think of the capacity of e as defining an “address space” in

the range [0, fe,ne ], where user j uses [0, fe,j ]. The cost of
each fraction of the capacity of e is equally split between its
users, as follows: [fe,j−1, fe,j ] is shared by ne − j + 1 users,

where each user pays ce
fe,j−fe,j−1

ne−j+1
. Therefore, the total cost

ci
e paid by user i for the use of edge e is:

ci
e = ce ·

iX

k=1

fe,k − fe,k−1

ne − k + 1
.

As the total flow fraction sent on edge e is fe,ne , the total
cost of the edge is simply ce · fe,ne .

We denote by P i the set of paths used by user i. The cost
of a path p ∈ P i is the sum of its edge costs, that is

P
e∈p ci

e.

The total cost ci of a user i is the sum of its path costs, that
is
P

p∈P i

P
e∈p ci

e. Each user i aims to establish its flow
from the source r to ti so as to minimize its cost. Thus, a
flow f is at Nash equilibrium if no user has any incentive of
changing its flow to the root. An instance of the fractional
model, consisting of a graph G, a source r, a set of receivers
N , and a cost vector c is denoted by frac(G, r, N, c). We
introduce a potential function Φ for the fractional multicast
game which is based on Rosenthal’s potential function [23],
as follows:

Φ =
X
e∈s

� ne(s)X
j=1

ne+1−jX
i=1

ce
fe,j − fe,j−1

i

�
.

The proof of the following theorem follows from the proof
of the potential function defined by Rosenthal [23].

Theorem 3. Potential fuction Φ is an exact potential for
the fractional multicast game. That is, for every k ∈ N ,
and every two strategy profiles (s−k, sk

1) and (s−k, sk
2), where

ck(s−k, sk
1) < ck(s−k, sk

2) (ck denoting the total cost of user
k), it holds that

ck(s−k, sk
2)− ck(s−k, sk

1) = Φ(s−k, sk
2)− Φ(s−k, sk

1).

As a fractional flow configuration defining a local mini-
mum of the potential function is at Nash equilibrium, we
get:

Theorem 4. A Nash equilibrium exists for every instance
frac(G, r, N, c).

4.1 Computing a Minimum Potential Nash Equi-
librium

We proceed to describe how a Nash equilibrium of the
fractional game can be computed in polynomial time using
linear programming. Moreover, the computed Nash equi-
librium minimizes the potential function Φ. Compare that
with the hardness of finding an integral solution minimizing
the potential function.

Given an instance frac(G, r, N, c), we create a new graph
G′ = (V, E′) by replacing each edge e by n copies e1, e2, . . . , en.
The cost of a unit flow on edge ej is ce/j. For a path p from
ti to r in G′, we denote by f i

p the amount of flow of com-
modity i sent on it. Note that different paths can use an
edge in opposite directions.

We formulate a linear program with an objective function
equal to the potential of the fractional multicast game. The
variables of the linear program are the flows of the users sent
on the set of paths in G′ from the terminals t1, . . . , tn to the
root r, and the capacities of the edges in E′. Denote a path



from ti to r by ti Ã r. The capacity of edge ej is denoted
by xej , where 0 ≤ xej ≤ 1. The linear program is as follows.

minimize
X
e∈E

nX
j=1

� jX
i=1

ce · xej

i

�
s.t.

For each commodity i:
X

p:tiÃr

f i
p ≥ 1 (1)

For each edge e, copy j, commodity i:X

p:tiÃr|ej∈p

f i
p ≤ xej (2)

For each edge e, copy j:
nX

i=1

X

p:tiÃr|ej∈p

f i
p = j · xej (3)

0 ≤ xej ≤ 1, f i
p ≥ 0 (4)

The total flow of user i, summed up over all paths from
ti to r, is at least 1 (Constraint (1)). Constraint (2), the
non-aggregating flow constraint, restricts the flow of each
user i on edge ej to be at most its capacity xej . The total
flow, taken over all commodities on edge ej , is constrained
to be precisely j · xej , as restricted by Constraint (3), the
aggregating flow constraint. This constraint is satisfied in
the integral case: if j commodities are sent on edge e, then
edge ej is “bought”, and the number of users on this edge
is j. The sum of the costs of the commodities on ej is then
exactly ce.

Note that the above linear program uses an exponential
number of variables. However, it can be solved in polynomial
time via the dual program using the Ellipsoid algorithm. Al-
ternatively, it can be formulated with a polynomial number
of variables by using the flows of the users on the different
edges in G′ as variables.

4.1.1 Characterizing an Optimal Solution
We say that a flow f on instance G′ is canonical if it

has, for every edge e ∈ E, the following structure. Denote
by fe,j the sum of the flows of user j on all copies of e
(fe,j =

Pn
k=1

P
p:tjÃr|ek∈p f j

p). Suppose that without loss

of generality fe,1 ≤ fe,2 ≤ · · · ≤ fe,ne ≤ 1, where ne denotes
the number of users with positive flow. Then, the flows
routed on e1, e2, . . . , ene are fe,1, (fe,2 − fe,1), . . . , (fe,j −
fe,j−1), . . . , (fe,ne − fe,ne−1), respectively, and the flow on
copies ei for i ≥ ne +1 is zero. Notice that there is a one-to-
one correspondence between canonical flows in the instance
G′ and fractional multicast flows in G. We now turn to prove
that there exists a canonical flow minimizing the potential
function.

Let f be the output flow of the linear program. We first
consider the flow fek on each copy ek of edge e, and rearrange
it to be a canonical flow. Then, we merge these resulting
canonical flows into a single canonical flow on e. These two
steps are performed for each edge e ∈ E. We show that the
resulting potential of the new (canonical) flow is not larger
than the potential of the original flow f .

lemma 4.1. Consider edge ek ∈ E′, 1 ≤ k ≤ n. There
exists a canonical flow on ek with potential value not greater
than that of the original flow on ek.

Proof. Without loss of generality, suppose that fek,1 <
fek,2 < · · · < fek,` are the different amounts of flow routed
on ek by the users, where fek,` = xek . For ease of notation,
we denote this ordering as f1 < f2 < · · · < f`, where f` =
xek . Assume that the number of users routing a flow value
≤ fi is ki, and thus k1 > k2 > · · · > k`. We rearrange the
flow fek to be a canonical flow by sending each amount of
flow to its proper edge copy, i.e. by “buying” capacity f1 on
edge ek1 , capacity (f2 − f1) on edge ek2 , etc.

The potential of the resulting canonical flow derived from
fek is thus

ce

X̀
i=1

kiX
j=1

fi − fi−1

j
= ce

X̀
i=1

(fi − fi−1)H(ki),

where f0 = 0. On the other hand, the potential of the
original flow on ek is

ce

kX
i=1

xek

i
= ce ·H(k)xek = ce ·H(k)f`.

The total flow on ek is constrained to be k · xek = k · f`

(Constraint (3)), which is equal to the total canonical flow
derived from fek , and thus

k · f` =
X̀
i=1

ki(fi − fi−1).

Since 0 ≤ (fi−fi−1)

f`
≤ 1 and

P`
i=1

(fi−fi−1)

f`
= 1, by Jensen’s

inequality,

X̀
i=1

H(ki)
fi − fi−1

f`
≤ H

�X̀
i=1

ki · fi − fi−1

f`

�
= H(k),

and thus
P`

i=1 H(ki)(fi − fi−1) ≤ H(k)f`.

lemma 4.2. Consider edge e ∈ E and two canonical flows
fe and f ′e. Then fe and f ′e can be added up yielding a canon-
ical flow with potential value not greater than the sum of the
potentials of fe and f ′e.

Proof. Consider two canonical flows f and f ′, and as-
sume that their respective flows on ek are xk and x′k. That
is, xk (resp., x′k) is the amount of flow routed by each player
using ek according to f (resp., f ′). We denote by Gk and
G′k the sets of players that use ek according to f and f ′

respectively, where |Gk| = |G′k| = k. Assume, w.l.o.g., that
x′k ≥ xk. By merging these two flows into a single canonical
flow, we “buy” capacity xk on copy |Gk ∪ G′k| of edge e,
capacity (x′k−xk) on ek, and capacity xk on copy |Gk ∩G′k|
of edge e. We thus get a new canonical flow with potential

H(|Gk ∪G′k|)xk + H(k)(x′k − xk) + H(|Gk ∩G′k|)xk.

On the other hand, the sum of potentials of the original
flows on ek is H(k)xk + H(k)x′k. As

2H(k) ≥ H(|Gk ∪G′k|) + H(|Gk ∩G′k|),
we get that the potential of the new canonical flow is not
larger than the sum of potentials of the original flows.

In case Gk 6= G′k, the potential of the new canonical flow
is strictly less than the sum of the potentials of the original
canonical flows. In this case, capacity has to be bought on
other copies of e except from ek, and thus other merging
steps should be performed for each such copy. As each such



step strictly decreases the potential, the merging process is
finite.

Theorem 5. There exists an optimal solution to the lin-
ear program which is a canonical flow.

Proof. Let f be the output flow of the linear program.
As f is a flow of minimum potential, it is either canonical,
or can be easily rearranged as such by performing the two
steps described by Lemmas 4.1 and 4.2 on all copies of each
edge e.

The linear program presented for computing the minimum
potential Nash equilibrium of the fractional model can be
used for more general settings, not necessarily egalitarian,
where the cost sharing mechanisms are cross-monotonic, i.e.
the cost functions are non-increasing in the number of users.
Furthermore, it can also be used for settings where the users
are not restricted to have a common source. Recall that
finding an integral solution with minimum potential is NP-
hard.

There are instances for which there is a gap between the
minimum potential fractional Nash equilibrium and the min-
imum potential integral Nash equilibrium. Consider Figure
3, which depicts an instance (G, r, {t1, t2, t3}, c), for which
the minimum potential fractional Nash equilibrium is smaller
than the minimum potential integral Nash equilibrium. The
edge costs are as follows: the cost of each edge (r, vi) (i =
1, 2, 3) is x, and the cost of each edge from vi to the terminals
connected to it is q À x. The fractional Nash equilibrium
that minimizes the potential is as follows: each terminal ti

sends 1/2 unit of flow through each of the two vertices vj

(j = 1, 2, 3) connecting it to r. Therefore, the fractional po-
tential is Φfrac = 3x/2(1+1/2)+6q/2 = 9x/4+3q. On the
other hand, the integral Nash equilibrium that minimizes
the potential is as follows: two out of the three terminals
send their flow through the same vertex vi to r, and the
third terminal sends its flow through one out of the other
two vertices vj connecting it to r. Therefore, the integral
potential is Φint = x(1 + 1/2) + x + 3q = 10x/4 + 3q.
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Figure 3: Instance in which the minimum poten-
tial fractional Nash equilibrium is smaller than the
minimum potential integral Nash equilibrium.

We define the price of anarchy of the fractional game as
the ratio between the cost of a Nash equilibrium solution and
the cost of an optimal fractional solution to the Steiner tree

problem. Similarly to the integral game, it can be shown
that the price of anarchy of a minimum potential function
Nash equilibrium is O(log n).

4.2 The Weighted Fractional Multicast Game
We consider a weighted extension of our multicast game,

where each user has a positive weight: wi denotes the weight
of user i. The payment of each player is proportional to its
weight. Let Wj =

Pj
i=1 wi. Given a flow vector f , let fe,i

denote the flow of user i on e and let ne be the number
of users with non-zero flow on e. Assume that the users
are numbered such that 0 = fe,0 < fe,1 ≤ fe,2 ≤ . . . ≤
fe,ne . Consider some j ≤ ne. User j shares the capacity
fe,1 with users 1 to ne, shares fe,2 − fe,1 with users 2 to
ne and so on. The payment for any share is in proportion
to weights. Hence, for the capacity fe,1, user j ≤ ne pays
ce · fe,1 · wj/Wne . Thus the overall cost paid by j ≤ ne on
edge e is

ce · wj ·
jX

i=1

fe,i − fe,i−1

Wne −Wi−1
.

The overall payment of a user is the sum of its payments for
the flow fractions it uses on all edges in all its paths. Each
user j aims to establish its flow from the source r to tj so as
to minimize its cost. Thus, a flow f is at Nash equilibrium
if no user has any incentive to change its flow.

An instance of the weighted fractional model, consisting
of a graph G, a source r, a set of receivers N with weight vec-
tor w, and a cost vector c is denoted by frac(G, r, N, c, w).
The proof of the following theorem uses Kakutani’s fixed
point theorem [13], and it is omitted from this extended
abstract. It is not known whether the weighted integral
multicast game has a Nash equilibrium.

Theorem 6. A Nash equilibrium (in pure strategies) ex-
ists for every instance frac(G, r, N, c, w).
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