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Abstract

We study the densest subgraph problem (DSG) and the densest subgraph local
decomposition problem (DSG-LD) in undirected graphs. We also consider su-
permodular generalizations of these problems. For large scale graphs simple iter-
ative algorithms perform much better in practice than theoretically fast algorithms
based on network-flow or LP solvers. Boob et al. [1] recently gave a fast iterative
algorithm called GREEDY++ for DSG. It was shown in [2] that it converges to
a (1 − ϵ) relative approximation to the optimum density in O( 1

ϵ2
∆(G)
λ∗ ) iterations

where ∆(G) is the maximum degree and λ∗ is the optimum density. Danisch et al.
[3] gave an iterative algorithm based on the Frank-Wolfe algorithm for DSG-LD
that takes O(m∆(G)

ϵ2 ) iterations to converge to an ϵ-additive approximate local de-
composition vector b̂, where m is number of edges in the graph.
In this paper we give a new iterative algorithm for both problems that takes at most

O(

√
m∆(G)

ϵ ) iterations to converge to an ϵ-additive approximate local decompo-
sition vector; each iteration can be implemented in O(m) time. We describe a
fractional peeling technique which has strong empirical performance as well as
theoretical guarantees. The algorithm is scalable and simple, and can be applied
to graphs with hundreds of millions of edges. We test our algorithm on real and
synthetic data sets and show that it provides a significant benefit over previous
algorithms. The algorithm and analysis extends to hypergraphs.

1. Introduction

The densest subgraph problem (DSG) is a classical problem in combinatorial optimization and has
many real world applications in data mining, network analysis, and machine learning. The input for
DSG is an undirected graph G = (V,E) with m = |E| and n = |V |. The goal is to return a subset
S ⊆ V that maximizes |E(S)|

|S| where E(S) = {{u, v} ∈ E : u, v ∈ S} is the set of edges with
both end points in S. DSG has a variety of applications in which dense subgraphs reveal important
information about the underlying network such as communities. One can view it as a subroutine in
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an unsupervised clustering procedure. It is a canonical problem in the broad area of dense subgraph
discovery which has seen many developments and applications in the past two decades. We point the
reader’s attention to a (non-exhaustive) list of recent, and some not so recent, important work and the
pointers therein [4, 5, 6, 7, 1, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Constrained
versions of DSG such as the densest k-subgraph problem DKSG, densest at most k-subgraph, and
densest at least k-subgraph DALKSG are also well-studied and many of these are NP-Hard. See
[24, 25, 26, 10, 6, 27] for some positive and negative results on approximation algorithms.

One of the key advantages of DSG is its polynomial-time solvability. The first polynomial-time
algorithms were due to Goldberg [4] and Picard and Queuranne [28]. The decision version of DSG
is the following: given G and a rational number λ, is the density in G at least λ? The algorithms in
[4, 28] construct an auxiliary directed flow-network H such that the maximum flow in H allows one
to answer the decision version. Binary search over λ leads to the final algorithm. Maximum flow
is a powerful algorithmic subroutine, however, it is not a practical or scalable algorithm for modern
graph data sets with millions and even billions of vertices and edges. For example, authors from [1]
noted that the Goldberg’s maximum flow algorithm failed on many large scale graphs even though
they used a highly optimized maximum flow library. Charikar [5] described a linear programming
formulation for DSG that gives an exact solution and has O(|E|) variables and constraints. LP
solvers are also unsuitable for large data sets due to memory limitations among others. Charikar [5]
described a very simple 1

2 -approximation algorithm for DSG known as the GREEDY or PEELING
algorithm. The algorithm creates an ordering of the vertices as follows. The first vertex v1 is the one
with the smallest degree in G (ties broken arbitrarily). It selects v2 to be the smallest degree vertex
in G − v1. Letting Gi be the graph after removing v1, v2, . . . , vi−1 (with G0 = G), the algorithm
returns the graph among G0, . . . , Gn with the highest density. The algorithm can be implemented
in O(m) time. The ordering created by the algorithm is the same as the one to compute a k-core
decomposition of a graph — this is a well-studied graph decomposition procedure with several
applications [29] . The simplicity and the efficiency of the Greedy algorithm, and its approximation
guarantees, has led to its adoption for a number of other density measures.

Despite Greedy’s advantages, its worst-case approximation guarantee is only 1
2 , and is worse for

other density measures. The goal is to develop algorithms that obtain a (1−ε) relative approximation
for a given parameter ε ∈ (0, 1) while also being scalable to large graphs. One approach to obtain
such algorithms is via the dual of Charikar’s LP relaxation. It is a mixed packing and covering LP
for a given guess of the optimal value. Such LPs can be approximately solved via iterative methods
such as the multiplicative weight updates (MWU) or other methods based on convex optimization.
Bahmani, Goel and Munagala [30] applied this methodology to obtain an algorithm that yields a
(1−ε)-approximation in Õ(m/ε2)-time. Boob, Sawlani and Wang [31] described an algorithm that
yields a (1 − ε)-approximation in Õ(m∆(G)/ε)-time, where ∆(G) is the maximum degree in G.
More recently Chekuri, Quanrud and Torres [2] obtained a (1− ε)-approximation in Õ(m/ε)-time
via approximate flow techniques. Some of these nice theoretical developments have not yet led to
practically useful algorithms for large scale graphs. In a different direction, Boob et al. [1] described
a fast iterative algorithm called GREEDY++ which builds on the Greedy algorithm and insights from
the LP relaxation. It does extremely well in experiments, and the authors conjectured that it yields a
(1 − ϵ) relative approximation in O( 1

ϵ2 ) iterations and each iteration can be implemented in O(m)

time. Chekuri et al. [2] proved that GREEDY++ converges to a (1 − ϵ)-approximation in O(∆(G)
λ∗ϵ2 )

iterations where λ∗ is the optimum density. This gives evidence of the theoretical soundness of the
algorithm.

Our goal in this paper is to develop new and scalable algorithms that outperform GREEDY++ while
having strong theoretical guarantees. In addition, we are interested in an algorithm that finds an
approximate dense subgraph decomposition which gives information on the density structure of the
graph and is different from another such decomposition, namely the k-core decomposition. Further,
as shown in previous work [32, 33, 2], a dense subgraph decomposition allows one to compactly rep-
resent approximate solutions to densest subgraphs of different sizes; in particular the representation
yields a 2-approximation for densest at least k-subgraph for any given k [32, 2].

Dense subgraph decomposition. One can show that every graph G = (V,E) admits a certain
structured nested decomposition based on decreasing density. In particular, the vertex set V can
partitioned into S1, S2, . . . , Sk such that S1 is the unique maximal densest subgraph in G, and Si is
the unique maximal densest set with respect to S1 ∪ . . . ∪ Si−1 (a formal definition is deferred to
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Section 3). For each vertex v we let λv denote the density of the set containing v. The existence of
such a decomposition follows from the supermodularity properties of the function f(S) = |E(S)|,
and is implicitly known from past work on submodular functions (in particular, the classical result of
Fujishige [34]). For graphs this decomposition was rediscovered by Tatti and Gionis [35, 12] under
the name of locally-dense decomposition. Tatti showed that one can compute the exact decomposi-
tion via n maximum flow computations. Danisch et al. [3] showed that computing the λv values can
be cast as solving a quadratic program that extends the LP of Charikar, and applied the Frank-Wolfe
algorithm. They showed that their algorithm needs O( |E|∆(G)

ϵ2 ) iterations (each taking O(|E|) time)
to converge to an ε-approximate vector. Their work shows that the Frank-Wolfe algorithm leads to
a good approximation to the densest subgraph in a relatively small number of iterations based on
experiments. However, they do not describe a systematic way to extract a dense subgraph decom-
position from the approximate vector with provable guarantees. See Figure 6.4 in Appendix 6.1 for
a table summarizing known results. For DSG-LD, GREEDY++ is not proven to converge to the
optimal dense decomposition load vector 4. The FRANK-WOLFE based algorithm takes O(m∆(G)

ϵ2 )
iterations, each taking O(m) time to converge to a (1− ϵ) dense decomposition. Our algorithm re-

quires O(

√
m∆(G)

ϵ ) iterations, each taking O(m) time, to converge to a (1−ϵ) dense decomposition
vector. Finally, the multiplicative weight update algorithm takes O(m∆(G)

ϵ2 ) iterations, each taking
O(m) time. We note that the multiplicative weight update algorithm has several variants, and the
one we implement is discussed in Section 5.5. Except for GREEDY++ due to the peeling nature of
the algorithm, each iteration of the other algorithms are easy to parallelize.

Densest Supermodular Set. Efficient solvability of DSG can also be seen via a connection to a
more general problem called the densest supermodular set problem, which we refer to as DSS. A
real-valued set function f : 2V → R+ is said to be supermodular iff f(A) + f(B) ≤ f(A ∪ B) +
f(A∩B) for all A,B ⊆ V . The goal in DSS is to return S ⊆ V that maximizes f(S)/ |S|. For any
graph G = (V,E), the function f : 2V → R+ defined as f(S) = |E(S)| for each S ⊆ V , is known
to be supermodular. Hence DSS generalizes DSG. Several algorithms and structural features for
DSG are easier to understand via supermodularity, as shown in recent work [2].

Notation: For an undirected graph G = (V,E) and S1, S2 ⊆ V , we use E(S1, S2) for the edge
set {{u, v} ∈ E : u ∈ S1, v ∈ S2}. For a vector b ∈ RV , and a subset S ⊆ V , we let b(S)
denote

∑
i∈S bi. We let ord(E) be the set of 2|E| edges that are ordered edges uv and vu for each

unordered edge {u, v} ∈ E. Finally, m and n denote |E| and |V | respectively.

2. Technical Contributions

We summarize the main contributions of this paper. A fast and scalable algorithm based on
projections: We describe an iterative algorithm for DSG and dense subgraph decomposition based
on solving a quadratic objective with linear constraints that is derived from the dual of Charikar’s
LP. Unlike previous work [36] that relied on the Frank-Wolfe method, we use a projection-based
approach. The algorithm is extremely simple and highly parallelizable. We show that it converges
to an ε-additive approximation in O(

√
m∆(G)/ε) iterations which is significantly better than the

bound for the Frank-Wolfe method. The algorithm scales to extremely large graphs and outperforms
existing algorithms in both running time and the approximation quality on almost all data sets. The
algorithm and analysis generalizes to hypergraphs.

Fractional Peeling: We introduce the idea of fractional peeling to round a fractional solution to the
underlying LP/QP relaxation and show its effectiveness in theory and practice. In experiments it
significantly outperforms ordering based rounding algorithms considered previously. We use it to
obtain a provably approximate dense subgraph decomposition from a fractional solution.

Connections to DSS: We explicitly connect the result of Fujishige [34] on the existence of a lexico-
graphically optimal base in a polymatroid with the problem of computing a densest decomposition of
a supermodular function. We show that the a vertex load vector is feasible for the dual of Charikar’s
LP for DSG iff it is feasible for the base contrapolymatroid associated with the supermodular func-

4Very recently the authors of this paper were able to prove the convergence of GREEDY++ to the dense
decomposition. A proof will appear in a followup manuscript.
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tion f(S) = |E(S)| induced by the graph. These connections clarify past results such as the one in
[36, 2] and allow us to compare Frank-Wolfe versus projection based methods.

Experimental evaluation: We compare five algorithms for DSG, namely GREEDY++, FRANK-
WOLFE, MWU, FISTA, and FISTA-PARALLEL a parallel version of FISTA. We test the algo-
rithms on real world and synthetic data sets and show the effectiveness of FISTA when combined
with fractional peeling.

To make the paper self contained we provide all proofs in the appendix, even for results implic-
itly contained in past literature. We focus on DSG (unweighted), however, the ideas generalize to
hypergraphs and weighted graphs, and we leave a more in-depth exploration for future work.

3. Densest Subgraph Decomposition and Supermodularity

Let G = (V,E) be an undirected graph. Each graph admits a unique nested decomposition of de-
creasing densities. This property is more transparently seen via supermodularity. Let f : 2V → R+

be a non-negative supermodular set function5. For example, fix f(S) = |E(S)| which is supermod-
ular. Supermodularity implies that there is a unique inclusion-wise maximal densest set S1. It is
convenient to describe the decomposition in an algorithmic fashion. The algorithm calculates the
maximal set S1 ⊆ V0 = V that maximizes |E(S)|

|S| in G with density λ1 = λ∗ = |E(S1)|
|S1| . For

DSS this corresponds to finding the unique maximal set S1 that achieves the maximum density
maxS f(S)/|S|.
In iteration i, letting Ui−1 = ∪1≤j<iSj , it calculates the maximal set Si ⊆ Vi = V − Ui−1 that
maximizes (|E(S ∪ Ui−1| − |E(Ui−1)|)/|S|. The algorithm is described formally in Algorithm 1.

Algorithm 1 Dense graph decomposition (left) and dense supermodular set decomposition (right)

U0 ← ∅, V0 ← V , k ← 0
while Vk ̸= ∅ do

k ← k + 1
Sk ← argmax

S⊆Vk−1

S maximal

|E(S)|+|E(S,Uk−1)|
|S|

Uk ← Uk−1 ∪ Sk, Vk ← Vk−1 − Sk

return S1, ..., Sk

U0 ← ∅, V0 ← V , k ← 0
while Vk ̸= ∅ do

k ← k + 1
Sk ← argmax

S⊆Vk−1

S maximal

f(S∪Uk−1)−f(Uk−1)
|S|

Uk ← Uk−1 ∪ Sk, Vk ← Vk−1 − Sk

return S1, ..., Sk

The algorithm outputs a partition of V into S1, ..., Sk, where k is the dense decomposition depth
of G (or any supermodular function f ). With each set Si, we associate a density defined as λi =
(|E(Si)| + |E(Si, Ui−1)|)/|Si| (or in the case of f, λi = (f(Si ∪ Ui−1) − f(Ui−1))/|Si|). In
addition, for any u ∈ Si, we say the density of u, λu = λi. Refer to Lemma 6.2 (Appendix 6.1)
for some basic properties of the dense decomposition. Specifically, the densities monotonically
decrease, that is, λ1 > λ2 > ... > λk.

4. LP and QP for DSG and Decomposition

Charikar’s [5] exact LP relaxation for DSG 4.1, and its dual 4.2 (in a slightly modified form), are
given below. The primal has a variable yu for each vertex u ∈ V which indicates whether u is
chosen in the densest set. For each edge e = {u, v} ∈ E there is a variable ze to indicate whether
it is chosen. An edge {u, v} can be chosen only if both u and v are chosen which explains the
constraints linking ze to yu, yv . The LP normalizes

∑
u yu to 1 for linearity, and maximizes chosen

edges.

5We restrict attention to non-negative supermodular set functions that satisfy f(∅) = 0 and this automati-
cally also implies that they are monotone, that is, f(A) ≤ f(B) for A ⊂ B
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max
∑
e∈E

ze

s.t. ze ≤ yu ∀e = {u, v} ∈ E

ze ≤ yv ∀e = {u, v} ∈ E∑
u∈V

yu ≤ 1

ze, yu ≥ 0

(4.1) min max
u∈V

bu

s.t.
∑

v∈δ(u)

xuv = bu ∀u ∈ G

xuv + xvu = 1 ∀{u, v} ∈ E

xuv, xvu, bu ≥ 0

(4.2)

The dual can be viewed as orienting each edge {u, v} fractionally towards u and v. The orientation
induces loads on the vertices and the goal is to find an orientation that minimizes the maximum load
over vertices. It is not hard to see that LP 4.2 is actually the same as the dual of 4.1; the variables
bu can be replaced by a single variable b. The optimum value of LP 4.1 and LP 4.2 is the density
λ∗ = λ1. However, we show that the bu values have additional information.

Theorem 4.1. Let S1, ..., Sk and λ1, ..., λk be the densest subgraph decomposition of a graph G,
and for any u ∈ Si, let λu = λi. There is an optimal solution (x∗, b∗) to 4.2 such that b∗u = λu.

We give two proofs, one a direct proof using Rado’s theorem [37] in Appendix 6.1, and a second
by relating 4.2 to another relaxation and using a known result of Fujishige that is captured in The-
orem 4.3. We say a vector a ∈ Rn is lexicographically smaller than vector b ∈ Rn if the sorted
vector a (in descending order) is lexicographically smaller than the sorted vector b. Theorem 4.1
suggests that there exists a lexicographically least optimal solution to LP 4.2 where each vertex load
bu is precisely λu. To obtain the lexicographic solution, it suffices to introduce some strict convexity
into the objective. Let P (x, b) denote the polyhedron defined by the constraints in 4.2. Consider the
quadratic program 4.3:

min
∑
u∈V

b2u such that (x, b) ∈ P (x, b) (4.3)

The theorem below was shown by Danisch et al. [3] but as we will show later, this is a special case
of Fujishige’s result [34] from 1980 via Theorem 4.3.

Theorem 4.2. There is a unique optimum solution b∗ to 4.3 and for each u ∈ V (G), b∗u = λu.

4.1. LP and QP for DSS and densest decomposition

We will now generalize Theorem 4.1 and Theorem 4.2 for the DSS problem. We start by recapping
the notion of a contrapolymatroid (see [38]) which is the relevant notion for supermodular func-
tions (as polymatroids are for submodular functions). For a normalized non-negative supermodular
function f : 2V → R+, the contrapolymatroid with it is the following polyhedron

Pf = {x ∈ RV | x ≥ 0, x(S) ≥ f(S) for all S ⊆ V } (4.4)

A vector x ∈ Pf is a base if x(V ) = f(V ). The base contrapolymatroid is defined as:

Bf = {x ∈ RV | x ≥ 0, x(S) ≥ f(S) for all S ⊆ V, x(V ) = f(V )} (4.5)

Now consider problem 4.6 where we are given a monotone non-negative supermodular function
f : 2V → R+ and want to find the lexicographically minimal solution b∗ for Problem 4.6. We will
show that we can do this by instead solving Problem 4.7:

minimize max
u∈V

bu

subject to b ∈ Bf

(4.6)
minimize

∑
u∈V

b2u

subject to b ∈ Bf

(4.7)

Theorem 4.3. Let S1, ..., Sk and λ1, ..., λk be the densest supermodular set decomposition of f ,
and for any u ∈ Si, let λu = λi. Then the following must hold

1. The solution b where bu = λu is feasible in the base polytope (i.e b ∈ Bf )
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2. The lexicographically minimal solution b∗ for Problem 4.6 satisfies bu = λu

3. The optimal solution of 4.7, b∗ is unique, and for each u ∈ V, b∗u = λu

We give a self-contained proof in Appendix 6.1 and note that the theorem is implied by (essen-
tially equivalent to) Fujishige’s result [34] on the existence of a lexicographically optimal base of
a polymatroid with respect to a weight vector. LP 4.2 and LP 4.6 can be related via the following
theorem.

Theorem 4.4. Consider a graph G = (V,E) and the associated supermodular function f : 2V →
R+ where f(S) = |E(S)|. A vector b ∈ Bf if and only if there is an x ∈ Rord(E), x ≥ 0 such that
the pair (x, b) satisfy the constraints of the LP 4.2.

See Appendix 6.1 for a proof. This implies that Theorem 4.2 is a corollary of Theorem 4.3.

5. Solving the Quadratic Program using proximal projections, and rounding

In this section we show how to approximately solve 4.3. We let f(x) =
∑

u∈V

(∑
v∈δ(u) xuv

)2
.

Note that this is simply the objective function rewritten in terms of x. Similarly, let h(x) be an
indicator function where h(x) = 0 if xuv ≥ 0 and xuv + xvu = 1,∀(u, v) ∈ E and +∞ otherwise.
Then Problem 4.3 can be rewritten as minimizing the unconstrained objective f(x) + h(x) for
x ∈ R2m. We will use a proximal gradient method to solve the problem. For that, we need two
lemmas whose proofs are in Appendix 6.2.

Lemma 5.1. The Lipschitz constant of∇f is at most 2∆(G) where ∆(G) is the max degree of G.

Lemma 5.2. Let x ∈ R2m. Define the proximal mapping proxh(x) as the point p ∈ R2m that
minimizes ∥p− x∥2 such that h(p) = 0. Then we have that for u < v, proxh(x)uv = xuv−xvu+1

2
if |xuv − xvu| ≤ 1, proxh(x)uv = 1 if xuv − xvu > 1, and proxh(x)uv = 0 if xuv − xvu < −1.
Additionally, proxh(x)vu = 1− proxh(x)uv .

We present the algorithm now. We are interested in the unconstrained optimization problem of
minimizing f(x) + h(x) where f is convex, and h has an easy to compute proximal mapping. This
type of problem can be solved using proximal gradient methods. From a high level, the (basic)
algorithm is described Algorithm 2. At any iteration t it has a guess for the minimizer x(t). It then
calculates the gradient of f and moves slightly against it. However, since this might make the new
guess infeasible, it uses the proximal mapping to project the new guess to a feasible solution.

Algorithm 2 Basic Proximal Gradient Method (left) and accelerated FISTA (right)

Input: f and h with proxh(x), learning rate α and iterations T . Initialize x(0) with h(x(0)) = 0

for t ∈ [1, T ] do
x(t) = proxh(x

(t−1) − α∇f(x(t−1)))
return x(T )

y(0) = x(0)

for t ∈ [1, T ] do
x(t) = proxh(y

(t−1) − α∇f(y(k−1)))

y(t) = x(t) + t−1
t+2 (x

(t) − x(t−1))

return x(T )

While the basic proximal gradient method works, we will use an even faster (both theoretically
and practically) version known as the accelerated proximal gradient method which incorporates
Nesterov-like momentum terms [39] in the projection step. It has other names in the literature
such as proximal gradient method with extrapolation and FISTA [40]. The algorithm is outlined in
Algorithm 2. We have the following known result on the FISTA algorithm.

Lemma 5.3. [40]. Let x∗ be the minimizer of f . Suppose that the learning rate satisfies α ≤ 1
L(f)

where L(f) is the Lipschitz constant of∇f . Then after k iterations, f(x(k))−f(x∗) ≤ 2∥x(0)−x∗∥2
αk2 .

In our case, we bounded the Lipschitz constant to 2∆(G) and an easy upper bound on
∥∥x(0) − x∗

∥∥2
is 2m = 2|E(G)|. Combining this with a learning rate of 1

2∆(G) , we get the following result
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Lemma 5.4. If FISTA is applied to the objective f(x) + h(x) as previously defined, then in the kth
iteration, we have f(x(k))− f(x∗) ≤ 8∆(G)m

k2 .

The final FISTA algorithm for our problem is shown in Algorithm 3 in Appendix 6.2 with the correct
gradient computation, projective mappings, and iteration updates. Lastly, to get a good additive
approximation on each λu, we have the following result whose proof is in Appendix 6.3

Theorem 5.5. Let b∗u = λu. After t = O(

√
∆(G)m

ϵ ) iterations of FISTA, we must have∥∥b(t) − b∗
∥∥ ≤ ϵ. This implies

∣∣∣b(t)u − λu

∣∣∣ ≤ ϵ for all u ∈ V

5.1. Fractional Peeling.

Given an approximate solution (b, x) to Problem 4.3, how do we round it to obtain a good densest
decomposition? The natural approach is to sort the vertices in non-increasing values of b and take
suffixes. This is used in [36]. This is an exact rounding algorithm when b is an optimum solution,
however one can construct approximate solutions for which this rounding is not ideal. We describe
a peeling algorithm inspired by GREEDY++ [1] that takes advantage of the auxiliary information
provided by the vector x. First, set b′ = b and G(0) = G. In iteration, t ≥ 1, peel the vertex u with
minimum current load b′u. Then, for each v ∈ δGt−1(u), set b′v ← b′v−xvu (i.e subtract the fractional
value of xvu from v’s load). Update Gt = Gt−1 − u. Repeat this process to obtain G(0), ..., G(n).
Finally, return a graph G(i) with maximum density. The algorithm can be implemented in O(m +
n log n) using a Fibonacci heap. We will refer to this process as fractional peeling. We show both
theoretically and experimentally that fractional peeling leads to better algorithms.

5.2. ϵ-dense local decomposition

We show that fractional peeling can be used on an approximate solution to 4.3 to obtain an approxi-
mate dense decomposition with a theoretical guarantee. This is in contrast to previous work in [36].
We define a strong notion of approximate decomposition. Given a solution (b, x) to 4.3, we say b̂ is
an ϵ-load-vector if

∥∥∥b̂− b∗
∥∥∥ ≤ ϵ. Given a partition of the vertices T1, ..., Tr, we say the partition is

an ϵ-approximate dense decomposition to S1, ..., Sk (the true dense decomposition) if

u ∈ Si, u ∈ Th =⇒ |E(Th)|+ |E(Th,∪j<hTj)|
|Th|

≥ |E(Si)|+ |E(Si,∪j<iSj)|
|Si|

− ϵ

Intuitively, what this says is that every u ∈ V belongs to a set Th that has a density that is not much
less than λu.

Theorem 5.6. Given an ϵ load vector b and an edge vector x that induces b, we can calculate an
ϵ(
√
n+ 1)-approximate dense decomposition in Õ(mn) time.

The proof is in Appendix 6.4. Note that the notion of error is additive and holds for every vertex
u. Although the

√
n-factor is large, the analysis shows that one can usually obtain a much stronger

bound. Qualitatively it shows that fractional peeling leads to good dense decomposition as ε→ 0.

5.3. Projections vs Frank-Wolfe vs MWU for DSG and DSS

The Frank-Wolfe method is natural to apply to solve 4.7 since each iteration requires optimizing a
linear objective over the base contrapolymatroid Bf ; this is easy and fast via the greedy algorithm,
as shown originally by Edmonds in the context of polymatroids (see [38]). Danisch et al. work
with 4.3. However, as we observed earlier, 4.3 is a compact way to represent the associated base
polyhedron, and hence the algorithm in [36] is the same as the Frank-Wolfe algorithm applied to
4.7. The Fujishige-Wolfe minimum norm point algorithm for submodular function minimization is
related but is based on Wolfe’s method (see [41, 42]). The fact that the optimum point in the base
polytope has additional information was already pointed out in [34], and also explored in the con-
text of size-constrained submodular function minimization by Nagano et al. [33]. The advantage of
proximal gradient methods such as FISTA is their faster convergence rates when compared to the
Frank-Wolfe method, although each iteration requires a projection oracle for Bf . Our algorithm is
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based on the observation that there is an O(m)-time projection oracle for DSG due to the alternate
characterization of Bf via the edge variable LP 4.2. This same observation holds for hypergraphs
and we obtain a fast algorithm for them. We outline the formal details in Appendix 6.5. The multi-
plicative weight update (MWU) method is another broad methodology for solving linear and convex
programs and there are several variants. One variant of MWU for solving 4.2 can be interpreted as
a Frank-Wolfe method with a certain convex objective and with a certain step size; each iteration of
this algorithm is again a greedy optimization over Bf . We provide more details in the Appendix 6.7.

5.4. A theoretically fast algorithm for approximate load vector via min-cost flow

While Algorithm 3 (detailed in Appendix 6.2) works extremely well in practice, there is room to im-
prove the theoretical run time. Each iteration takes O(m) time and can easily be parallelized. How-
ever, in the worst-case it would need O(m

√
∆(G)m/ϵ) time to get an additive ϵ-approximation.

Can we obtain a theoretically faster algorithm? In Appendix 6.6 we describe a reduction to com-
puting exact minimum quadratic-cost flow in a directed network. Very recently, in a breakthrough,
[43] developed near-linear time algorithm for min-cost flow and also convex-cost flows. Via their
algorithm we obtain an O(m1+o(1)) time algorithm to get an optimal dense decomposition vector.
We hope that this theoretical result will inspire the development of new algorithms that are provably
faster in theory while also having good empirical performance.

5.5. Frank-Wolfe and MWU

The Frank-Wolfe algorithms is part of the broader family of algorithms referred to as conditional
linear gradient methods. These algorithms approximately minimize a convex function f(x) over a
polytope P on which one can do efficient linear optimization. Generally speaking, each iteration t,
these algorithms start with the current point xt−1 ∈ P and solve the linear optimization problem
miny∈P (∇f(xt−1)

T y. Let pt be optimum solution to this; the algorithm sets xt to be a convex
combination of the current point and this vertex, xt = αtpt + (1 − αt)xt−1. The parameter αt,
called the step size, controls the convergence rate. The Frank-Wolfe method often refers to the
specific step size of αt = 2/(t+ 2) [44]. Other possibilities including αt = 1/t, which implies that
each xt will be a uniform combination of all previous vertices p1, p2, . . . , pt. This gives a slower
rate of convergence proportional to ln t/t, rather than 1/t (see for instance [45]).

An alternative continuous approach, popular for solving obtaining multiplicative approximations
to LP’s, is the multiplicative weight update framework [46]. There are several ways to lever-
age the MWU framework for the densest subgraph problem (e.g., [30, 1, 2]). We test one vari-
ation that applies the MWU framework to solve LP 4.2 that minimizes the maximum load. In
this case, the MWU framework implicitly tries to minimize a potential function that exponentiates
these loads and sums them together. More formally, for a parameter η > 0, consider the problem
min 1

η ln(
∑

u∈V exp(ηbu)) over b ∈ Bf . As η → ∞ one can see that the optimum solution to this
problem converges to the minimum load vector b∗. Each iteration of the MWU framework involves
solving a simpler linear optimization problem induced by the gradient of this potential. In the spe-
cific context of DSS the linear optimization problem corresponds to the greedy algorithm over Bf .
The greedy algorithm only depends on the ordering of V based on the current loads (and not their
specific values). For this reason, when the MWU method is applied with a fixed step size (in the so-
called “width-dependent MWU framework”), the MWU algorithm ends up solving the exact same
sequence of optimization problems, in the exact same way, as the conditional linear gradient method
with step size αt = 1/t would for the objective

∑
u b

2
u! Thus the parameter η does not a play a role

in this specific case, and it also follows that the MWU algorithm converges to an ϵ-approximate load
vector, although at a slightly lower rate than the Frank-Wolfe method.

6. Experimental Evaluation

Datasets & Implementation Details. We ran experiments on 7 real world datasets (6 from the
SNAP database [47], and 1 from [48]), and one tailored synthetic dataset (used for clarifying an
important difference between all algorithms) for a total of 8 datasets. The dataset information is
summarized in the table below. The CLOSE-CLIQUES dataset consists of the complete bipartite
graph Kd,D for d = 30 and D = 2000, and 20 copies of the complete graph Kh where h = 60.
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Dataset Vertices Edges Source Dataset Vertices Edges Source
cit-Patents 3,774,768 16,518,947 [47] roadNet-CA 1,965,206 2,766,607 [47]

com-Amazon 334,863 925,872 [47] Close-Cliques 3,230 95,400 Synthetic
orkut 3,072,441 117,185,083 [48] dblp-author 317,080 1,049,866 [47]

roadNet-PA 1,088,092 1,541,898 [47] wiki-topcats 1,791,489 28,508,141 [47]
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Figure 6.1: Density based on sorting loads vs fractional peeling.

We tested 5 algorithms to approximate DSG: The FISTA based algorithm (sequential, no paral-
lelism), FISTA-PARALLEL, GREEDY++ from [1], the FRANK-WOLFE based algorithm from [3],
and the MWU algorithm respectively. See supplementary section for implementation details of the
5 algorithms. Also see Appendix 6.7 for details on the specific variant of MWU we tested. All algo-
rithms were implemented in C++17 and were compiled with O3 and UNROLL-LOOPS optimizations.
The implementations of Algorithms FISTA, FISTA-PARALLEL, FRANK-WOLFE, and MWU are
the authors’ implementations, but we used the original implementation for GREEDY++ [1] as it was
extremely well optimized. We modified their implementation minimally to log basic information
needed for the evaluation. FISTA-PARALLEL used Open MPI [49] for parallelism. We ran our
experiments on a Slurm-based university campus cluster. For all machines, we requested 1 node and
16 cores per experiment. The nodes had 64 GB of RAM and Xeon PHI 5100 CPUs.

Densities. In the first experiment, we ran all the algorithms for a number of iterations, and monitored
the maximum density reached by the algorithm until iteration t. The density in each iteration was
calculated by statically sorting the vertices by the value of their load vector, and peeling in that order
and returning the maximum density subgraph in that iteration. The result is shown in Figure 6.1 (Top
4 plots, we only show 4 datasets, remaining plots in Appendix 6.7). Specifically, this does not use
the fractional peeling technique we discussed. We also plot the maximum density reached by using
fractional peeling instead (Bottom 4 plots in 6.1, we show 4 datasets, remaining plots in Appendix
6.7).

When the peeling order is changed from a static peel (based on the load vector value) to a fractional
peel, the results improve dramatically. See Figure 6.1 and Appendix 6.7. In all algorithms (except
MWU), fractional peeling leads to a dramatic speedup in terms of the number of iterations needed to
get the densest subgraph on almost all datasets. Fractional peeling provides little benefit to MWU.
We can observe that for all the real world datasets, GREEDY++ and FISTA are extremely competi-
tive and reach near-optimal densities in just a few iterations. Meanwhile, the FRANK-WOLFE based
algorithm lagged behind in the beginning, but steadily made progress towards the maximum density
in later iterations. MWU strongly lagged behind all algorithms in several datasets. The only excep-
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tion is for the CLOSE-CLIQUES dataset (see Appendix 6.7). The component in the densest subgraph
has density ≈ 29.5566. Meanwhile, the remaining components have density

(
60
2

)
/60 = 29.5. This

is a similar but nonidentical to the example from [1]. Note that for Kd,D and r copies of K2d (for
sufficiently large r,D), ∃ϵ where GREEDY++ requires Θ( 1ϵ ) iterations to converge to a (1 − ϵ) ap-
proximation for DSG in the worst case. MWU and FRANK-WOLFE did better for this synthetic
example where the densities are very close and it is worth understanding in more detail.

Wall clock time and run-time per iteration. In the second experiment we examine the wall-clock
time and time per iteration. We study the maximum density reached by an algorithm after T seconds
of wall-clock time (cumulative time of all iterations). Figure 6.13 (Appendix 6.7) and last 4 plots
of Figure 6.2 shows the result. As can be seen, FISTA-PARALLEL and FISTA (sequential) finds
the maximum density on almost all datasets in the least wall-clock time (albeit sequential FISTA
and FRANK-WOLFE are close runners if we only restrict to non-parallel implementations). On the
other hand, MWU performed poorly in wall-clock time, often taking orders of magnitude longer
than FISTA or GREEDY++ to find suboptimal dense subgraphs. Overall, the number of iterations
of FISTA is the lowest, and each iteration is fast and can be parallelized, so it is the best performer.
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Figure 6.2: Wall clock time of algorithms.

We also considered the run time per iteration for the algorithms. Figure 6.9 (appendix) shows the
result. The per iteration time depends on several factors. Although all algorithms have linear or near-
linear in m running time, the specific data structure used and cache performance can have substantial
impact. Overall, FRANK-WOLFE (due to its simple implementation) and FISTA-PARALLEL had
the best per-iteration performance. The average speedup per iteration from FISTA-PARALLEL over
GREEDY++ was roughly 5 fold. Note that due to the peeling nature of GREEDY++, it cannot be
parallelized like FISTA.

Convergence to optimal load vector. Recall that we are minimizing
∑

u b
2
u, and hence the norm∥∥b(t)∥∥ gives a proxy for the convergence of the errors in b(t). In this experiment, we plotted the

norm of the vector b(t) for each algorithm in each dataset. The result is shown in Figure 6.10 (Ap-
pendix 6.7). GREEDY++ does very well in the first few iterations, but slows down in its improve-
ment on

∥∥b(t)∥∥ as the number of iterations increases. In comparison, FISTA eventually surpasses
GREEDY++ and reduces the error at a faster rate than GREEDY++. In comparison, FRANK-WOLFE
and MWU start with a substantial error in the b vector but quickly reduce it, however, their error was
always worse that both GREEDY++ and FISTA in all iterations even when left to run 200 iterations.

Conclusion. We introduced a new iterative algorithm for the densest subgraph and densest decom-
position problems. We also described a new fractional peeling technique which has strong empirical
performance as well as theoretical guarantees and showed experimentally how it improved almost
all existing algorithms compared to static load sorting. The new algorithm is scalable and simple,
and can be applied to graphs with hundreds of millions of edges. Our experiments support the
theory established on the utility of the new algorithm and fractional peeling. Our work also adds
value via a detailed comparison of the practical performance of existing algorithms and the new
algorithm. A few limitations remain for the paper. First, reducing the

√
n dependency in Theo-

rem 5.6 is important, even if fractional peeling shows strong experimental bounds. Finally, we need
to evaluate empirically the quality of the decomposition achieved by algorithms (with and without
fractional peeling), and also algorithms for approximating at least k DSG and related problems via
the decomposition.
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(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Crowdsourcing is not used
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Crowdsourcing is not used
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] Crowdsourcing is not used
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Appendix

6.1. Proofs for Section 4

Before we prove Theorem 4.1, we first recap the b-transportation problem. Given a bipartite graph
B(V ′, E′), and a required load value bu ≥ 0,∀u ∈ V ′, a b-transportation is an assignment
xuv ≥ 0 to the edges of the bipartite graph such that

∑
v∈δ(u) xuv = bu for all u ∈ V ′. Hence,

it can be thought of as a fractional b−matching problem. Rado characterized the existence of a
b−transportation in bipartite graphs using the following result

Theorem 6.1. Rado, 1948 [37] Let B(V ′, E′) be a biparite graph. Then there exists a b-
transportation for B if and only if b(C) ≥ 1

2b(V
′) for each vertex cover C of B.

In addition, we need the following lemma on the dense decomposition properties.

Lemma 6.2. For a dense decomposition S1, ..., Sk of G with densities λ1, ..., λk obtained by Algo-
rithm 1, we have: (i) λ1 > λ2 > ... > λk ≥ 1

2 , (ii) For S ⊆ Si, we must have E(S,Ui) ≥ λi |S|.
Proof: (1): Suppose for the sake of a contradiction that this is not the case, and let i be the first
index where λi ≥ λi−1. Then consider the set Si−1 ∪ Si when the algorithm selected Si−1. We
have that

λ′ =

E(Si−1 ∪ Si) + E(Si−1 ∪ Si,
⋃

1≤t<i−1

St)

|Si−1 ∪ Si|
Note that Sj are disjoint by construction. So we have the simplification

λ′ =

E(Si−1) + E(Si) + E(Si−1,
⋃

1≤t<i−1

St) + E(Si,
⋃

1≤t<i

St)

|Si−1|+ |Si|
=

λi−1 |Si−1|+ λi |Si|
|Si−1|+ |Si|

≥ λi−1

If λ′ = λi−1 then this would be a contradiction to the maximality of Si−1. If λ′ > λi−1 then that
would be a contradiction that Si−1 was the densest subgraph when it was chosen. Finally, λk ≥ 1/2
is clear, the minimum density for a connected component is that of just a single edge which has
density 1

2 .

(2): Suppose for the sake of a contradiction that this is not the case for some Si and S ⊂ Si, then
consider the set Si − S. Then we have that

E(Si − S) + E(Si − S,Ui−1)

|Si − S|
=

E(Si) + E(Si, Ui−1)− E(S,Ui)

|Si| − |S|
>

λi|Si| − λi|S|
|Si| − |S|

= λi

A contradiction to optimality of Si.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 We construct a bipartite graph B(V ′, E′) as follows. V ′ = L′∪R′, where the
left side vertices L′ = V (G) and the right side vertices are the edges R′ = E(G). We set bu = λu

for u ∈ L′, and be = 1 for e ∈ R′. We connect a vertex i ∈ L′ to e ∈ E′ if i is incident on e in G. It
is clear that a b−transportation for B induces a feasible solution for LP 4.2. We will now show that
there is a feasible b−transport using Theorem 6.1. First, note that b(V ′) =

(∑k
i=1 λi|Si|

)
+m× 1

But note that m =
∑k

i=1 λi|Si| (as each edge in G gets counted exactly once) which implies that
1
2b(V

′) =
∑k

i=1 λi|Si|. Now we will show that any vertex cover C of the bipartite graph must
satisfy b(C) ≥

∑k
i=1 λi|Si| which would imply the theorem. Let CL = C ∩ L′ and CR = C ∩ R′

be the vertices in the vertex cover on the left and right respectively. Further, subdivide CL, CR into
CL1, ..., CLk and CR1, ..., CRk where CLi = CL ∩ Si and CRi = CR ∩ (E(Si)∪E(Si,

⋃
t<i St)).

See Figure 6.3.

Consider S1 −CL1, we must have that E(S1 −CL1) +E(S1 −CL1, CL1) ≥ λ1 |S1 − CL1| using
Lemma 6.2. But note that E(S1 − CL1) ∪ E(S1 − CL1, CL1) are precisely the edges that are not
covered by CL1 and hence must be covered by CR1, so it must be that E(S1 − CL1) ∪ E(S1 −
CL1, CL1) ⊆ CR1 which implies |CR1| ≥ |E(S1 − CL1)|+ |E(S1 − CL1, CL1)| ≥ λ1|S1 − CL1|
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L′ = V (G)

S1

S2

...

Sk ...

...

bu

λ1
λ1
λ1

λ2
λ2

λ2

λk

λk

λk

R′ = E(G)

...

...

be

1

1

1

1

1

1

1

1

1

E(S1)

E(S2) + E(S2, S1)

E(Sk) + E(Sk,∪j<kSj)

Figure 6.3: B(V ′, E′) bipartite graph in Proof of Theorem 4.1. The colored vertices are the vertex
cover C. The red vertices are CL1

, the blue vertices are CL2
, and the yellow vertices are CLk

.
Similarly, the orange vertices are CR1

, the purple vertices are CR2
, and the green vertices are CRk

.

So we have that b(CL1∪CR1) ≥ λ1|CL1|+λ1|S1−CL1| = λ1|S1|. This analysis holds inductively
to show that b(CLi ∪ CRi) ≥ λi|Si|. Summing up, we obtain the following,

b(C) =

k∑
i=1

b(CLi ∪ CRi) ≥
k∑

i=1

λi|Si| =
1

2
b(V ′).

This finishes the proof.

Fujishige proved Theorem 4.3 [34] and more general versions of his theorem are also known (see
[50]). Here we give a proof for the sake of completeness following the algorithmic definition of the
decomposition.

Proof of Theorem 4.3: (1): Clearly bu ≥ 0 for all u ∈ V . Consider an arbitrary set R ⊆ V and let
Ri = Si ∩R. Since Ri ⊆ Si and Si is the densest set chosen during iteration i, then it must be that

f(Ri ∪ S1 ∪ ... ∪ Si−1)− f(S1 ∪ ... ∪ Si−1)

|Ri|
≤ f(Si ∪ S1 ∪ ... ∪ Si−1)− f(S1 ∪ ... ∪ Si−1)

|Si|
= λi

And hence we have that

b(R) =
∑
u∈R

bu =

k∑
i=1

λi|Ri| ≥
k∑

i=1

(f(Ri ∪ S1 ∪ ... ∪ Si−1)− f(S1 ∪ ... ∪ Si−1))

≥
k∑

i=1

(f(Ri ∪R1 ∪ ... ∪Ri−1)− f(R1 ∪ ... ∪Ri−1)) = f(R)

Where the second inequality is by supermodularity of f and the last equality is because of the
telescoping sum. Finally, note the chain of inequalities above hold with equality if R = V since
Ri = Si. This implies b(V ) = f(V ).
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Problem Algorithm Convergence (Current worst
case number of iters.)

Time/iter Iteration
paral-
lelizable?

DSG-LD Frank-Wolfe based
Algorithm

O(m∆(G)
ϵ2 ) iterations for ϵ-load

vector
O(m) Yes

DSG-LD Greedy++ Load vector not proven to con-
verge, but experimentally does.

O(m log n) No

DSG-LD MWU based Algo-
rithm

O(m∆(G)
ϵ2 ) iterations for ϵ-load

vector
O(m) Yes

DSG-LD FISTA based Algo-
rithm

O(

√
m∆(G)

ϵ ) iterations for ϵ-
load vector

O(m) Yes

DSG Bahmani et al. [30]
primal-dual

O( logm
ϵ2 ) for (1− ϵ) multiplica-

tive DSG.
O(m) Yes

DSG Boob et al. [31]
via mixed packing-
covering LP solver

Õ(m∆(G)
ϵ ) for (1 − ϵ) multi-

plicative DSG.
NA NA

DSG Greedy++ O(∆(G)
λ∗ϵ2 ) for (1− ϵ) multiplica-

tive DSG
O(m log n) No

DSG Chekuri et al. [2] via
approximate flow

O( logm
ϵ ) for (1− ϵ) multiplica-

tive DSG.
Õ(m) No

DSG Frank-Wolfe based
Algorithm

O(mn∆(G)
ϵ2 ) for ϵ additive DSG

using fractional peeling from
this paper.

O(m) Yes

DSG FISTA based Algo-
rithm

O(

√
mn∆(G)

ϵ ) for ϵ additive
DSG using fractional peeling
from this paper.

O(m) Yes

Figure 6.4: Summary of currently known bounds on different iterative algorithms for DSG and
DSG-LD including results in this paper.

(2) : Let b∗u = λu with b∗ ∈ Bf from (1). Let b ∈ Bf be a lexicographically minimal base. We will
prove that b = b∗ by inductively proving that for all i, bu = λu if u ∈ Si. Consider i = 1 for the
base case. Since b ∈ Bf we have

b(S1) ≥ f(S1) = λ1 |S1|

Hence the maximum load in b is at least λ1. Since the maximum load in b∗ is λ1, then it forces
bu = λu for u ∈ S1. Now we proceed inductively, assuming that bu = λu for u ∈ S1 ∪ ... ∪ Si.
Since b ∈ Bf ,

i+1∑
h=1

b(Sh) = b(S1 ∪ ... ∪ Si+1) ≥ f(S1 ∪ ... ∪ Si+1) =

i+1∑
h=1

(f(S1, ..., Sh)− f(S1, ..., Sh−1))

= f(S1 ∪ ... ∪ Si+1)− f(S1 ∪ ... ∪ Si)) +

i∑
h=1

b(Sh) = λi+1 |Si+1|+
i∑

h=1

b(Sh)

This implies that b(Si+1) ≥ λi+1 |Si+1|. We have b∗u = bu for u ∈ S1 ∪ ... ∪ Si by induction
hypothesis. Since b∗u = λi+1 for all u ∈ Si+1 and b(Si+1) ≥ λi+1|Si+1| it follows that bu = λi+1

for u ∈ Si+1 for otherwise b is not lexicographically minimal.

Hence, by induction, bu = λu for all u ∈ V .

(3): The function g(b) =
∑
u∈V

b2u is strictly convex. Bf is a bounded polyhedron and hence a closed

convex set. In addition, we showed that Bf is feasible. Any strictly convex function with a feasible
convex constraint set must have a unique solution, and so b∗ must be unique.
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Now consider the constraint polytope C defined as the intersection of the following k inequalities

C = {b ∈ R|V | : ∀1 ≤ r ≤ k,

r∑
l=1

b(Sl) ≥
r∑

l=1

λl|Sl|}

Recall if b ∈ Bf then
r∑

i=1

b(Si) = b(S1∪...∪Sr) ≥ f(S1∪...∪Sr) =

r∑
i=1

f(S1∪...∪Si)−f(S1∪...∪Si−1) =

r∑
i=1

λi |Si|

And so b ∈ Bf =⇒ b ∈ C. Hence minb∈C g(b) ≤ minb∈Bf
g(b).

We aim to prove that for the unique optimal solution of g under C, all inequalities are active (i.e hold
with equality). Let b be the optimal solution of g under C. From (1), we have that b(V ) = f(V )
and so the last inequality has to be active. Now suppose for the sake of contradiction that not
all inequalities are active, and let i be the first index of an inequality that is not active. Since∑i−1

h=1 b(Sh) =
∑i−1

h=1 λh |Sh| and
∑i

h=1 b(Sh) >
∑i

h=1 λh |Sh|, then it must be that b(Si) >
λi|Si|. Similarly, let j > i be the first index of an inequality after i which is active (this must exist
since the last inequality holds with equality). Then it must be that b(Sj) < λj |Sj |. Now let

ϵ = min

(
min
i≤t<j

(
t∑

r=1

b(Sr)−
t∑

r=1

λrsr

)
,
1

2
(λi − λj)

)
> 0

be the minimum “excess” from inequalities i to j − 1 and half the difference between λi, λj . Since
b(Si) > λi|Si|, then there exists bu > λi for u ∈ Si. Similarly, there exists bv < λj for v ∈ Sj . Now
consider the solution of b′ where b′u = bu − ϵ, b′v = bv + ϵ, and b′x = bx otherwise. The solution is
feasible in C because inequalities 1, ..., i−1 stay the same (no bu, bv variable), inequalities i, ..., j−1
stay feasible (LHS decreases by ϵ), and the effect by inequality j is cancelled. However, we have
that since bu > λi > λj > bv and ϵ ≤ 1

2 (λi − λj) that (bu − ϵ)2 + (bv + ϵ)2 < b2u + b2v So the
solution b′ has a strictly smaller cost, contradicting optimality of b.

This implies that all inequalities have to hold with equality in an optimal solution. So
∑

u∈Si
bu =

λi|Si|. The sum of squares is minimized if and only if all variables have equal weight, and so it must
be that bu = λi = λu for all u ∈ Si. This shows g(b) is minimized at bu = λu under C. But recall
from (1) that b ∈ Bf , and so b is the unique optimal solution for Problem 4.7

We now show the equivalence of the two LPs 4.2 and 4.6 for DSG.
Proof of Theorem 4.4: Suppose b ∈ Bf . Then b(V ) = m and b(S) ≥ |E(S)| for all S ⊆ V . We
need to prove the existence of x ≥ 0 such that xuv + xvu = 1 for all edge {u, v} ∈ E and such that
the total load on each vertex is at most b. The idea from the proof of Theorem 4.1 goes through to
show this. The only fact we used in the proof of Theorem 4.1 is that b(S) ≥ |E(S)| for certain sets
S ⊆ V and b(V ) = m which hold as we mentioned.

Suppose x, b satisfy the constraints of 4.2. Since xuv + xvu = 1 for each edge {u, v}, for any
S ⊆ V ,

b(S) =
∑
u∈S

bu =
∑
u∈S

∑
v∈δ(u)∩S

xuv +
∑
u∈S

∑
v∈δ(u)\S

xuv ≥ |E(S)|

Similarly, b(V ) =
∑

u∈V

∑
v∈δ(u) xuv = m = |E(V )|. Thus b ∈ Bf .

6.2. Details of FISTA based Algorithm

Proof of Lemma 5.1 ∇fuv = 2
∑

w∈δ(u) xuw. So for x, y ∈ R2m,

∥∇f(x)−∇f(y)∥2 = 4
∑

uv∈ord(E)

 ∑
w∈δ(u)

xuw − yuw

2

= 4
∑
u∈V

∑
v∈δ(u)

 ∑
w∈δ(u)

xuw − yuw

2

≤ 4∆(G)
∑
u∈V

 ∑
w∈δ(u)

xuw − yuw

2

≤ 4∆(G)2
∑
u∈V

∑
w∈δ(u)

(xuw − yuw)
2 = 4∆(G)2 ∥x− y∥2

Where the last inequality holds by Cauchy-Schwarz inequality.
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Proof of Lemma 5.2 Fix u < v and let p = proxh(x). Then we aim to minimize∑
uv∈ord(E)

(puv − xuv)
2 =

∑
uv∈E

(
(puv − xuv)

2 + (1− puv − xvu)
2
)

So it is sufficient to minimize (puv − xuv)
2 + (1 − puv − xvu)

2 individually for each unordered
edge u < v subject to 0 ≤ puv ≤ 1. Proving that the described proximal mapping minimizes this
quadratic is a standard exercise so we omit it.

We describe below the full details of the FISTA based algorithm for DSG.

Algorithm 3 FISTA Algorithm for Densest Subgraph
Input is Graph G and number of iterations T . Assume E = E(G) is ordered (so includes (u, v)
and (v, u) for every edge).
∆ = maxu∈G |δ(u)| ▷ Maximum Degree
α← 1

2∆ ▷ Learning Rate
x(0)(u, v) = 1 ∀(u, v) ∈ E, u < v
x(0)(v, u) = 0 ∀(u, v) ∈ E, u < v
y(0) = x(0)

for t ∈ [1, T ] do
b(t)(u) = 0 ∀u ∈ V ▷ Calculate Load with respect to y(t−1)

for u ∈ G do
for v ∈ δ(u) do

b(t)(u) = b(t)(u) + y(t−1)(u, v)

g(t)(u, v) = 0 ∀(u, v) ∈ E ▷ Calculate Gradient with respect to y(t−1)

for (u, v) ∈ E, u < v do
g(t)(u, v) = g(t)(u, v) + 2b(t)(u)
g(t)(v, u) = g(t)(v, u) + 2b(t)(v)

z(t)(u, v) = y(t)(u, v)− αg(t)(u, v) ∀(u, v) ∈ E ▷ Descent direction
x(t)(u, v) = 0 ∀(u, v) ∈ E ▷ Calculate New x(t), which is projected descent direction
for (u, v) ∈ E, u < v do

diff ← z(t−1)(u, v)− z(t−1)(v, u)
if diff ≥ −1 and diff ≤ 1 then

x(t)(u, v)← diff+1
2

else if diff > 1 then
x(t)(u, v)← 1

else
x(t)(u, v)← 0

x(t)(v, u)← 1− x(t)(u, v)

y(t)(u, v)← x(t)(u, v) + t−1
t+2 (x

(t)(u, v)− x(t−1)(u, v)) ∀(u, v) ∈ E ▷ Calculate New y(t)

return x(T )

6.3. Approximate densest decomposition via fractional peeling

Proof of Theorem 5.5

f(b)− f(b∗) =
∑
u∈V

b2u −
∑
u∈V

λ2
u =

k∑
i=1

∑
u∈Si

(b2u − λ2
u) =

k∑
i=1

∑
u∈Si

(b2u − λ2
i ) ≤ µ
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Now let bu = λu + δu, then we have from above that
k∑

i=1

∑
u∈Si

(2λiδu + δ2u) ≤ µ

We will first show that
∑k

i=1

∑
u∈Si

2λiδu ≥ 0. Note that for any l, we have

l∑
i=1

∑
u∈Si

(λi + δu) =

l∑
i=1

∑
u∈Si

bu ≥
l∑

i=1

λi|Si|

Since the edges with both endpoints in S1 ∪ ...∪Sl get double counted, and xuv + xvu = 1. Which
implies that for all l,

l∑
i=1

∑
u∈Si

δu ≥ 0

Now we prove that for all l, and any a1 > a2 > ... > al ≥ 0

l∑
i=1

∑
u∈Si

δuai ≥ 0

by induction. Observe that it holds for l = 1 since a1
∑

u∈S1
δu ≥ 0. For l = r, we have that

r∑
i=1

∑
u∈Si

δuai =

r−1∑
i=1

∑
u∈Si

δu(ai − ar) + ar

r∑
i=1

∑
u∈Si

δu ≥ 0 + 0 = 0

By induction. Since λ1 > ... > λk by Lemma 6.2, this implies
k∑

i=1

∑
u∈Si

λiδu ≥ 0

Which implies
k∑

i=1

∑
u∈Si

δ2u ≤ µ

Now let µ = ϵ2, which would imply
k∑

i=1

∑
u∈Si

(bu − λu)
2 ≤ ϵ2

And hence ∥b− b∗∥ ≤ ϵ

6.4. Proof of Theorem 5.6

We first note the running time follows easily from using a heap in the fractional peeling subroutine
to identify the next minimum-load vertex. We focus on proving the approximation factor.

In what follows, refer to Figure 6.5. Let x(0) = x and b(0) = b. Each iteration t = 1, 2, . . . , the al-
gorithm runs fractional peeling over the remaining vertices, with respect to the fractional orientation
given by x(t−1) and the loads given by b(t). This produces a set of vertices Tt. We remove Tt from
the vertex set. x(t) is obtained from x(t−1) by assigning all the edges cut by Tt to the endpoint not in
Tt. That is, for each edge {u, v} cut by Tt in the remaining graph, where u ∈ Tt and v /∈ Tt we set
x
(t)
uv = 0 and x

(t)
vu = 1. We let b(t) denote the loads induced by x(t). Note that b(t)u is nondecreasing

for u /∈ Tt, and nonincreasing for u ∈ Tt. In particular we have b
(t)
u ≥ b

(0)
u ≥ λu − ε for every

remaining vertex u.

We want to show that for each iteration t, and each vertex u ∈ Tt, the density of Tt is at least
λu − ε(1 +

√
n).
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S1

S2

Sk

Figure 6.5: Let S1, ..., Sk be as shown in the figure. Suppose we are in iteration t. The dark vertices
represent the vertices that were deleted in previous rounds (i.e T1 ∪ ... ∪ Tt−1), while the white
vertices are those that were not deleted yet. The sum of δ(t)2 only includes the black edges leaving
S1, S2 to “outside” white points. The red edges are all examples of edges not included in the sum.

First, for each iteration t, and each index i from the dense decomposition, let δ(t)i denote the sum,

δ
(t)
i =

∑
u∈S1∪···∪Si

v∈Si+1∪···∪Sk

v/∈T1∪···∪Tt

x(t)
uv .

At a high-level, δ(t)i represents the sum of loads in S1 ∪ · · · ∪ Si from edges cut by S1 ∪ · · · ∪ Si,
except omitting the edges where the endpoint outside S1 ∪ · · · ∪ Si was taken in one of the first t
iterations.

We claim that for each index i and iteration t, we have

δ
(t)
i ≤ ε

√
n.

We first observe that δ(t)i is non-increasing in t. Indeed, fix t, and consider a term x
(t)
uv appearing in

the sum. (That is, u ∈ S1 ∪ · · · ∪ Si, v ∈ Si+1 ∪ · · · ∪ Sk, and v /∈ T1 ∪ · · · ∪ Tt.) In the (t+ 1)th
iteration, we select a new set Tt+1 and x

(t+1)
uv is bigger than x

(t)
uv only if v ∈ Tt+1. But in this case,

x
(t+1)
uv is omitted from the sum for δ(t)i .

Since δ
(t)
i is non-increasing in t, suffices to prove the claim for t = 0, when b(0) = b and x(0) = x.

To this end, observe that∑
u∈S1∪···∪Si

bu = δ
(0)
i + |E(S1 ∪ · · · ∪ Si)| = δ

(0)
i +

∑
u∈S1∪···∪Si

λu.

Rearranging and applying the Cauchy-Schwarz inequality, we have

δ
(0)
i =

∑
u∈S1∪···∪Si

(bu − λu) ≤
√
n

√ ∑
u∈S1∪···∪Si

(bu − λu)2 ≤ ε
√
n.

This establishes the inequality for t = 0, hence all t by monotonicity.

Let u ∈ Tt and suppose u ∈ Si. We want to show that Tt has density at least λu − ε(1 +
√
n).

Let v be the first vertex in S1 ∪ · · · ∪ Si peeled in the tth iteration; in particular, λv ≥ λu. Recall
that just before v is peeled, v has the lowest load remaining of any vertex, and the sum of loads of
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the remaining vertices counts the total number of edges in Tt. Thus the load at v is a lower bound
on the density of Tt. Additionally, before v is peeled, any decrease in v’s load is from edges {v, w}
where w ∈ Si+1 ∪ · · · ∪ Sk and w /∈ T1, . . . , Tt−1. Thus v has load at least b(t−1)

v − δ
(t−1)
i . Putting

everything together, we conclude that Tt has density at least

b(t−1)
v − δ

(t−1)
i ≥ b(0)v − ε

√
n ≥ λv − ε(1 +

√
n),≥ λu − ε(1 +

√
n),

as desired. This completes the proof.

6.5. Hypergraphs

The projective results for DSG can be generalized for DSS. We say a supermodular function is
projectable if given a vector y ∈ R|V |, there is a fast oracle that can calculate proxf (y) =

min
x∈Bf

∥x− y∥22.

Theorem 6.3. Given f , a projectable supermodular function, and an initial load vector b(0) for the
guess of b∗u = λu, there exists an algorithm that returns an approximate load vector b̂ that uses

O(
∥b(0)−b∗∥

ϵ ) oracle calls to the projection oracle, and satisfies ∥b− b∗∥ ≤ ϵ for all u ∈ V .

Proof: Consider applying FISTA [40] on Problem 4.7 where we have unconstrained optimization
problem

∑
u∈V b2u + h(b) where h(b) is an indicator function for Bf . We have that ∇f(b) = 2b,

and hence the Lipschtiz constant of ∇f is 2. Applying Lemma 5.3 with a learning rate of 0.5, we
get the desired result.

A hypergraph G = (V,E) generalizes the idea of a graph by allowing edges to have size greater
than two. For example, if V = {a, b, c, d}, then a potential “edge” is e = {a, b, d}. The rank r of
a hyper graph is maxe∈E |e|. For practical purposes, r is generally “small”. Given a hypergraph
G = (V,E) we let E(S) denote the set of all hyperedges in E that are fully contained in S, that
is E(S) = {e ∈ E | e ⊆ S}. One can easily verify that the function f : 2V → R+ where
f(S) = |E(S)| is a monotone nonnegative supermodular function.

We can generalize the approach for DSG to hypergraphs as follows. Charikar’s LP relaxation can be
generalized to hypergraphs. Here we focus on the dual. For e ∈ E and u ∈ e, we define a variable
xe,u which corresponds to the load that e assigns to u. The LP requires each e to be assigned to its
end points and hence we have a constraint

∑
u∈e x(e, u) = 1. The load on u, denote by the variable

bu, is
∑

e:u∈e x(e, u). The goal is to minimize maxu∈V bu. Similar to Theorem 4.4, one can prove
in the same way that b ∈ Bf if and only if ∃x that induces b. Now given a vector y that induces b, we
can project it on Bf by finding xe,u that minimizes

∑
u∈e(xe,u − ye,u)

2 subject to
∑

u∈e xe,u = 1
and xe,u ≥ 0. This is known as the simplex projection and it has a simple closed form solution
(See [51] for the basic algorithm, and [52] for a recent distributed variant of the algorithm). The
algorithm in this case would take O(|e| log |e|) time for each e ∈ E to do the projection, and hence
overall the projection step takes O(p log r) for all edges where p =

∑
e∈E |e| is the representation

size of the hypergraph G (p corresponds to m in graphs). We can apply FISTA analysis in a very
similar fashion to that for graphs to obtain the following theorem.

Theorem 6.4. For a hyper graph G with rank r, maximum degree ∆(G) (i.e
maxu∈V |{e : u ∈ e}| = ∆(G)), and size p =

∑
e∈E |e|, there exists an algorithm that

takes O(

√
r∆(G)p

ϵ ) iterations, each needing O(p log r) time, to compute an ϵ-approximate load

vector b̂ satisfying
∥∥∥b̂− b∗

∥∥∥ ≤ ϵ.

6.6. Approximate load vector via minimum-cost flow

We set up the problem as a quadratic min cost flow problem. Namely, we will set the flow network
V = {s}∪{av : v ∈ V }∪{ae : e ∈ E}∪{t}. We add an edges to E of the form (s, av) of capacity
degG(v). We add an edge (av, ae) is v if one of the endpoints of e of capacity 1. Finally, we add
an edge (ae, t) of capacity 1 for all edges e ∈ E. See Figure 6.6. One can verify that the maximum
flow has cost m = |E| using max flow min cut theorem. Let F be the set of valid maximum flows
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Figure 6.6: Quadratic min cost flow network

for (V, E). We are interested in the problem of

minimize
∑
u∈V

f(s, au)
2

subject to f ∈ F
(6.1)

One can verify that the optimal flow for Problem 6.1 gives the solution for Problem 4.3; any flow
f ∈ F corresponds to a solution of the same cost to Problem 4.3 and vice versa. Hence the optimal
flow f∗ is the dense decomposition vector.

Observe that this flow network has size O(m). We will use Theorem 10.14 from [43]. Define
h(s,avi

)(x) = x2 and he(x) = 0 otherwise for e ̸= (s, avi). These are functions which are sums of
Õ(1) p−norms. Hence, in m1+o(1) time, we can compute a min cost flow f of value |E|. Setting
C = 3 in the Theorem, we get that∑
u∈V

f(s, au)
2 ≤

∑
u∈V

f∗(s, au)
2+O(exp (− log3 m)) = OPT+

1

mlog2 m
≤ OPT+

1

m4
≤ OPT+ϵ2

Note that the smallest ϵ we care about is ϵ ≥ n−2 (since any smaller epsilon wouldn’t change the
value from setting ϵ = n−2). The chain of inequalities hold for reasonably large m (say m ≥ 5).
Hence f is an ϵ-approximate load vector.

6.7. Further Details of Experimental Section

6.7.1. More details on MWU and FRANK-WOLFE based algorithms

We described the theoretical aspects of the FRANK-WOLFE and MWU algorithms in Sections 5.5.
Here we discuss some concrete details of our implementation.

We use the FRANK-WOLFE implementation in the context of DSG as described by Danisch et al.
[3]. The algorithm maintains an edge assignment vector that it updates in each iteration t. The edge
assignment vector x(t−1) at the start of iteration t naturally induces a vertex load vector bt−1. We
loop over each edge, and set y(t)uv = 1, y

(t)
vu = 0 if b(t−1)

u < b
(t−1)
v and y

(t)
uv = 0, y

(t)
vu = 1 otherwise.

Finally, we let x(t) = x(t−1) + 2
t+2y

(t) which itself induces a new load vector b(t). Each iteration
takes O(m) time. This is the same implementation as described in the Danisch et al. [3] paper except
that we initialize the starting vector x(0) differently. Danisch et al. initialize x(0)

uv = x
(0)
vu = 0.5 while

we initialize it with the edge assignment obtained from running the Greedy algorithm.

There is an alternative way to implement the algorithm without using edge assignment variables.
We maintain a vertex load vector b(t) of size n. Each iteration is implemented as follows. We sort
the vertices u1 < ... < un in ascending order of b(t−1)

u (ties broken arbitrarily). Then, for each ui,
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we set
b(t)u = b(t−1)

u +
2

t+ 2
|uj ∈ δ(ui) : j > i|

One can verify that the two algorithms are equivalent with a slightly different implementation. This
implementation takes O(n log n) time for the sort, and an O(m) loop over the graph, but does not
have to store an additional array of size 2m for each edge. When n≪ m, this can make a substantial
difference.

The MWU algorithm can also be implemented in two different ways (one edge based, and one
vertex based). We choose to implement the algorithm in the vertex based approach in comparison
to the FRANK-WOLFE based approach. Specifically, the algorithm maintains a vertex load vector
that it updates in each iteration as follows. In iteration t, it sorts the vertices as u1 < ... < un in
ascending order of b(t−1)

u values. Then, for each ui, it sets

b(t)u = b(t−1)
u +

1

t+ 1
|uj ∈ δ(ui) : j > i|

We keep track of the edge assignment vector x(t) (that induces b(t)) for the fractional peeling exper-
iment — however, when reporting the running time we do not add this overhead since the algorithm
does not require maintaining the x(t) vector.

6.7.2. Additional data

See the end of the Appendix for enlarged plots of the main paper plots and additional plots for all
datasets.

1. Figure 6.7 shows the density achieved as number of iterations vary for all algorithms on all
datasets when static load sorting is used instead of fractional peeling. Figure 6.8 shows the
effect of adding fractional peeling to all the algorithms.

2. Figure 6.9 shows the time per iteration histogram for all datasets and all algorithms that we
tested.

3. Figures 6.10 and 6.11 show the error plots (i.e sum of
∑

u∈V b2u) of all algorithms on
all datatasets. Specifically, Figure 6.11 zooms in on the last few iterations to see what is
happening near the end.

4. Figure 6.12 shows the sorted load vector after 100 iterations of FISTA in sorted order,
where a vertex rank is its relative order in terms of its load vector in V , and load is the
value bu. It appears that for each Si, FISTA focuses on adjusting bu for most vertices
in Si, but a few vertices “lag” behind in lower/higher levels, and slowly bubble down as
shown the dataset for CLOSE CLIQUES and ROADNET PA. This gives some intuition on
why fractional peeling does well in practice as these “trailing” vertices will be peeled first
by fractional peeling allowing the dense component to stabilize.

5. Figure 6.13 shows the wall clock time of different algorithms on all 8 datasets. Figure 6.14
shows the same figure but zoomed in on the first 20 percent of the time.
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Figure 6.7: Density based on sorting loads
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Figure 6.8: Density based on Fractional Peeling
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Figure 6.9: Time take per iteration histogram
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Figure 6.10: L2 norm of load vector. See Figure 6.11 for a zoom-in on the last 20 iterations.
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Figure 6.11: Same as Figure 6.10 but zoomed in from Iteration 70 and after.
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Figure 6.12: Scatter plot of sorted load vector. This can be used to approximate the densest at least
k subgraph.
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Figure 6.13: Wall clock time vs Maximum Density. See Figure 6.14 for a zoom in on first few
seconds of each dataset.
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Figure 6.14: Wall clock time vs Maximum Density zoomed in on first few seconds for each dataset.
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